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UNIVERSAL VECTORS FOR OPERATORS
ON SPACES OF HOLOMORPHIC FUNCTIONS

ROBERT M. GETHNER AND JOEL H. SHAPIRO

ABSTRACT. A vector z in a linear topological space X is called universal for
a linear operator T on X if the orbit {T™z: n > 0} is dense in X. Our main
result gives conditions on T and X which guarantee that T will have universal
vectors. It applies to the operators of differentiation and translation on the
space of entire functions, where it makes contact with Pélya’s theory of final
sets; and also to backward shifts and related operators on various Hilbert and
Banach spaces.

1. Introduction. Suppose T is a continuous linear operator on a complete
metrizable linear topological space (henceforth an F-space) X. We say that z € X
is T-universal if its orbit {T™z : n-> 0} is dense in X, and T-cyclic if the linear
span of its orbit is dense. Cyclic vectors play an important role in the study of the
invariant subspace structure of an operator, and universal vectors are cyclic in the
strongest possible sense.

The main result of this paper, Theorem 2.2, gives hypotheses which guarantee
that T will have universal vectors. Its proof, which is based on the Baire Category
Theorem, actually provides a dense Gs set of universal vectors. However this is no
surprise: it is easy to see (Proposition 2.1) that if T’ has any universal vectors, then
it has a dense G set of them.

Interest in Theorem 2.2 derives from the fact that it unifies, extends, and comple-
ments diverse results which have occurred in the literature of both classical function
theory and operator theory.

For example H(C), the space of entire functions taken in the compact-open
topology, is a separable F-space ([4, Chapter VII|) on which both the operator of
translation by a fixed complex number and that of complex differentiation satisfy
the hypotheses of Theorem 2.2. Thus we obtain at one stroke proofs of G. D.
Birkhoff’s translation theorem [1, 2, 3|: There ezists an entire function whose
translates are dense in H(C), and G. R. MacLane’s differentiation theorem (10,
Theorem 7]: There exist entire functions f for which the sequence of successive
derivatives is dense in H(C). We get equally quick proofs of some generalizations
due to Luh [8], and Seidel and Walsh [15] of Birkhoff’s theorem. We use our
results to complement existing work of Pélya [11] and Edrei and MacLane (6], by
showing that the “final set” L(f) of accumulation points of zeros of the sequence
of derivatives of an entire function is generically (meaning “except for a set of first
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Baire category”) the whole Riemann sphere. A detailed discussion of these matters
occupies the third section.

84 contains applications to operator theory. Each backward shift of “Bergman
type” on Hilbert space satisfies the hypotheses of Theorem 2.2, and thus has uni-
versal vectors, as does every multiple, by a scalar of modulus > 1, of the ordinary
backward shift. Our work also intersects that of Rolewicz [13], who showed that
on the sequence spaces [? (1 < p < o0) and ¢g certain multiples of the backward
shift have universal vectors.

We wish to take this opportunity to thank Sheldon Axler, Paul Bourdon, Lech
Drewnowski, Lee Rubel, and Allen Shields for helpful discussions and useful refer-
ences to the literature.

2. Universal vectors. In all that follows, X is a separable F-space and T
a continuous linear operator on X. The topology of X is induced by a complete
translation-invariant metric d (14, Theorems 1.24 and 1.26, pp. 18-20]. For z € X
we write ||z|| = d(z,0), and let B(y,e) = {z € X: ||y — || < €}, the open ball of
radius € with center at y. Before stating our main theorem, we record a simple,
but useful, “zero-one” law for universal vectors (cf. Duios-Ruis [18]).

2.1. PROPOSITION. IfT has a unwersal vector, then it has a dense Gs set
of universal vectors.

PROOF. Fix a countable dense subset {yx} of X. For positive integers N, 5, and
k, set

F=F(,N,k)={ze X:||[T"z — y,|| < 1/k for some n > N}.

Each of these sets, being a union of sets T-"{B(y;, 1/k)} which are open by the
continuity of T, is itself open. The set of T-universal vectors is the intersection
of this countable collection of sets F: it is therefore a G subset of X. If z is a
universal vector, then so is every member of the dense orbit {T™z}. This completes
the proof.

A curious consequence of this result and Baire’s Theorem is that if each mem-
ber of a countable collection of operators has a universal vector, then the whole
collection has a common universal vector. Thus, for example, the previously men-
tioned theorems of Birkhoff and MacLane, providing respectively translation- and
differentiation-universal entire functions, automatically provide a “doubly univer-
sal” entire function (see also 3] for the direct construction of a “triply universal”
entire function).

We now turn to our main result.

2.2. THEOREM. Suppose T is a continuous linear operator on a separable
F-space X. Suppose there exists a dense subset D of X and a right inverse S for
T (TS = identity on X) such that |T"z| — 0 and ||S™z| — O for every = € D.
Then X has T-universal vectors.

