
Math 425 Fall 2005

Green’s Theorem, Cauchy’s Theorem, Cauchy’s Formula

These notes supplement the discussion of real line integrals and Green’s Theorem presented
in §1.6 of our text, and they discuss applications to Cauchy’s Theorem and Cauchy’s Formula
(§2.3).

1. Real line integrals. Our standing hypotheses are that γ : [a, b] → R2 is a piecewise
smooth curve in R2, and both u and v are real-valued functions defined on an open subset
of R2 that contains γ([a, b]). We’ll suppose further that u and v have continuous first partial
derivatives on this open set.

Let’s write x(t) = Re γ(t) and y(t) = Im γ(t), so γ is described by the (real) parametric
equations:

x = x(t), y = y(t), t ∈ [a, b].

Example 1. The unit circle, which we’ve been describing by the complex equation γ(t) =
eit, t ∈ [0, 2π] is, equivalently described by real parametric equations

x = Re eit = cos t, y = Im eit = sin t, t ∈ [0, 2π].

Definition.

∫
γ

u dx + v dy
def
=

∫ b

t=a

[u(x(t), y(t))x′(t) + v(x(t), y(t))y′(t)] dt.

In other words, just as with complex line integrals, you just substitute the parameterization
of the curve into the symbols in the left-hand integral to define an ordinary Riemann integral
on the right.

Example 2. Let γ be the quarter of the unit circle in the first quadrant, from 1 to (1+ i)/
√

2.
Compute

∫
γ
y dx + x dy.

Solution. Parameterize γ, say by

x = cos t, y = sin t, 0 ≤ t ≤ π/4.

Thus dx = − sin t dt and dy = cos t dt, so∫
γ

y dx + x dy
def
=

∫ π/4

t=0

(− sin2 t + cos2 t) dt

=

∫ π/4

t=0

cos 2t dt =
1

2
sin 2t|π/4

0

=
1

2
[sin

π

2
− sin 0]

=
1

2
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Physical interpretation. Recall from Calculus III that if F = ui + vj is a force field defined
on γ, and we write dR = dxi + dyj, then F · dR can be though of as the work done in by
the force field in pushing a particle over γ through a displacement dR, and∫

γ

u dx + v dy =

∫
γ

F · dR

is then the work done by F in pushing a particle over all of γ.

2. Real vs. Complex line integrals. The complex line integrals we studied in §1.6 can
be expressed in terms of the real ones discussed above. Here’s how:

Suppose γ is a piecewise smooth curve in C and f is a complex-valued function that is
continuous on an open set that contains γ. Suppose further that f has continuous first
partial derivatives on this open set.

Write f = u + iv where u = Re f and v = Im f , so both u and v are real-valued functions
that are continuous and have continuous first partials on some open set containing γ. Now
proceeding formally (meaning: without trying to make sense out of what we’re doing), we
have: z = x + iy, so dz = dx + idy, hence

f(z) dz = (u + iv)(dx + idy) = u dx− v dy + i(v dx + u dy)

so ∫
γ

f(z) dz =

∫
γ

(u + iv)(dx + idy) =

∫
γ

u dx− v dy + i

∫
γ

v dx + u dy(1)

Proof of (1). γ has a “complex parameterization” z = γ(t) = x(t) + iy(t), t ∈ [a, b], for
which the corresponding real parameterization is

x = x(t), y = y(t), t ∈ [a, b].

