MATH 425 FALL 2005

Green's Theorem, Cauchy's Theorem, Cauchy's Formula

These notes supplement the discussion of real line integrals and Green's Theorem presented in $\S1.6$ of our text, and they discuss applications to Cauchy's Theorem and Cauchy's Formula ($\S2.3$).

1. Real line integrals. Our standing hypotheses are that $\gamma:[a,b]\to\mathbb{R}^2$ is a piecewise smooth curve in \mathbb{R}^2 , and both u and v are real-valued functions defined on an open subset of \mathbb{R}^2 that contains $\gamma([a,b])$. We'll suppose further that u and v have continuous first partial derivatives on this open set.

Let's write $x(t) = \text{Re } \gamma(t)$ and $y(t) = \text{Im } \gamma(t)$, so γ is described by the (real) parametric equations:

$$x = x(t), y = y(t), t \in [a, b].$$

Example 1. The unit circle, which we've been describing by the complex equation $\gamma(t) = e^{it}$, $t \in [0, 2\pi]$ is, equivalently described by real parametric equations

$$x = \text{Re } e^{it} = \cos t, \ y = \text{Im } e^{it} = \sin t, \quad t \in [0, 2\pi].$$

Definition.
$$\int_{\gamma} u \, dx + v \, dy \stackrel{\text{def}}{=} \int_{t=a}^{b} \left[u(x(t), y(t)) x'(t) + v(x(t), y(t)) y'(t) \right] dt.$$

In other words, just as with complex line integrals, you just substitute the parameterization of the curve into the symbols in the left-hand integral to define an ordinary Riemann integral on the right.

Example 2. Let γ be the quarter of the unit circle in the first quadrant, from 1 to $(1+i)/\sqrt{2}$. Compute $\int_{\gamma} y \, dx + x \, dy$.

Solution. Parameterize γ , say by

$$x = \cos t$$
, $y = \sin t$, $0 \le t \le \pi/4$.

Thus $dx = -\sin t \, dt$ and $dy = \cos t \, dt$, so

$$\int_{\gamma} y \, dx + x \, dy \stackrel{\text{def}}{=} \int_{t=0}^{\pi/4} (-\sin^2 t + \cos^2 t) \, dt$$

$$= \int_{t=0}^{\pi/4} \cos 2t \, dt = \frac{1}{2} \sin 2t \Big|_{0}^{\pi/4}$$

$$= \frac{1}{2} [\sin \frac{\pi}{2} - \sin 0]$$

$$= \frac{1}{2}$$

Physical interpretation. Recall from Calculus III that if $\mathbf{F} = u\mathbf{i} + v\mathbf{j}$ is a force field defined on γ , and we write $d\mathbf{R} = dx\mathbf{i} + dy\mathbf{j}$, then $\mathbf{F} \cdot d\mathbf{R}$ can be though of as the work done in by the force field in pushing a particle over γ through a displacement $d\mathbf{R}$, and

$$\int_{\gamma} u \, dx + v \, dy = \int_{\gamma} \mathbf{F} \cdot d\mathbf{R}$$

is then the work done by **F** in pushing a particle over all of γ .

2. Real vs. Complex line integrals. The complex line integrals we studied in §1.6 can be expressed in terms of the real ones discussed above. Here's how:

Suppose γ is a piecewise smooth curve in \mathbb{C} and f is a complex-valued function that is continuous on an open set that contains γ . Suppose further that f has continuous first partial derivatives on this open set.

Write f = u + iv where u = Re f and v = Im f, so both u and v are real-valued functions that are continuous and have continuous first partials on some open set containing γ . Now proceeding formally (meaning: without trying to make sense out of what we're doing), we have: z = x + iy, so dz = dx + idy, hence

$$f(z) dz = (u + iv)(dx + idy) = u dx - v dy + i(v dx + u dy)$$

so (1)
$$\int_{\gamma} f(z) dz = \int_{\gamma} (u + iv)(dx + idy) = \int_{\gamma} u dx - v dy + i \int_{\gamma} v dx + u dy$$

Proof of (1). γ has a "complex parameterization" $z = \gamma(t) = x(t) + iy(t)$, $t \in [a, b]$, for which the corresponding real parameterization is

$$x = x(t), y = y(t), t \in [a, b].$$

Now just sort through definitions:

$$\int_{\gamma} f(z) dz \stackrel{\text{def}}{=} \int_{t=a}^{b} f(\gamma(t))\gamma'(t) dt$$

$$= \int_{a}^{b} [u(x(t), y(t)) + iv(x(t), y(t))][x'(t) + iy'(t)] dt$$

$$= \int_{a}^{b} [u(x(t), y(t))x'(t) - v(x(t), y(t))y'(t)] dt$$

$$+ i \int_{a}^{b} [v(x(t), y(t))x'(t) + u(x(t), y(t))y'(t)] dt$$

$$\stackrel{\text{def}}{=} \int_{\gamma} u dx - v dy + i \int_{\gamma} v dx + u dy. \qquad \square$$

