I. MATRIX LIE GROUPS

Definition: A matrix Lie group is a closed subgroup G_M of $GL(n, \mathbb{C})$.

Thus if $\{A_m\}_{m=1}^{\infty}$ is any sequence of matrices in G_M, and $A_m \to A$ for some $A \in M_n(\mathbb{C})$, then either $A \in G_M$ or A is not invertible.

Example of a Group that is Not a Matrix Lie Group

Let $G_Q^n = \{A \in GL(n, \mathbb{C}) : A = [a_{ij}]_{i,j=1}^{n,n}, \text{ where } a_{ij} \in \mathbb{Q}, \forall i, j\}$.

Then there exists $\{A_m\}_{m=1}^{\infty} \subseteq G_Q^n$ such that $A_m \to \pi \delta \notin G_M$, but $\pi \delta$ is invertible.

Thus G_Q^n is not a matrix Lie group.

Examples of Matrix Lie Groups

$O(n), U(n), Sp(n)$, etc.

Another example is the Heisenberg group H described below:

Let $A = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} : a, b, c \in \mathbb{R} \right\}$

Note: If $B, C \in A$, then $BC \in A$

If $B = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$, then $B^{-1} = \begin{bmatrix} 1 & -a & ac - b \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{bmatrix} \in A$.

Then (A, \cdot) is a subgroup of $GL(3, \mathbb{R})$ and if $\{B_m\}_{m=1}^{\infty} \subseteq A$ with $B_m \to B$, then $B \in A$, so (A, \cdot) is a matrix Lie group, called the Heisenberg group H.
Facts about the Heisenberg group H

1. $Z(H) = \left\{ \begin{bmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} : b \in \mathbb{R} \right\}$ \hspace{1cm} [Exercise]

2. Let $\mathfrak{h} = \left\{ \begin{bmatrix} 0 & \alpha & \beta \\ 0 & 0 & \gamma \\ 0 & 0 & 0 \end{bmatrix} : \alpha, \beta, \gamma \in \mathbb{R} \right\}$. Then \mathfrak{h} is the Lie algebra of H. \hspace{1cm} [Exercise]

3. Let $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

Then $\{A, B, C\}$ is a basis for \mathfrak{h}.

4. $B^2 = 0$ so $e^{tB} = \delta + tB = \begin{bmatrix} 1 & 0 & t \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Thus $Z(H) = \{e^{tB} : t \in \mathbb{R}\}$.

5. $[A, C] = \sim B$ and $[A, B] = [C, B] = \sim 0$ \hspace{1cm} [Exercise]

II. LIE GROUPS

Definition: G_L is a (C^∞)–Lie group if $G_L = (X, T, |A|, \cdot)$ where

1. $(X, T, |A|)$ is a C^∞-manifold

2. (X, \cdot) is a group

3. $\cdot : X \times X \to X$ is a smooth function with respect to the smooth product structure on $X \times X$ and the smooth structure on X (determined by $|A|$)

4. Letting $\varphi_{\cdot x} : X \to X$ be defined by $\varphi_{\cdot x}(z) = z^{-1}$, $\varphi_{\cdot x}$ is a smooth function (with respect to $|A|$)
The Lie Group G

Let $X = \mathbb{R} \times \mathbb{R} \times S^1_{\mathbb{C}} = \{(x, y, u) : x, y \in \mathbb{R} \text{ and } u \in S^1_{\mathbb{C}} = \{z \in \mathbb{C} : |z| = 1\}\}$.

Let $\mathcal{T}_{S^1_{\mathbb{C}}}$ be the subspace topology on $S^1_{\mathbb{C}}$ induced from \mathbb{C}.

Let \mathcal{T}_X be the standard product topology on X induced from $\mathcal{T}_{\mathbb{R}}$, the standard metric topology, and $\mathcal{T}_{S^1_{\mathbb{C}}}$.

Note: \mathcal{T}_X is second countable and Hausdorff.