PROOF. By Baire’s Theorem [14, p. 42] it is enough to prove that each of the
Gs sets F defined in the proof of Proposition 2.1 is dense in X.

To see this, fix F' = F(j, N, k), and for ease of notation write ¢ = 1/k and y = y;.
Fix z in X and 6 > 0. We must find an z € F lying within § of z. Since D is dense
in X, we can choose yo and 2o in D with ||z — 29| < §/2, and ||y — yo| < €/2.
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Since the sequences 7™ and S™ converge pointwise to zero on D, we may choose
a positive integer n such that simultaneously || T™z|| < €/2, and [|S™yo| < 6/2.
Write £ = S™yg + 29. Then

lz — 2]l < lle = 2oll + ll20 — zll = [S™oll + ll20 — 2]l < 6/2+6/2,

s0 ||z — z|| < é. as desired. Moreover, since T'S is the identity map on X, so is
T"S™. Thus

1Tz =yl = IT"S"yo —y + T"20|| < llyo — yll + [IT"20ll <€/2+¢/2 =,

so = € F, and the proof is complete.

2.3. REMARKS. (a) The proof actually shows that for any fixed subsequence
{n(5): 7 > 0} of positive integers increasing strictly to oo, the sequence of vectors
{T™0)z: j > 0} is dense in X for a dense G subset of z’s. In fact Lech Drewnowski
has pointed out to us that the proof yields even more. Suppose D s a dense subset
of X and {T}} is a sequence of continuous linear operators on X for which T; — 0
pointwise on D. Suppose for each j the operator T; has a right inverse S;, and
S; — 0 pointwise on D. Then the set {T;z: j > 0} is dense in X for a dense Gs
set of vectors ¢ € X. '

(b) Theorem 2.2, and the remark above, continue to hold with almost the same
proof, if the sequences of T’s and S’s are assumed to converge to zero pointwise on
different dense subsets of X. However, none of the applications given here require
this generality.

Here is another variant of Theorem 2.2. It will also be useful in the next section:
its proof is a straightforward modification of the original one.

2.4. THEOREM. Suppose T is a continuous linear operator on a separable
F-space X, and T™ — 0 pointwise on a dense subset Do of X. Suppose {yn} s a
sequence in X such that y, = T"z, where x, — 0 in X. Then the set of vectors
z € X for which liminf |T"z — y,|| =0 25 a dense G5 subset of X.

PROOF. Let F(N,¢) denote all z in X for which | T"z — y,|| < € for some
n > N: the set of vectors obeying the desired conclusion is then [\ (), F(N,1/k),
so it is enough to prove that F = F(N,¢) is a dense Gs. To do this, begin with
2,6, and zg as in the proof of the Main Theorem, and as before, observe that for
sufficiently large n the vector z = z,, + 29 belongs to B(z,6)NF. O

3. Applications to function theory. Following Blair and Rubel (2, 3] and
Luh (8, 9] we call an entire function f universal if its sequence {f(™ : n > 0} of
successive derivatives is dense in H(C).

3.1. MACLANE’S THEOREM (2, 10|. The universal entire functions form
a dense Gs subset of H(C).

PROOF. The hypotheses of Theorem 2.2 are satisfied with X = H(C), D the
set of holomorphic polynomials, T' the operator of complex differentiation, and S
the integration operator defined for 2, fixed in C by

s1) = [ 1O (feH(E),z€0). O
20
If f is an entire function and a € C, let f, denote the translate of f by o:

fa(2) = f(z+a)  (2€C),
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3.2. BIRKHOFF’S THEOREM [1]. For each a € C there is a dense Gs set of
entire functions f such that the translates {fno: n=1,2,...} are dense in H(C).

PROOF. We are going to apply Theorem 2.2 to X = H(C) with T the operator
of transiation by o (T'f = f, for each f € H(C)), and S the operator of translation
by —a. The problem is to find a dense set on which the powers of these operators
tend pointwise to zero. For this, we may without loss of generality, assume that o
is real. Then, for each pair of integers k > 0 and m > 0, define the entire function
f m,k by

fm(2) = 2™[(2/k) "L sin(z/k)]™+! (z€C).
For m and k fixed, both T" f,, , and S™f,x — 0 in H(C) as n — oo. Thus
{T"} and {S™} tend pointwise to zero on the linear span D of these functions. It
remains to show that D is dense in H(C). This is so because, if m > 0 is fixed,
then fr x(2) — 2™ uniformly on compact subsets of C as k — oco. Thus all the
hypotheses of Theorem 2.2 are fulfilled, and the proof is complete.

3.3. REMARKS. (a) The same argument, with Drewnowski’s Remark 2.3 replac-
ing Theorem 2.2, proves the following generalization, due to Luh [8] of Birkhoff’s
theorem. If E is any unbounded set of real numbers, then there is a dense Gs set
of entire functions f for which the sequence {fn: o € E} 1is dense in H(C).

