3.5 Relations and Functions: Basics

A. Relations

1. A relation is a set of ordered pairs. For example,

$$
A=\{(-1,3),(2,0),(2,5),(-3,2)\}
$$

2. Domain is the set of all first coordinates: $\{-1,2,2,-3\}$

$$
\text { so } \operatorname{dem}(A)=\{-1,2,-3\}
$$

3. Range is the set of all second coordinates: $\{3,0,5,2\}$

$$
\text { so } \operatorname{rng}(A)=\{3,0,5,2\}
$$

B. Functions

A function is a relation that satisfies the following:

$$
\text { each } x \text {-value is allowed only one } y \text {-value }
$$

Note: $\quad A$ (above) is not a function, because 2 has y-values 0 and 5 (violates our condition!)

C. Testing Relations To See If They Are Functions

We make a "mapping table". We do this as follows:

1. List all the x-values on the left.
2. At each x-value, draw an arrow-one arrow pointing to each y-value it has.
3. If you see a situation where an x-value has two or more arrows branching to y-values, then it is not a function.

Examples:

Check to see if the following relations are functions:

$$
\begin{aligned}
& B=\{(3,4),(2,4),(1,4),(-3,2)\} \\
& C=\{(1,2),(-2,3),(5,1),(1,4)\}
\end{aligned}
$$

Solution

Make a mapping table for B :

$3 \longrightarrow 4$	
$2 \longrightarrow$	4
$1 \longrightarrow$	
$-3 \longrightarrow$	

Thus we see that B is a function.

Make a mapping table for C :

Thus we see that C is not a function!

C. Graphs and Functions

To check to see if a graph determines a function, we apply the Vertical Line Test.

Vertical Line Test:

If a vertical line moved over allowed x-values intersects the graph exactly once (each time), the graph is a function; otherwise; it is not.

Example:

D. "Function Machine"

Since each x-value is allowed only one y-value (in a function), we can think of a function as a machine that "eats" x-values and spits back y-values-so that the machine only spits out one output for any input.

E. Function Notation

We call our "machine" that changes x-values into y-values a function operator, written f.

In other words, f represents the function

Thus, since $B=\{(3,4),(2,4),(1,4),(-3,2)\}$ is a function, we can write

$$
\begin{aligned}
& f(3)=4 \\
& f(2)=4 \\
& f(1)=4 \\
& f(-3)=2
\end{aligned}
$$

F. Comments on Function Notation

1. f here is not multiplication; it is function operation.
2. To avoid confusion with variables, we write functions in cursive.

Thus, we write f, g, h rather than f, g, h.
3. In general:

4. Note: f is the function operator; but $f(x)$ is the output (same as y !)

G. Function Evaluation

Sometimes a function has an output formula given by $f(x)$.

To evaluate the output for f, given an input:

We just plug in the input, wherever we see x.

Example 1: Given $f(x)=6-x^{2}$. Find $f(1)$ and $f(-2)$.

Solution

$f(1)$: plug in 1 where you see x :

$$
f(1)=6-(1)^{2}=6-1=5
$$

$f(-2)$: plug in -2 where you see x :

$$
f(-2)=6-(-2)^{2}=6-4=2
$$

Example 2: Given $f(x)=2 x^{2}-4 x+6$. Find $f(0)$ and $f\left(-\frac{1}{2}\right)$.

Solution

$f(0)$: plug in 0 where you see x :

$$
f(0)=2(0)^{2}-4(0)+6=2 \cdot 0-4 \cdot 0+6=0-0+6=6
$$

$$
f\left(-\frac{1}{2}\right): \text { plug in }-\frac{1}{2} \text { where you see } x \text { : }
$$

$$
\begin{aligned}
f\left(-\frac{1}{2}\right) & =2\left(-\frac{1}{2}\right)^{2}-4\left(-\frac{1}{2}\right)+6 \\
& =2 \cdot \frac{1}{4}+2+6 \\
& =\frac{1}{2}+2+6 \\
& =\frac{1}{2}+\frac{4}{2}+\frac{12}{2} \\
& =\frac{17}{2}
\end{aligned}
$$

Example 3: Given $f(x)=\sqrt{x-3}$. Find $f(3 a+b)$.

Solution

$f(3 a+b): \quad$ plug in $(3 a+b)$ where you see x :

$$
f(3 a+b)=\sqrt{(3 a+b)-3}
$$

