Exercises for "Maple Essentials, Lesson 1"

1. For the polynomial \(p(x) = 3x^4 + 5x^3 + 2x^2 - x + 2 \), use Maple to:

 (a) find \(p(2) \)

 (b) find the sequence of values \(p(k) \) for \(k=0, 1, 2, \ldots 20 \).

 (c) find \(p(a+1) \), expanded in powers of \(a \).

2. Now suppose \(p(x) = a x^4 + b x^3 + c x^2 + d x + e \).

 Using the Maple command "eval", find the value of \(p(x) \) at \(x = 1.4 \), if \(a = 2.1, b = 3.3, c = 1.1, d = 5.4 \), and \(e = 6.5 \).

 Do this in two ways:
 (a) all at once (i.e., \(x := 1.4, a := 2.1 \), etc.)
 (b) First evaluating the coefficients to get a polynomial \(p(x) \) with numerical coefficients, then evaluating this polynomial at \(x = 1.4 \).

3. Expand \((3 + 4x)^{10} \) in powers of \(x \).

4. Obtain, in the form of a sequence, the expansions of \((1 + x)^n \) in powers of \(x \) for integers \(n \) from 0 to 25.

5. (a) Use Maple to factor the polynomial \(p(x) = x^8 + x^7 - 7x^6 - 17x^5 - 6x^4 + 28x^3 + 28x^2 - 4x - 24 \).

 (b) Use the "expand" command to check your result.

 (c) The Maple command "expand" will write the polynomial with smallest powers of \(x \) first. Use the "sort" command on this result to rewrite this polynomial with highest powers of \(x \) first.

 (d) How might you use "evalb" to check your result without first rewriting the "expanded" polynomial in standard order?

6. Put the expression \(\frac{3x + 5}{(x + 2)^2 - 6} + \frac{6x + 5}{x + 4} + \frac{x^2 + 5x + 1}{3x + 2} \) over a common denominator. Then use the command "numerator" and "denominator" to pick off the numerator and denominator.

7. Express \(\sin(8t) - \sin(7t) + \sin(6t) - \sin(5t) \) as a sum of products of powers of \(\sin(t) \) and \(\cos(t) \).