Let $U_1 = \{e^{i\theta} : \theta_1 \in (0, 2\pi)\}$ and $U_2 = \{e^{i\theta} : \theta_2 \in (-\pi, \pi)\}$.

Let $V_1 = (0, 2\pi)$ and $V_2 = (-\pi, \pi)$.

Let $\varphi_1 : U_1 \rightarrow V_1$ be defined by $z \mapsto \{\text{unique } \theta_1 \in (0, 2\pi) \text{ such that } z = e^{i\theta_1}\}$.

Let $\varphi_2 : U_2 \rightarrow V_2$ be defined by $w \mapsto \{\text{unique } \theta_2 \in (-\pi, \pi) \text{ such that } w = e^{i\theta_2}\}$.

Let $\mathcal{A}_{S^1_{\mathbb{C}}} = \{(U_1, V_1, \varphi_1), (U_2, V_2, \varphi_2)\}$

Then $(S^1_{\mathbb{C}}, \mathcal{T}_{S^1_{\mathbb{C}}}, |\mathcal{A}_{S^1_{\mathbb{C}}}|)$ is a C^∞-manifold. [Exercise]

Via the standard product construction, with product atlas \mathcal{A}_X, we have that $(X, \mathcal{T}_X, |\mathcal{A}_X|)$ is a C^∞-manifold. [Exercise]

Note: If $z \in X$, then in each coordinate chart, $z = (x, y, e^{i\theta})$ for an appropriate choice of θ.

Define: $\cdot : X \times X \rightarrow X$ locally (i.e. in each coordinate chart) as

$$\left((x_1, y_1, u_1) \cdot (x_2, y_2, u_2) = (x_1 + x_2, y_1 + y_2, e^{ix_1y_2}u_1u_2)\right)$$

This is well-defined on $X \times X$ (independent of choice of coordinate chart) [Exercise]

Facts about \cdot

1. \cdot is associative [Exercise]

2. $(0,0,1)$ is the identity element

3. $(x,y,u)^{-1} = (-x,-y, e^{iy}u^{-1})$

Thus (X, \cdot) is a group.
Now, ω^0 are smooth in each coordinate chart (by inspection), so are smooth.

Hence $G = (X, T_X, |AX|, \cdot)$ is a Lie group.

III. EVERY MATRIX LIE GROUP IS A LIE GROUP

Every matrix Lie group G_M is a smooth embedded submanifold of $M_n(\mathbb{C})$ and hence a Lie group.

Idea of Proof:

For each point in G_M, take “small enough” neighborhood on which e^{ω}_g is defined to map neighborhood to Lie algebra \mathfrak{g}, which is a vector subspace of $M_n(\mathbb{C}) \cong \mathbb{C}^{n^2} \cong \mathbb{R}^{2n^2}$.

To do this formally, we need some facts.

Definition:

$$||X||_2 = \left(\sum_{k=1}^{n} \sum_{i=1}^{n} |X_{ki}|^2 \right)^{\frac{1}{2}} \text{ for } X \in M_n(\mathbb{C})$$

Proposition 1: If $X \in M_n(\mathbb{C})$ with $||X|| < \varepsilon_n 2$, then $\omega_{g}(e^{\sim}X)$ is defined and $\omega_{g}(e^{\sim}X) = X$.

[Exercise: See Theorem 2.7 in “Lie Groups, Lie Algebras, and Representations”, by Brian Hall]

Definition: Let $\varepsilon \in (0, \varepsilon_n 2)$. Then let $U_\varepsilon = \{X \in M_n(\mathbb{C}) : ||X|| < \varepsilon\}$ and $V_\varepsilon = \omega_{g}(U_\varepsilon)$

Note: By Proposition 1, V_ε is open in $M_n(\mathbb{C})$

Proposition 2: Suppose $G_M \subseteq GL(n, \mathbb{C})$ is a matrix Lie group with Lie algebra \mathfrak{g}. Then there exists $\varepsilon \in (0, \varepsilon_n 2)$ such that for all $A \in V_\varepsilon$, we have $A \in G_M \Leftrightarrow \omega_{g} A \in \mathfrak{g}$.

