
MAX/MIN FOR FUNCTIONS OF SEVERAL VARIABLES

Abstract. These notes supplement the material in §8.2 of our text on quadratic forms
and symmetric matrices. They show that the proper way generalization to functions of
several variables of the Calculus I second derivative test for local maxima and minima
involves a symmetric matrix formed from second partial derivatives.

1. Max/Min for functions of one variable

In this section f will be a function defined and differentiable in an open interval I of

the real line.

1.1. Critical points. A point t0 in I is called a critical point of f if f ′(t0) = 0. Geomet-

rically this says that the graph y = f(x) has a horizontal tangent at the point (t0, f(t0))

in R2.

1.2. Local maxima and minima. We say f has a (strict) local maximum at t0 if there

is some open interval containing t0 for which f(t0) > f(t) for each t in that interval.

There’s a similar definition, which I leave to you, for (strict) local minimum.

Recall from Calculus I that:

If f (differentiable in an interval containing t0) has a local maximum or

minimum at t0, then t0 is a critical point of f , i.e., f ′(t0) = 0.

However the converse is not true: there are critical points that are neither maxima nor

minima. For example: 0, which is a critical point for f(t) = t3, is neither a local maximum

nor a local minimum (sketch the graph!).

So the best we can say under the hypotheses given on f is that its local maxima and

minima lie among the critical points, but they need not exhaust the critical points.

1.3. The Second Derivative Test. Suppose f is defined in an open interval I and that

both the first and second derivatives of f exist and are continuous on I. Suppose t0 in I

is a critical point of f .

(a) If f ′′(t0) > 0 then t0 is a strict minimum of f .
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(b) If f ′′(t0) < 0 then t0 is a strict maximum of f .

(To keep this result straight, think of the examples f(t) = t2 and f(t) = −t2, with

t0 = 0.)

1.4. One way to think of the proof. Taylor’s Theorem tells us that for h sufficiently

small, f(t0 + h) is very nearly f(t0) + f ′(t0)h + 1
2
f ′′(t0)h

2. Since t0 is a critical point,

f ′(t0) = 0, so we have for all h sufficiently close to 0:

f(t0 + h) ≈ f(t0) +
1

2
f ′′(t0)h

2.

If f ′′(t0) > 0 then, on the right-hand side of the above “equation”, the term we add to

f ′(t0) is positive, hence f(t0 + h) > f(t0) for all t sufficiently close to t0, i.e., t0 is a strict

local minimum of f . The same idea handles the case f ′′(t0) < 0.

1.5. The case f ′′(t0) = 0. Here we still can’t say anything. f may have a maximum at

t0 (f(t) = t4, t0 = 0), a minimum (f(t) = −t4, t0 = 0), or neither (f(t) = t3, t0 = 0).

2. The two-variable case

Now we assume f is defined in an open disc in R2, centered at a point p0. Let’s assume

that all partial derivatives of f of first and second order exist and are continuous on this

disc. I leave it to you to formulate carefully the notion of “p0 is a strict local maximum

(resp. minimum) for f .”

We call p0 a critical point of f if both first partial derivatives of f at p0 are zero.

Geometrically this means that the graph z = f(x, y) has a horizontal tangent plane at

the point (p0, f(p0)) in R3.

2.1. First and second derivative of a function of two variables. For a function f

as above:

• The first derivative at p0 isn’t any more a number, it’s a row matrix1

f ′(p0) =

[
∂f

∂x
(p0),

∂f

∂y
(p0)

]
.

• The second derivative of f at p0 is now a 2× 2 matrix:

f ′′(p0) =

[
∂2f
∂x2 (p0)

∂2f
∂x∂y

(p0)
∂2f
∂y∂x

(p0)
∂2f
∂x2 (p0)

]
1This row matrix is often denoted grad f(p0), or ∇f(p0), and called the gradient of f .
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2.2. Example. f(x, y) = ax2 + bxy + cy2, where a, b, c are real constants. Then (0, 0) is

a critical point and

f ′′(0, 0) =

[
2a b
b 2c

]
2.3. The Second Derivative Test. Suppose f is a real-valued function defined on an

open disc in R2 centered at the point p0, and that all partial derivatives through order

two exist in this disc, and are continuous there. Suppose that p0 is a critical point of f .

