
Math 829 The Arzela-Ascoli Theorem Spring 1999

1 Introduction

Our setting is a compact metric space X which you can, if you wish, take to
be a compact subset of Rn, or even of the complex plane (with the Euclidean
metric, of course). Let C(X) denote the space of all continuous functions on
X with values in C (equally well, you can take the values to lie in R). In
C(X) we always regard the distance between functions f and g in C(X) to
be

dist (f, g) = max{|f(x)− g(x)| : x ∈ X}.
It is easy to check that “dist” is a metric (henceforth: the “max-metric”)
on C(X), in which a sequence is convergent iff it converges uniformly on X.
Similarly, a sequence in C(X) is Cauchy iff it is Cauchy uniformly on X.
Thus the max-metric, which from now on we always assume to be part of
the definition of C(X), makes that space complete. These notes prove the
fundamental theorem about compactness in C(X):

1.1 The Arzela-Ascoli Theorem If a sequence {fn}∞1 in C(X) is bounded
and equicontinuous then it has a uniformly convergent subsequence.

In this statement,

(a) “F ⊂ C(X) is bounded” means that there exists a positive constant
M <∞ such that |f(x)| ≤M for each x ∈ X and each f ∈ F , and

(b) “F ⊂ C(X) is equicontinuous” means that: for every ε > 0 there exists
δ > 0 (which depends only on ε) such that for x, y ∈ X:

d(x, y) < δ ⇒ |f(x)− f(y)| < ε ∀f ∈ F ,

where d is the metric on X.

1.2 Exercise. The Arzela-Ascoli Theorem is the key to the following re-
sult: A subset F of C(X) is compact if and only if it is closed, bounded, and
equicontinuous.

1.3 Exercise. You can think of Rn as (real-valued) C(X) where X is a
set containing n points, and the metric on X is the discrete metric (the
distance between any two different points is 1). The metric thus induced
on Rn is equivalent to, but (unless n = 1) not the same as, the Euclidean
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one, and a subset of Rn is bounded in the usual Euclidean way if and only
if it is bounded in this C(X). Show that every bounded subset of this C(X)
is equicontinuous, thus establishing the Bolzano-Weierstrass theorem as a
generalization of the Arzela-Ascoli Theorem.

2 Proof of the Arzela-Ascoli Theorem.

Step I. We show that the compact metric space X is separable, i.e., has a
countable dense subset S.

Given a positive integer n and a point x ∈ X, let

B(x, 1/n) = {y ∈ X : d(x, y) < 1/n},

the open ball of radius 1/n, centered at x. For a given n, the collection of
all these balls as x runs through X is an open cover of x, so (because X is
compact) there is a finite subcollection that also covers X. Let Sn denote
the collection of centers of the balls in this finite subcollection. Thus Sn is
a finite subset of X that is “1/n-dense” in the sense that every point of X
lies within 1/n of a point of Sn. Clearly the union S of all the sets Sn is
countable, and dense in X.

Step II. We find a subsequence of {fn} that converges pointwise on S.
This is a standard diagonal argument. Let’s list the (countably many)

elements of S as {x1, x2, . . .}. Then the numerical sequence {fn(x1)}∞n=1

is bounded, so by Bolzano-Weierstrass it has a convergent subsequence,
which we’ll write using double subscripts: {f1,n(x1)}∞n=1. Now the numer-
ical sequence {f1,n(x2)}∞n=1 is bounded, so it has a convergent subsequence
{f2,n(x2)}∞n=1. Note that the sequence of functions {f2,n}∞n=1, since it is a sub-
sequence of {f1,n}∞n=1, converges at both x1 and x2. Proceeding in this fashion
we obtain a countable collection of subsequences of our original sequence:

f1,1 f1,2 f1,3 · · ·
f2,1 f2,2 f2,3 · · ·
f3,1 f3,2 f3,3 · · ·
. . . . . .
. . . . . .
. . . . . .

where the sequence in the n-th row converges at the points x1, . . . , xn, and
each row is a subsequence of the one above it.
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Thus the diagonal sequence {fn,n} is a subsequence of the original se-
quence {fn} that converges at each point of S.

Step III. Completion of the proof.
Let {gn} be the diagonal subsequence produced in the previous step,

convergent at each point of the dense set S. Let ε > 0 be given, and choose
δ > 0 by equicontinuity of the original sequence, so that d(x, y) < δ implies
|gn(x) − gn(y)| < ε/3 for each x, y ∈ x and each positive integer n. Fix
M > 1/δ so that the finite subset SM ⊂ S that we produced in Step I is
δ-dense in X. Since {gn} converges at each point of SM , there exists N > 0
such that

(∗) n,m > N ⇒ |gn(s)− gm(s)| < ε/3 ∀s ∈ SM .

Fix x ∈ X. Then x lies within δ of some s ∈ SM , so if n,m > M :

|gn(x)− gm(x)| ≤ |gn(x)− gn(s)|+ |gn(s)− gm(s)|+ |gm(s)− gm(x)|

The first and last terms on the right are < ε/3 by our choice of δ (which was
possible because of the equicontinuity of the original sequence), and the same
estimate holds for the middle term by our choice of N in (*). In summary:
given ε > 0 we have produced N so that for each x ∈ X,

m,n > N ⇒ |gn(x)− gm(x)| < ε/3 + ε/3 + ε/3 = ε.

Thus on X the subsequence {gn} of {fn} is uniformly Cauchy, and there-
fore uniformly convergent. This completes the proof of the Arzela-Ascoli
Theorem. ¤
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