[Exercise: See Theorem 2.27 in “Lie Groups, Lie Algebras, and Representations”, by Brian Hall]

Proposition 3: Every matrix Lie group G_M is a smooth embedded submanifold of $M_n(\mathbb{C})$ and hence a Lie group

Proof:

Let $\varepsilon \in (0, \varepsilon_n 2)$.

Let \mathcal{T}_{G_M} be the subspace topology on G_M.
Let $\sim A_0 \in G_M$.

Let $\sim C = 0$.

Then $\sim A_0 = \sim A_0 \delta = \sim A_0 \exp(\sim C) \in \sim A_0 \exp(\sim U_\varepsilon) = \sim A_0 V_\varepsilon$.

Since V_ε is open in $M_n(\mathbb{C})$ and multiplication by $\sim A_0$ is a homeomorphism onto $\sim A_0 V_\varepsilon$, $\sim A_0 V_\varepsilon$ is open in $M_n(\mathbb{C})$.

Thus $\sim A_0 V_\varepsilon$ is an open neighborhood of $\sim A_0$.

Note: $X \in \sim A_0 V_\varepsilon \iff \sim A_0^{-1} X \in V_\varepsilon$, and by Proposition 2, $\sim A_0^{-1} X \in V_\varepsilon \iff \sim \exp(\sim A_0^{-1} X) \in \mathfrak{g}$

Then define $\varphi_{\sim A_0} : \sim A_0 V_\varepsilon \to \mathfrak{g}$ by $\varphi_{\sim A_0}(\sim X) = \sim \exp(\sim A_0^{-1} \sim X)$.

Then, by Proposition 2, φ is a well-defined homeomorphism. [Exercise]

Now $\mathfrak{g} \subseteq M_n(\mathbb{C})$, and \mathfrak{g} is a vector space, so \mathfrak{g} is a vector subspace of $M_n(\mathbb{C})$.

Let $\{v_1, \ldots, v_k\}$ be a basis for \mathfrak{g}.

Extend $\{v_1, \ldots, v_k\}$ to a basis $\{v_1, \ldots, v_{n^2}\}$ for $M_n(\mathbb{C})$.

Let $\eta : M_n(\mathbb{C}) \to \mathbb{R}^{2n^2}$ be defined by

$$\eta \left(\sum_{i=1}^{n^2} a_i v_i \right) = \left(\Re a_1, \Im a_1, \Re a_2, \Im a_2, \ldots, \Re a_n, \Im a_n \right)$$

Then η is a linear isomorphism. [Exercise]

Furthermore, $\eta_{\mathfrak{g}}^{\eta_{\mathfrak{g}}} : \mathfrak{g} \to \mathbb{R}^{2k} \times \{0\}^{2n^2-2k}$ is a linear isomorphism. [Exercise]

Let $\Phi_{\sim A_0} = \eta_{\mathfrak{g}}^{\eta_{\mathfrak{g}}} \circ \varphi_{\sim A_0}$.

Then $\Phi_{\sim A_0}(\sim A_0 V_\varepsilon) = \mathbb{R}^{2k} \times \{0\}^{2n^2-2k} \subseteq \mathbb{R}^{2n^2}$, so is a smooth embedded submanifold of $M_n(\mathbb{C})$.

Then $(\sim A_0 V_\varepsilon, \mathbb{R}^{2k}, \pi_{2k} \circ \Phi_{\sim A_0})$ is a chart for $\sim A_0$.

5
Let \(A = \{(BV_\varepsilon, \mathbb{R}^{2k}, \pi_{2k} \circ \Phi_B) : B \in G_M\}\).

Then \((G_M, T_{G_M}, |A|, \cdot)\), where \(\cdot\) is standard matrix multiplication, is a Lie group.

