MAX/MIN FOR FUNCTIONS OF SEVERAL VARIABLES

Abstract. These notes supplement the material in $\S 8.2$ of our text on quadratic forms and symmetric matrices. They show that the proper way generalization to functions of several variables of the Calculus I second derivative test for local maxima and minima involves a symmetric matrix formed from second partial derivatives.

1. Max/Min for functions of one variable

In this section f will be a function defined and differentiable in an open interval I of the real line.
1.1. Critical points. A point t_{0} in I is called a critical point of f if $f^{\prime}\left(t_{0}\right)=0$. Geometrically this says that the graph $y=f(x)$ has a horizontal tangent at the point $\left(t_{0}, f\left(t_{0}\right)\right)$ in \mathbb{R}^{2}.
1.2. Local maxima and minima. We say f has a (strict) local maximum at t_{0} if there is some open interval containing t_{0} for which $f\left(t_{0}\right)>f(t)$ for each t in that interval. There's a similar definition, which I leave to you, for (strict) local minimum.

Recall from Calculus I that:
If f (differentiable in an interval containing t_{0}) has a local maximum or minimum at t_{0}, then t_{0} is a critical point of f, i.e., $f^{\prime}\left(t_{0}\right)=0$.

However the converse is not true: there are critical points that are neither maxima nor minima. For example: 0 , which is a critical point for $f(t)=t^{3}$, is neither a local maximum nor a local minimum (sketch the graph!).

So the best we can say under the hypotheses given on f is that its local maxima and minima lie among the critical points, but they need not exhaust the critical points.
1.3. The Second Derivative Test. Suppose f is defined in an open interval I and that both the first and second derivatives of f exist and are continuous on I. Suppose t_{0} in I is a critical point of f.
(a) If $f^{\prime \prime}\left(t_{0}\right)>0$ then t_{0} is a strict minimum of f.

Date: April 5, 2005.
(b) If $f^{\prime \prime}\left(t_{0}\right)<0$ then t_{0} is a strict maximum of f.
(To keep this result straight, think of the examples $f(t)=t^{2}$ and $f(t)=-t^{2}$, with $t_{0}=0$.)
1.4. One way to think of the proof. Taylor's Theorem tells us that for h sufficiently small, $f\left(t_{0}+h\right)$ is very nearly $f\left(t_{0}\right)+f^{\prime}\left(t_{0}\right) h+\frac{1}{2} f^{\prime \prime}\left(t_{0}\right) h^{2}$. Since t_{0} is a critical point, $f^{\prime}\left(t_{0}\right)=0$, so we have for all h sufficiently close to 0 :

$$
f\left(t_{0}+h\right) \approx f\left(t_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(t_{0}\right) h^{2}
$$

If $f^{\prime \prime}\left(t_{0}\right)>0$ then, on the right-hand side of the above "equation", the term we add to $f^{\prime}\left(t_{0}\right)$ is positive, hence $f\left(t_{0}+h\right)>f\left(t_{0}\right)$ for all t sufficiently close to t_{0}, i.e., t_{0} is a strict local minimum of f. The same idea handles the case $f^{\prime \prime}\left(t_{0}\right)<0$.
1.5. The case $f^{\prime \prime}\left(t_{0}\right)=0$. Here we still can't say anything. f may have a maximum at $t_{0}\left(f(t)=t^{4}, t_{0}=0\right)$, a minimum $\left(f(t)=-t^{4}, t_{0}=0\right)$, or neither $\left(f(t)=t^{3}, t_{0}=0\right)$.

2. The two-variable case

Now we assume f is defined in an open disc in \mathbb{R}^{2}, centered at a point p_{0}. Let's assume that all partial derivatives of f of first and second order exist and are continuous on this disc. I leave it to you to formulate carefully the notion of " p_{0} is a strict local maximum (resp. minimum) for f."

We call p_{0} a critical point of f if both first partial derivatives of f at p_{0} are zero. Geometrically this means that the graph $z=f(x, y)$ has a horizontal tangent plane at the point $\left(p_{0}, f\left(p_{0}\right)\right)$ in \mathbb{R}^{3}.
2.1. First and second derivative of a function of two variables. For a function f as above:

- The first derivative at p_{0} isn't any more a number, it's a row matrix ${ }^{1}$

$$
f^{\prime}\left(p_{0}\right)=\left[\frac{\partial f}{\partial x}\left(p_{0}\right), \frac{\partial f}{\partial y}\left(p_{0}\right)\right] .
$$

- The second derivative of f at p_{0} is now $a \times 2$ matrix:

$$
f^{\prime \prime}\left(p_{0}\right)=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}}\left(p_{0}\right) & \frac{\partial^{2} f}{\partial x \partial y}\left(p_{0}\right) \\
\frac{\partial^{2} f}{\partial y \partial x}\left(p_{0}\right) & \frac{\partial^{2} f}{\partial x^{2}}\left(p_{0}\right)
\end{array}\right]
$$

[^0]2.2. Example. $f(x, y)=a x^{2}+b x y+c y^{2}$, where a, b, c are real constants. Then $(0,0)$ is a critical point and
\[

f^{\prime \prime}(0,0)=\left[$$
\begin{array}{cc}
2 a & b \\
b & 2 c
\end{array}
$$\right]
\]

2.3. The Second Derivative Test. Suppose f is a real-valued function defined on an open disc in \mathbb{R}^{2} centered at the point p_{0}, and that all partial derivatives through order two exist in this disc, and are continuous there. Suppose that p_{0} is a critical point of f. Then:
(a) If all the eigenvalues of $f^{\prime \prime}\left(p_{0}\right)$ are >0, then p_{0} is a strict local minimum for f.
(b) If all the eigenvalues of $f^{\prime \prime}\left(p_{0}\right)$ are <0, then p_{0} is a strict local maximum for f.
(c) If one eigenvalue of $f^{\prime \prime}\left(p_{0}\right)$ is strictly positive and the other is strictly negative, then p_{0} is a saddle point of f (a strict local maximum in the "positive eigendirection" and a strict local minimum in the negative one).
2.4. Remark. The "max-min" part of the second derivative test can be rephrased in the language of positive definiteness: ${ }^{2}$

If p_{0} is a critical point of f, then
(a) $f^{\prime \prime}\left(p_{0}\right)$ positive definite $\Rightarrow p_{0}$ a strict local minimum of f.
(b) $f^{\prime \prime}\left(p_{0}\right)$ negative definite $\Rightarrow p_{0}$ a strict local maximum of f.