3. Green's Theorem. Here's the version you learned in Calc III:

Suppose Ω is a domain in \mathbb{R}^2 whose positively oriented boundary Γ is a finite collection of pairwise disjoint piecewise continuous simple closed curves. Suppose P and Q are continuous functions defined on a larger open set, which contains both Ω and Γ , and suppose P and Q have continuous first partial derivatives on this larger open set. Then:

(2)
$$\int_{\Gamma} P dx + Q dy = \iint_{\Omega} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

Amusing application. Suppose Ω and Γ are as in the statement of Green's Theorem. Set $P(x,y) \equiv 0$ and Q(x,y) = x. Then according to Green's Theorem:

$$\int_{\Gamma} x \, dy = \iint_{\Omega} 1 \, dx \, dy = \text{area of } \Omega.$$

Exercise 1. Find some other formulas for the area of Ω . For example, set $Q \equiv 0$ and P(x,y) = -y. Can you find one where neither P nor Q is $\equiv 0$?

Serious application. Suppose Ω and Γ are as in the statement of Green's Theorem: Ω a bounded domain in the plane and Γ it's positively oriented boundary (a finite union of simple, pairwise disjoint, piecewise continuous closed curves). Suppose f is a complex-valued function that is analytic on an open set that contains both Ω and Γ .

 \underline{Then}

$$\int_{\Gamma} f(z) \, dz = 0.$$

Proof. We'll use the *real* Green's Theorem stated above. For this write f in real and imaginary parts, f = u + iv, and use the result of §2 on each of the curves that makes up the boundary of Ω . The result is:

$$\int_{\Gamma} f(z) dz = \underbrace{\int_{\Gamma} u dx - v dy}_{I} + i \underbrace{\int_{\Gamma} v dx + u dy}_{II}.$$

By Green's Theorem,

$$I = -\iint_{\Omega} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) dx dy \quad \text{and} \quad II = \iint_{\Omega} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) dx dy.$$

Since f is analytic on Ω , both integrands on the right sides of these equations vanish identically on Ω , hence the integrals are zero. This completes the proof.

Example 3. Suppose γ is the unit circle and p a complex number of modulus > 1.

Then:
$$\int_{\gamma} \frac{dz}{z-p} = 0.$$

Proof. Apply the result above with f(z) = 1/(z-p), $\Omega = \{z : |z| < 1\}$, $\Gamma = \gamma$. Then f is analytic on a disc slightly bigger than the unit disc that doesn't contain the point p, say in the disc of radius (1+|p|)/2, so the hypotheses of the above result are satisfied, hence so is the conclusion.

4. The Cauchy Integral Theorem. Suppose D is a plane domain and f a complex-valued function that is analytic on D (with f' continuous on D). Suppose γ is a simple closed curve in D whose inside³ lies entirely in D. Then: $\int_{\gamma} f(z) dz = 0$.

Proof. Apply the "serious application" of Green's Theorem to the special case $\Omega =$ the inside of γ , $\Gamma = \gamma$, taking the open set containing Ω and Γ to be D.

The Cauchy Integral Formula Suppose f is analytic on a domain D (with f' continuous on D), and γ is a simple, closed, piecewise smooth curve whose whose inside also lies in D. Then for every point p inside of γ :

$$f(p) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - p} dz.$$

Proof. Fix p lying inside γ , and let ε be any positive number small enough so that the disc $\Delta_{\epsilon} \stackrel{\text{def}}{=} \{z : |z - p| < \varepsilon\}$ lies entirely inside of γ .⁴ Let γ_{ε} be the positively oriented boundary of Δ_{ε} . Let Ω_{ε} be the domain that lies between γ and γ_{ε} .

Note that the positively oriented boundary Γ_{ε} of Ω_{ε} is $\gamma - \gamma_{\varepsilon}$, and that the function

$$g(z) \stackrel{\text{def}}{=} \frac{f(z)}{z-p} \qquad (\zeta \in D \setminus \{p\})$$

is analytic on $D\setminus\{p\}$. Now apply the "serious application" of Green's Theorem proved in the last section to g, with $D\setminus\{p\}$ playing the role of "the open set containing Ω and Γ ." The result is:

$$0 = \int_{\Gamma} g(z) dz = \int_{\gamma - \gamma_{\varepsilon}} g(z) dz = \int_{\gamma} g(z) dz - \int_{\gamma_{\varepsilon}} g(z) dz,$$

³Recall the *Jordan Curve Theorem* (pp. 56-57): If γ is a simple closed curve in the plane, then the complement of γ consists of two disjoint open sets, one of which, called the *outside* of γ , is unbounded, while the other, called the *inside* of γ , is bounded.