IV. NOT EVERY LIE GROUP IS A MATRIX LIE GROUP

In fact, we will show even more.

Namely, not every Lie group is **algebraically isomorphic** to a matrix Lie group!

Nilpotent Matrix Lemma

Definition: A matrix \(X \in M_n(\mathbb{R}) \) is called **nilpotent** if there exists \(k \in \mathbb{N} \) such that \(X^k = 0 \).

Lemma: If \(X \in M_n(\mathbb{R}) \) is a nonzero nilpotent matrix, then for all nonzero real numbers \(t, e^{tx} \neq 0 \).

Proof:

Let \(X \neq 0 \) be a nilpotent matrix, and suppose, by way of contradiction, there exists \(t_0 \in \mathbb{R} \) such that \(t_0 \neq 0 \) and \(e^{t_0X} = 0 \).

Since \(X \) is nilpotent, there exists \(k \in \mathbb{N} \) such that \(X^k = 0 \).

Let \(t \in \mathbb{R} \).

Then

\[
e^{tx} = \delta + tX + \frac{(tX)^2}{2!} + \frac{(tX)^k}{k!} + \frac{(tX)^{k+1}}{(k+1)!} + \cdots
\]

\[
= \delta + \frac{t^2X^2}{2!} + \cdots + \frac{t^{k-1}X^{k-1}}{(k-1)!}
\]

Let \(c_{ij} \) be the \(ij \)th entry of \(X^l \).

Then \((e^{tx})_{ij} = \delta_{ij} + c_{ij}t + \frac{c_{ij}^2}{2!}t^2 + \cdots + \frac{c_{ij}^{k-1}}{(k-1)!}t^{k-1} \).

Hence there exists polynomials \(\rho_{ij}(t) \) such that \((e^{tx})_{ij} = \rho_{ij}(t) \). \((1)\)
Now let \(m \in \mathbb{N} \).

Then \((e^{mX})^m = \delta^m \), so \(e^{mX} = \delta \).

Then \((e^{mX})_{ij} = \rho_{ij}(mt_0) \), so \(\rho_{ij}(mt_0) = \delta_{ij} \).

Let \(\rho_{ij}(t) = \rho_{ij}(t) - \delta_{ij} \).

Now, if by way of contradiction, \(\rho_{ij}(t) \) is nonconstant, then \(\rho_{ij}(t) \) is nonconstant and has roots \(mt_0 \), for all \(m \in \mathbb{N} \).

Thus \(\rho_{ij}(t) \) has infinitely many roots, violating the Fundamental “\(N \)-th root” Theorem of Algebra.

Thus \(\rho_{ij}(t) \) is constant, i.e. there exists \(c_{ij} \in \mathbb{R} \) such that \(\rho_{ij}(t) = c_{ij} \).

Thus, by (1), for all \(t \in \mathbb{R} \), \((e^{tX})_{ij} = c_{ij} \).

Letting \(C = [c_{ij}]_{i,j=1}^n \), we have \(e^{tX} = C \).

Then \(\frac{d}{dt}(e^{tX}) = 0 \), so \(e^{tX} = 0 \).

Since this holds for all \(t \in \mathbb{R} \), it holds for \(t = 0 \), so \(e^0X = 0 \).

Thus \(\delta X = 0 \), so \(X = 0 \), a contradiction.

Relate the Heisenberg matrix Lie group \(H \) to the Lie group \(G \)

Define \(\Phi : H \to G \) by \[
\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \mapsto (a, c, e^{ib})
\]

Then \(\Phi \) is a surjective homomorphism. \([\text{Exercise}]\)

Then \(\ker \Phi = \left\{ \begin{bmatrix} 1 & 0 & 2\pi n \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} : n \in \mathbb{Z} \right\} = \{ e^{2\pi n h} : n \in \mathbb{Z} \} \quad \text{[Exercise]}\)

Let \(N = \ker \Phi \).