Now just sort through definitions:∫
γ

f(z) dz
def
=

∫ b

t=a

f(γ(t))γ′(t) dt

=

∫ b

a

[u(x(t), y(t)) + iv(x(t), y(t))][x′(t) + iy′(t)] dt

=

∫ b

a

[u(x(t), y(t))x′(t)− v(x(t), y(t))y′(t)] dt

+ i

∫ b

a

[v(x(t), y(t))x′(t) + u(x(t), y(t))y′(t)] dt

def
=

∫
γ

u dx− v dy + i

∫
γ

v dx + u dy. �
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3. Green’s Theorem. Here’s the version you
learned in Calc III:
Suppose Ω is a domain in R2 whose positively ori-
ented boundary1 Γ is a finite collection of pair-
wise disjoint2 piecewise continuous simple closed
curves. Suppose P and Q are continuous func-
tions defined on a larger open set, which contains
both Ω and Γ, and suppose P and Q have contin-
uous first partial derivatives on this larger open
set. Then:∫

Γ

P dx + Qdy =

∫ ∫
Ω

(
∂Q

∂x
− ∂P

∂y

)
dx dy(2)

Amusing application. Suppose Ω and Γ are as in the statement of Green’s Theorem. Set
P (x, y) ≡ 0 and Q(x, y) = x. Then according to Green’s Theorem:∫

Γ

x dy =

∫ ∫
Ω

1 dx dy = area of Ω.

Exercise 1. Find some other formulas for the area of Ω. For example, set Q ≡ 0 and
P (x, y) = −y. Can you find one where neither P nor Q is ≡ 0?

Serious application. Suppose Ω and Γ are as in the statement of Green’s Theorem: Ω
a bounded domain in the plane and Γ it’s positively oriented boundary (a finite union of
simple, pairwise disjoint, piecewise continuous closed curves). Suppose f is a complex-valued
function that is analytic on an open set that contains both Ω and Γ.

Then ∫
Γ

f(z) dz = 0.

Proof. We’ll use the real Green’s Theorem stated above. For this write f in real and
imaginary parts, f = u + iv, and use the result of §2 on each of the curves that makes up
the boundary of Ω. The result is:∫

Γ

f(z) dz =

∫
Γ

u dx− v dy︸ ︷︷ ︸
I

+i

∫
Γ

v dx + u dy︸ ︷︷ ︸
II

.

By Green’s Theorem,

I = −
∫ ∫

Ω

(
∂v

∂x
+

∂u

∂y

)
dx dy and II =

∫ ∫
Ω

(
∂u

∂x
− ∂v

∂y

)
dx dy.
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Since f is analytic on Ω, both integrands on the right sides of these equations vanish iden-
tically on Ω, hence the integrals are zero. This completes the proof. �

Example 3. Suppose γ is the unit circle and p a complex number of modulus > 1.

Then:

∫
γ

dz

z − p
= 0.

Proof. Apply the result above with f(z) = 1/(z − p), Ω = {z : |z| < 1}, Γ = γ. Then f is
analytic on a disc slightly bigger than the unit disc that doesn’t contain the point p, say in
the disc of radius (1 + |p|)/2, so the hypotheses of the above result are satisfied, hence so is
the conclusion. �

4. The Cauchy Integral Theorem. Suppose D is a plane domain and f a complex-valued
function that is analytic on D (with f ′ continuous on D). Suppose γ is a simple closed curve

in D whose inside3 lies entirely in D. Then:

∫
γ

f(z) dz = 0.

Proof. Apply the “serious application” of Green’s Theorem to the special case Ω = the inside
of γ, Γ = γ, taking the open set containing Ω and Γ to be D. �

The Cauchy Integral Formula Suppose f is analytic on a domain D (with f ′ continuous
on D), and γ is a simple, closed, piecewise smooth curve whose whose inside also lies in D.
Then for every point p inside of γ:

f(p) =
1

2πi

∫
γ

f(z)

z − p
dz.

Proof. Fix p lying inside γ, and let ε be any
positive number small enough so that the disc
∆ε

def
= {z : |z − p| < ε} lies entirely inside of γ.4

Let γε be the positively oriented boundary of ∆ε.
Let Ωε be the domain that lies between γ and γε.