M. Duios-Ruis [17] has constructed umversal entire functions satisfying prescrlbed
growth conditions.

(b) There are non-Euclidean analogues of Birkhoff’s theorem for the unit disc
U, and hence for any simply connected domain. In [15], Seidel and Walsh prove
the following. Suppose {a,} is a sequence of points in U with a,, — 1. For each n
let vy, be the conformal automorphism of U defined by

on(2) = (an — 2)/(1 = an2) (z € ).

Then there exists a function f € H(U) for which the sequence of non-Euclidean
translates {f o pp: n > 0} 1s dense in H(U).

This result follows easily from Remark 2.3: noting that each conformal auto-
morphism defined above is its own inverse, we can set T}, == S,, = composition with
©n. Let D denote the linear span of the functions

fmp(2) = 2™(1 = 2%) /(1 + 2¥) (2€U,m >0,k >0).

Then for fixed m as k — oo the sequence fn, x tends to the function 2™ uniformly
on compact subsets of U, so D is dense in H(U). Since ¢, — 1 uniformly on
compact subsets of U, and each member of D is holomorphic in a neighborhood of
1 and vanishes at 1, it follows that T,, — 0 pointwise on D. Thus the hypotheses
of Remark 2.3 are satisfied, and the theorem of Seidel and Walsh is proved.

Luh [9] has proved other results of this type.

3.4. Final sets. Pélya {11, 12] initiated the study of the final set of a function
meromorphic in the plane. This is the set L(f) of points of the Riemann sphere
C*, each neighborhood of which contains zeros of infinitely many derivatives of f.
Pélya showed that if f is not entire, then its final set is determined completely
by its poles, and consists of a union of rays, lines, and line segments. However
Edrei and MacLane [6] showed that for entire functions the situation is much more
complicated: every closed subset of C* that contains oo is the final set of some
entire function. By contrast, the next result shows that generically L(f) = C*.
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3.5. COROLLARY. L(f)= C* for all f in a dense Gs subset of H(C).

PROOF. In fact the dense G5 subset is the collection of universal entire functions.
Suppose f € H(C) is universal. Fix zy € C. Since f is universal, some subsequence
of its derivatives converges uniformly on compact subsets to the entire function
z — 29, so by Hurwitz’s theorem (3, Chapter VII, p. 152], each disc centered at
2o contains zeros of all but finitely many members of this subsequence. Thus
29 € L(f). This shows that C C L(f), hence also co € L(f). The proof is
complete.

3.6. REMARK. The last proof shows a little more. For a € C let L(a, f)
denote the collection of sequential limit points of the a-points of the derivatives of
f, so in this notation the final set of f is now L(f,0). Pdélya [11] showed that if
[ is meromorphic in the plane and not entire, then L(a, f) = L(f) for all complex
numbers a. The proof above, with the function z — zg replaced by z — 29 + a, yields:
for every a € C, L(a, f) = C* for every universal entire function f.

The work of this section shows that generically the sequence of derivatives of an
entire function behaves wildly. We close with an even stronger result of this type.
In what follows, D(w, r) denotes the open disc in the plane of radius r, centered at
w.

3.7. THEOREM. Suppose {pn} is an unbounded, increasing sequence of posi-
twe numbers for which

(1) limn~1py/™ =0 (n — 00).
Let F be the set of entire functions f such that

(2) for every open set V.C C; f(™)(V) D D(0,p,) for infinitely many n.
Then F 1s a dense Gs subset of H(C).

PROOF. We begin with a fixed disc A = D(w, €), and associate to it the sequence
of degree one monomials {g,} defined by

gn(2) = npn(z — w) (z€C).

Let T'(A) denote the set of entire functions f for which some subsequence of { f(*) —
gn} tends to zero uniformly on compact subsets of the plane.
We claim that T'(A) is a dense Gs subset of H(C). To see this, let

ha(2) = [npn/(n+ D (z —w)*™ (2 €C).

Then h&") = g, for each n, and condition (1) above, along with Stirling’s formula,
implies that h, — 0 uniformly on compact subsets of C. Thus our claim fol-
lows from Theorem 2.4, with T' = differentiation on H(C), Dy = all holomorphic
polynomials, and {z,}, {yn} replaced by {g,},{hn} respectively.

‘Now fix f € ['(A). Then from the definition of I'(A) and the fact that p, — oo,
there is an infinite set E of positive integers n for which

(3) |f™ — g,| <1 0n AA, and npne — p, > 1.