By the 1st Isomorphism Theorem, \(\frac{H}{N} \cong G \).
Definition: A Lie group homomorphism from Lie group \(G_L = (X_1, \mathcal{T}_1, |A_1|, \cdot, 1) \) to Lie group \(H_L = (X_2, \mathcal{T}_2, |A_2|, \cdot, 2) \) if the following two conditions are met:

1. \(\Phi : (X_1, \mathcal{T}_1, |A_1|) \to (X_2, \mathcal{T}_2, |A_2|) \) is smooth
2. \(\Phi : (X_1, \cdot, 1) \to (X_2, \cdot, 2) \) is a homomorphism.

Then we write \(\Phi : G_L \to H_L \).

Definition: Let \(G_L \) be a Lie group. Let \(\mathfrak{g} \) be any (unrelated) Lie algebra. Then a finite-dimensional complex representation of \(G_L \) (resp. \(\mathfrak{g} \)) is a Lie group homomorphism \(\Pi : G \to GL(n, \mathbb{C}) \) (resp. Lie algebra homomorphism \(\pi : \mathfrak{g} \to \mathfrak{gl}(n, \mathbb{C}) = M_n(\mathbb{C}) \)).

If \(\Pi \) (resp. \(\pi \)) is injective, then we say that \(\Pi \) (resp. \(\pi \)) is faithful.

Theorem: Let \(\Sigma \) be any finite dimensional representation of \(H \). If \(N \subseteq \mathfrak{k}_\Sigma \), then \(Z(H) \subseteq \mathfrak{k}_\Sigma \).

Proof:

Let \(\Sigma \) be any finite dimensional representation of \(H \).

Let \(\sigma : \mathfrak{h} \to \mathfrak{gl}(n, \mathbb{R}) \) be defined by \(\sigma(X) = \frac{d}{d\lambda} \left[\Sigma(e^{\lambda X}) \right]_{\lambda=0} \).

Then \(\sigma \) is a finite dimensional representation of \(\mathfrak{h} \), and \(\Sigma(e^{X}) = e^{\sigma(X)} \). [Exercise]

Since \(\sigma \) is Lie algebra homomorphism,

\[
[\sigma(A), \sigma(B)] = \sigma([A, B]) \text{ and } [\sigma(A), \sigma(B)] = [\sigma(C), \sigma(B)] = 0.
\]

Let \(\tilde{F} = \sigma(B) \).

Let \(\{\lambda_1, \ldots, \lambda_n\} \) be the eigenvalues for \(\tilde{F} \) and \(F \) the associated linear operator.

Let \(V_{\lambda_i} = \{ v \in \mathbb{C}^n : (\tilde{F} - \lambda_i) v = 0 \text{ for some } k \} \) (generalized eigenspace).

Let \(v \in V_{\lambda_i} \) for some \(i \in \{1, \ldots, n\} \).

Then \((F - \lambda_i) F v = F(F - \lambda_i) F v = F v = 0 \), so \(F v \in V_{\lambda_i} \).

Hence \(V_{\lambda_i} \) is invariant under \(F \).
Let \(F_{\lambda_i} = F|_{V_{\lambda_i}} \).

Note: \(F_{\lambda_i} - \lambda_i \delta \) is nilpotent.

Now let \(\lambda \) be an eigenvalue of \(F = \sigma(B) \).

Since \(\sigma(A) \) and \(\sigma(C) \) commute with \(\sigma(B) \), they also leave \(V_\lambda \) invariant. \([\text{Exercise}]\)

Now \(\varepsilon_\lambda(\sigma(B)|_{V_\lambda}) = \varepsilon_\lambda([\sigma(A)|_{V_\lambda}, \sigma(C)|_{V_\lambda}]) = 0 \), since the trace of a commutator is zero.

However, \(\varepsilon_\lambda(\sigma(B)|_{V_\lambda}) = \varepsilon_\lambda(\lambda \delta|_{V_\lambda}) = \lambda \varepsilon_\lambda(\delta|_{V_\lambda}) = \lambda \delta|_{V_\lambda} \).