SO

$$\int_{\gamma} g(z) \, dz = \int_{\gamma_{\varepsilon}} g(z) \, dz,$$

that is:

(3)
$$\int_{\gamma} \frac{f(z)}{z - p} dz = \int_{\gamma_{\varepsilon}} \frac{f(z)}{z - p} dz$$

Let's reduce the right-hand side of (3) to an integral over the real interval $[0, 2\pi]$ by the complex parameterization $z = \gamma_{\varepsilon}(t) = p + \varepsilon e^{it}$, $0 \le t \le 2\pi$. Then $dz = i\varepsilon e^{it} dt$ and $z - p = \varepsilon e^{it}$, so

(4)
$$\int_{\gamma_{\varepsilon}} \frac{f(z)}{z-p} dz = \int_{0}^{2\pi} \frac{f(p+\varepsilon e^{it})}{\varepsilon e^{it}} i\varepsilon e^{it} dt = i \int_{0}^{2\pi} f(p+\varepsilon e^{it}) dt$$

Being differentiable on Ω , f is continuous there. In particular, $f(p + \varepsilon e^{it}) \to f(p)$ as $\varepsilon \to 0$, hence

(5)
$$\int_0^{2\pi} f(p + \varepsilon e^{it}) dt \to \int_0^{2\pi} f(p) dt = 2\pi f(p)$$

as $\varepsilon \to 0.5$

Now on both sides of (3), take the limit as $\varepsilon \to 0$. The left-hand side does not depend on ε , and on the right we use (4) and (5). The result is:

$$\int_{\gamma} \frac{f(z)}{z - p} \, dz = 2\pi i \, f(p)$$

as promised.

Example 4. Let γ be any simple closed curve in the plane, oriented positively, and p a point not on γ . Then:

$$\int_{\gamma} \frac{1}{z - p} dz = \begin{cases} 2\pi i & \text{if } p \text{ is inside of } \gamma \\ 0 & \text{if } p \text{ is outside of } \gamma \end{cases}$$

Proof. The result for p inside γ is just Cauchy's formula for $f \equiv 1$, while for p outside of γ the function f(z)/(z-p) is an analytic function (of z) on an open set Ω containing both γ and its inside region. Thus the integral is zero by the Cauchy *Theorem*.

⁵Here we've interchanged the limit, as $\varepsilon \to 0$, with the integral. This requires a separate argument, which we'll skip.

Example 5. Suppose γ is the unit circle, oriented counter-clockwise (i.e., positively). Then applying Cauchy's formula with $f(z) = \sin z$, we get

$$\int_{\gamma} \frac{\sin z}{z - \pi/4} \, dz = \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2},$$

while if we take $f(z) = e^z$, then

$$\int_{\gamma} \frac{e^z}{z - 1/2} \, dz = e^{1/2}$$

Example 6. Find all the possible values of

$$\int_{\gamma} \frac{1}{z(z-1)} \, dz$$

as γ ranges over all simple, closed, piecewise smooth curves that do not pass through either of the points 0 or 1.

Solution. There are only four possibilities:

- (a) Both 0 and 1 lie outside γ . Then the integrand is analytic in an open set containing γ and its inside, hence the integral is zero, by Cauchy's Theorem.
- (b) 0 lies inside γ and 1 lies outside. Then Cauchy's formula can be applied, with f(z) = 1/(z-1), whereupon the integral is $2\pi i f(0) = -2\pi i$.
- (c) 1 lies inside γ and 0 lies outside. This time apply Cauchy's theorem with f(z) = 1/z. Thus the integral is $2\pi i f(1) = 2\pi i$.
- (d) Both 0 and 1 lie inside γ . Then a partial fraction expansion (which could have been used for parts (a)—(c) also) shows:

$$\int_{\gamma} \frac{1}{z(z-1)} dz = \int_{\gamma} \left(-\frac{1}{z} + \frac{1}{z-1} \right) dz = -\int_{\gamma} \frac{1}{z} dz + \int_{\gamma} \frac{1}{z-1} dz$$
$$= -2\pi i + 2\pi i \quad \text{(by Example 4)}$$
$$= 0.$$

Exercise 2. Same as Example 6, except now the integral is: $\int_{\gamma} \frac{1}{z(z-1)(z-2)} dz$, and γ ranges through all simple, closed, piecewise smooth curves missing all of the points 0, 1, or 2.