Note that the positively oriented boundary Γε of Ωε is γ − γε, and that the function

g(z)
def
=

f(z)

z − p
(ζ ∈ D\{p})

is analytic on D\{p}. Now apply the “serious application” of Green’s Theorem proved in
the last section to g, with D\{p} playing the role of “the open set containing Ω and Γ.” The
result is:

0 =

∫
Γ

g(z) dz =

∫
γ−γε

g(z) dz =

∫
γ

g(z) dz −
∫

γε

g(z) dz,

3Recall the Jordan Curve Theorem (pp. 56-57): If γ is a simple closed curve in the plane, then the
complement of γ consists of two disjoint open sets, one of which, called the outside of γ, is unbounded, while
the other, called the inside of γ, is bounded.
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so ∫
γ

g(z) dz =

∫
γε

g(z) dz,

that is: ∫
γ

f(z)

z − p
dz =

∫
γε

f(z)

z − p
dz(3)

Let’s reduce the right-hand side of (3) to an integral over the real interval [0, 2π] by the
complex parameterization z = γε(t) = p + εeit, 0 ≤ t ≤ 2π. Then dz = iεeit dt and
z − p = εeit, so ∫

γε

f(z)

z − p
dz =

∫ 2π

0

f(p + εeit)

εeit
iεeit dt = i

∫ 2π

0

f(p + εeit) dt(4)

Being differentiable on Ω, f is continuous there. In particular, f(p + εeit) → f(p) as ε → 0,
hence ∫ 2π

0

f(p + εeit) dt →
∫ 2π

0

f(p) dt = 2πf(p)(5)

as ε → 0.5

Now on both sides of (3), take the limit as ε → 0. The left-hand side does not depend on ε,
and on the right we use (4) and (5). The result is:∫

γ

f(z)

z − p
dz = 2πi f(p)

as promised. �

Example 4. Let γ be any simple closed curve in the plane, oriented positively, and p a point
not on γ. Then:

∫
γ

1

z − p
dz =


2πi if p is inside of γ

0 if p is outside of γ

Proof. The result for p inside γ is just Cauchy’s
formula for f ≡ 1, while for p outside of γ the
function f(z)/(z−p) is an analytic function (of z)
on an open set Ω containing both γ and its inside
region. Thus the integral is zero by the Cauchy
Theorem. �

5Here we’ve interchanged the limit, as ε → 0, with the integral. This requires a separate argument, which
we’ll skip.

5



Example 5. Suppose γ is the unit circle, oriented counter-clockwise (i.e., positively). Then
applying Cauchy’s formula with f(z) = sin z, we get∫

γ

sin z

z − π/4
dz = sin

π

4
=

√
2

2
,

while if we take f(z) = ez, then ∫
γ

ez

z − 1/2
dz = e1/2

Example 6. Find all the possible values of∫
γ

1

z(z − 1)
dz

as γ ranges over all simple, closed, piecewise smooth curves that do not pass through either
of the points 0 or 1.

Solution. There are only four possibilities:

(a) Both 0 and 1 lie outside γ. Then the integrand is analytic in an open set containing γ
and its inside, hence the integral is zero, by Cauchy’s Theorem.

(b) 0 lies inside γ and 1 lies outside. Then Cauchy’s formula can be applied, with f(z) =
1/(z − 1), whereupon the integral is 2πif(0) = −2πi.

(c) 1 lies inside γ and 0 lies outside. This time apply Cauchy’s theorem with f(z) = 1/z.
Thus the integral is 2πif(1) = 2πi.

(d) Both 0 and 1 lie inside γ. Then a partial fraction expansion (which could have been
used for parts (a)—(c) also) shows:∫

γ

1

z(z − 1)
dz =

∫
γ

(
−1

z
+

1

z − 1

)
dz = −

∫
γ

1

z
dz +

∫
γ

1

z − 1
dz

= −2πi + 2πi (by Example 4)

= 0.

Exercise 2. Same as Example 6, except now the integral is:

∫
γ

1

z(z − 1)(z − 2)
dz, and γ

ranges through all simple, closed, piecewise smooth curves missing all of the points 0, 1, or
2.
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