Thus \(\delta|_{V_\lambda} = 0 \).

Now \(\delta|_{V_\lambda} \neq 0 \), since \(\lambda \) is an eigenvalue, so \(\lambda = 0 \).

Hence, for all \(i \), \(F_{\lambda_i} - \lambda_i \delta = F_{\lambda_i} \).

Thus \(F_{\lambda_i} \) is nilpotent for each \(i \).

Fact: \(\mathbb{C}^n = V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_m} \) \([\text{Exercise}]\)

Thus \(F = \sigma(B) \) is nilpotent.

Now \(N = \{ e^{2\pi nB} : n \in \mathbb{Z} \} \subseteq \kappa \sigma(B) \Sigma \) (hypothesis), so for all \(n \in \mathbb{Z} \), \(\Sigma(e^{2\pi nB}) = \delta \).

Hence, \(e^{2\pi \sigma(B)} = \delta \) for all \(n \in \mathbb{Z} \). \((1)\)

If, by way of contradiction, \(\sigma(B) \neq 0 \), then \(\sigma(B) \) is a nonzero nilpotent matrix, so by the Nilpotent Matrix Lemma, \(e^{t \sigma(B)} \neq \delta \) for all \(t \in \mathbb{R} \) with \(t \neq 0 \), which contradicts \((1)\).

Thus \(\sigma(B) = 0 \).

Now let \(X \in Z(H) \).

Then there exists \(t \in \mathbb{R} \) such that \(X = e^{tB} \).

Then \(\Sigma(X) = \Sigma(e^{tB}) = e^{t \sigma(B)} = e^{t \cdot 0} = \delta \).
Thus \(X \in \mathfrak{z}(\Sigma) \), so \(Z(H) \subseteq \mathfrak{z}(\Sigma) \).

Proposition: The Lie group \(G \) has no faithful finite dimensional representations.

Proof

Suppose \(\Psi : G \to GL(n, \mathbb{C}) \) is a finite dimensional representation of \(G \).

Then let \(\Sigma = \Psi \circ \Phi : H \to GL(n, \mathbb{C}) \).

Then \(\Sigma \) is a finite dimensional representation of \(H \).

Let \(\widetilde{X} \in N = \mathfrak{k}_{\text{cent}} \Phi \). Then \(\Phi(\widetilde{X}) = \widetilde{\delta} \).

Then \(\Sigma(\widetilde{X}) = \Psi(\Phi(\widetilde{X})) = \Psi(\widetilde{\delta}) = \widetilde{\delta} \), so \(\widetilde{X} \in \mathfrak{k}_{\text{cent}} \Sigma \).

Thus \(N \subseteq \mathfrak{k}_{\text{cent}} \Sigma \).

Then, by the above Theorem, \(Z(H) \subseteq \mathfrak{k}_{\text{cent}} \Sigma \).

Since \(Z(H) \) is nontrivial, \(\mathfrak{k}_{\text{cent}} \Sigma \) is nontrivial, so \(\Sigma \) is not injective.

Thus \(G \) has no faithful finite dimensional representation.

Now we show that \(G \) is not isomorphic to any matrix Lie group:

Assume, by way of contradiction, that there exists an isomorphism \(\eta : G \to G_M \) for some matrix Lie group \(G_M \). Then \(\psi_{\text{cent}} : G_M \to GL(n, \mathbb{C}) \) is an injective Lie group homomorphism.

Hence \(\psi_{\text{cent}} \circ \eta : G \to GL(n, \mathbb{C}) \) is an injective Lie group homomorphism, so \(\psi_{\text{cent}} \circ \eta \) is a faithful finite dimensional representation, which is a contradiction to the above proposition.

Thus \(G \) is not isomorphic to any matrix Lie group.

Note: Since \(G \cong H \) and since \(H \) is a matrix Lie group, we see that matrix Lie groups are not preserved by taking quotients.