Then:

(a) If all the eigenvalues of f ′′(p0) are > 0, then p0 is a strict local minimum for f .

(b) If all the eigenvalues of f ′′(p0) are < 0, then p0 is a strict local maximum for f .

(c) If one eigenvalue of f ′′(p0) is strictly positive and the other is strictly negative,

then p0 is a saddle point of f (a strict local maximum in the “positive eigen-

direction” and a strict local minimum in the negative one).

2.4. Remark. The “max-min” part of the second derivative test can be rephrased in

the language of positive definiteness:2

If p0 is a critical point of f , then

(a) f ′′(p0) positive definite ⇒ p0 a strict local minimum of f .

(b) f ′′(p0) negative definite ⇒ p0 a strict local maximum of f .

2.5. Exercises.

(1) Check that the origin is a critical point for each of the following functions, and

use the second derivative test to see if it’s a local maximum, local minimum, or a

saddle point.

(a) f(x, y) = x2 + xy + y2 + x3 + y3.

(b) f(x, y) = x2 + 3xy + y2 + sin3 x

(c) f(x, y) = sin(xy)

(d) f(x, y) = sin(x2 + y2)

(2) Find all critical points of the function

f(x, y) = x2 + xy + y2 − 4x− 5y + 5

and check each to see if it’s a max, min, or saddle point.

2See Defn. 8.2.3 and Fact 8.2.4 on p. 375 of our textbook.
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2.6. Idea of proof of two-variable second derivative test. In Calculus III you

proved a two-variable version of Taylor’s Theorem whose conclusion, when recast in

vector/matrix language, looks like this:

f(p0 + h) = f(p0) + f ′(p0)h +
1

2
(hT f ′′(p0)h) + ε(h),

where h is a vector in R2 of small length, and

‖ε(h)‖
‖h‖

→ 0 as ‖h‖ → 0.

In other words, for p0 a critical point and h small,

f(p0 + h) ≈ f(p0) +
1

2
(hT f ′′(p0)h)

Now if all the eigenvalues of f ′′(p0) are strictly positive, then—as we know from Fact

8.2.4 on page 375 of our textbook—the quadratic form hT f ′′(p0)h is strictly positive for

all non-zero h ∈ R2. Thus f(p0 + h) > f(p0) for all sufficiently small non-zero h, which

means that p0 is a local minimum for f .

The corresponding “proofs” for local maximum and saddle point are similar, and I

leave the arguments to you.

3. The Second Derivative Test for functions of n variables

Here we assume that f(x1, . . . , xn) is a function defined at least in an open ball B in

Rn that is centered at a point p0:

B = {p ∈ Rn : ‖p− p0‖ < r},

where r is a positive number that is the radius of the ball. We assume f is continuous on

B and that each of its partial derivatives through second order with, respect to each of

the variables x1, . . . , xn, exists and is continuous in B. For convenience, let Djf = ∂f
∂xj

,

and Di,jf = ∂2f
∂xi∂xj

.

Just as in the n = 2 case, the derivative of f at p0 is the row-matrix

f ′(p0) = [D1f(p0), D2f(p0), . . . , Dnf(p0)],

and the second derivative of f at p0, which we denote f ′′(p0) is the n× n matrix whose

i, j-entry is Dijf(p0). As in the n = 2 case, the continuity assumed for all second partial

derivatives of f in B insures that Dijf(p0) = Dj,if(p0) for all i and j between 1 and n,

i.e., that the matrix f ′′(p0) is symmetric.
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We call p0 a critical point of f if f ′(p0) = 0, i.e., if all the first partial derivatives of f

at p0 are zero.

With all of this in hand, the second derivative test looks the same as the one stated

above for n = 2; I state it here just for local maxima and minima:

Under the hypotheses above on f , suppose p0 is a critical point.

(a) If all the eigenvalues of f ′′(p0) are > 0 (i.e. if f ′′(p0) is positive

definite) then p0 is a strict local minimum of f .

(b) If all the eigenvalues of f ′′(p0) are < 0 (i.e. if f ′′(p0) is negative

definite) then p0 is a strict local maximum of f .