2.5. Exercises.

(1) Check that the origin is a critical point for each of the following functions, and use the second derivative test to see if it's a local maximum, local minimum, or a saddle point.
(a) $f(x, y)=x^{2}+x y+y^{2}+x^{3}+y^{3}$.
(b) $f(x, y)=x^{2}+3 x y+y^{2}+\sin ^{3} x$
(c) $f(x, y)=\sin (x y)$
(d) $f(x, y)=\sin \left(x^{2}+y^{2}\right)$
(2) Find all critical points of the function

$$
f(x, y)=x^{2}+x y+y^{2}-4 x-5 y+5
$$

and check each to see if it's a max, min, or saddle point.

[^1]
2.6. Idea of proof of two-variable second derivative test. In Calculus III you

 proved a two-variable version of Taylor's Theorem whose conclusion, when recast in vector/matrix language, looks like this:$$
f\left(p_{0}+h\right)=f\left(p_{0}\right)+f^{\prime}\left(p_{0}\right) h+\frac{1}{2}\left(h^{T} f^{\prime \prime}\left(p_{0}\right) h\right)+\epsilon(h),
$$

where h is a vector in \mathbb{R}^{2} of small length, and

$$
\frac{\|\epsilon(h)\|}{\|h\|} \rightarrow 0 \text { as }\|h\| \rightarrow 0
$$

In other words, for p_{0} a critical point and h small,

$$
f\left(p_{0}+h\right) \approx f\left(p_{0}\right)+\frac{1}{2}\left(h^{T} f^{\prime \prime}\left(p_{0}\right) h\right)
$$

Now if all the eigenvalues of $f^{\prime \prime}\left(p_{0}\right)$ are strictly positive, then-as we know from Fact 8.2.4 on page 375 of our textbook - the quadratic form $h^{T} f^{\prime \prime}\left(p_{0}\right) h$ is strictly positive for all non-zero $h \in \mathbb{R}^{2}$. Thus $f\left(p_{0}+h\right)>f\left(p_{0}\right)$ for all sufficiently small non-zero h, which means that p_{0} is a local minimum for f.

The corresponding "proofs" for local maximum and saddle point are similar, and I leave the arguments to you.

3. The Second Derivative Test for functions of n variables

Here we assume that $f\left(x_{1}, \ldots, x_{n}\right)$ is a function defined at least in an open ball B in \mathbb{R}^{n} that is centered at a point p_{0} :

$$
B=\left\{p \in \mathbb{R}^{n}:\left\|p-p_{0}\right\|<r\right\}
$$

where r is a positive number that is the radius of the ball. We assume f is continuous on B and that each of its partial derivatives through second order with, respect to each of the variables x_{1}, \ldots, x_{n}, exists and is continuous in B. For convenience, let $D_{j} f=\frac{\partial f}{\partial x_{j}}$, and $D_{i, j} f=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$.

Just as in the $n=2$ case, the derivative of f at p_{0} is the row-matrix

$$
f^{\prime}\left(p_{0}\right)=\left[D_{1} f\left(p_{0}\right), D_{2} f\left(p_{0}\right), \ldots, D_{n} f\left(p_{0}\right)\right],
$$

and the second derivative of f at p_{0}, which we denote $f^{\prime \prime}\left(p_{0}\right)$ is the $n \times n$ matrix whose i, j-entry is $D_{i j} f\left(p_{0}\right)$. As in the $n=2$ case, the continuity assumed for all second partial derivatives of f in B insures that $D_{i j} f\left(p_{0}\right)=D_{j, i} f\left(p_{0}\right)$ for all i and j between 1 and n, i.e., that the matrix $f^{\prime \prime}\left(p_{0}\right)$ is symmetric.

We call p_{0} a critical point of f if $f^{\prime}\left(p_{0}\right)=0$, i.e., if all the first partial derivatives of f at p_{0} are zero.

With all of this in hand, the second derivative test looks the same as the one stated above for $n=2$; I state it here just for local maxima and minima:

Under the hypotheses above on f, suppose p_{0} is a critical point.
(a) If all the eigenvalues of $f^{\prime \prime}\left(p_{0}\right)$ are >0 (i.e. if $f^{\prime \prime}\left(p_{0}\right)$ is positive definite) then p_{0} is a strict local minimum of f.
(b) If all the eigenvalues of $f^{\prime \prime}\left(p_{0}\right)$ are <0 (i.e. if $f^{\prime \prime}\left(p_{0}\right)$ is negative definite) then p_{0} is a strict local maximum of f.

[^0]: ${ }^{1}$ This row matrix is often denoted $\operatorname{grad} f\left(p_{0}\right)$, or $\nabla f\left(p_{0}\right)$, and called the gradient of f.

[^1]: ${ }^{2}$ See Defn. 8.2.3 and Fact 8.2.4 on p. 375 of our textbook.