Fix n in E. We claim that f(®)(A) D> D(0,p,). To see this, fix a € D(0, py),
and note that conditions (3) above guarantee that for every z € 0A,

[(f™(2) — a) = (gn(2) — @)| < 1 < npne — |a| < |gn(2) —al,
so by Rouché’s Theorem [4, pp. 125-126], f(*) takes the value a in A.
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So far we have shown that for each f € T'(A); f(™(A) > D(0, p,) for infinitely
many n. To finish the proof, note that the intersection of the sets I'(A), as A runs
through all open discs in the plane having rational radii, and centers with rational
coordinates, is precisely the set of entire functions obeying condition (2). By the
work above, and Baire’s Theorem, it is a dense G5 subset of H(C). This completes
the proof.

4. Backward shifts. In this section, 3 = {f(k): k > 0} is a decreasing
sequence of positive numbers for which

(1) o =sup{B(k)/B(k+1): k >0} < co.

Following [16] we denote by H?(3) the space of power series f(2) = Y. f(n)z" for
which

I£1% =" F(k)[28(k) < co.
k=0

Thus HZ%(f) is a Hilbert space whose elements can be regarded as functions holo-
morphic on the unit disc U. We are going to study the backward shift operator B
defined on H2(B) by

Bi(:) =S f(k+ 1) (feHYB).
k=0

An easy computation shows that, thanks to condition (1) above, B is a bounded
linear operator on H?((3), with norm equal to o.

4.1. THEOREM. H?2(B) has a B-universal vector if and only if B(n) — 0 as
n — oo.

PROOF. Suppose the sequence 3 does not tend to zero. Then, since it is mono-
tonically decreasing, § = inf 3(k) > 0. It is a routine exercise to show that for each
nonnegative integer n,

1B™ = sup (k)/B(k +n) < B(0)/6,

so the orbit of each vector in H2(f3) is bounded, hence no vector can be B-universal.
Conversely, suppose 3(k) — 0. The forward shift u defined by

uf(z) =) f(k)=* (f e HA(B)
k=0

is a bounded linear operator on H2(), and |[u™f||s — O for every f € H?(B)
because §(k) — 0. Thus the hypotheses of Theorem 2.2 are satisfied with X =
H?(B), D = all holomorphic polynomials, T = B, and S = u. This completes the
proof.

4.2. EXAMPLES: BERGMAN SHIFTS. Suppose u is a finite, nonnegative
Borel measure on the half-open interval [0,1) which places positive mass on each
interval [a,1) for 0 < a < 1. Let A?(u) denote the Bergman space of functions f
holomorphic in U for which

112 = (1/2) / /0 " |7re®)? db du(r) < oo.
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Then A2%(u) coincides (isometrically) with H?(8) where 3 is the moment sequence

@) 5(k)=/0 2 du(r)  (k=0,1,2,...).

Because p places no mass at the point 1, the sequence 3 decreases monotonically
to zero.

4.3. PROPOSITION. The backward shift B acts boundedly on A%(u).

PROOF. We must show that the moment sequence (3 satisfies condition (1) stated
at the beginning of this section. Fix 0 < a < 1. Then

Blk+1) > /1 P2 du(r) > a®**?u{la, 1)},

a

and
a 1
B(k) < /0 r2k du(r) +a"2/a r2k+2 dm(r)

< a®*pu{[0,a)} + a4k +1) < a”*[u{[0,0)}/p{la, 1)} + 1]B(k + 1),

so condition (1) is satisfied with ¢ = a=2[u{[0,a)}/u{[a,1)} + 1], which is finite
because u{[a,1)} > 0. This completes the proof.

4.4 COROLLARY. For every measure y as above, A?(u) has B- universal
vectors.

4.5. REMARKS. (a) Backward shift on H2. If B = 1, then H?(8) is the
ordinary Hardy space H? of the unit disc. As pointed out in [5, Theorem 4.1.1], G.
Ts. Tumarkin showed that the set of B-cyclic vectors is a dense G5 subset of H2.
Clearly B has no universal vector in H? (Theorem 4.1), however: for every scalar
a of modulus > 1, H? has aB-universal vectors. To see this, just apply Theorem
2.2 as in the proof of Theorem 4.1, but with T = aB and S = a~!u. Rolewicz
[13] has obtained this result by direct construction for the Banach spaces co and
IP (1 < p < 00). Our methods apply in that setting as well.

(b) Weighted shifts. As described in [16] there is a unitary equivalence between
the backward shift B on the “weighted spaces” H?(83), and weighted backward shifts
on the “unweighted” space H?. In this regard, our Theorem 4.1 complements a
result of Hilden and Wallen (7], who showed that every weighted backward shift has
a “supercyclic” vector. A supercyclic vector z for an operator T is one for which
the set {aT"z : a € C,n > 0} is dense in the whole space.

(c) Two-sided shifts. Suppose 8 = {B(k): k € Z} is a two-sided sequence for
which sup,, B(k + 1)/8(k) < oo and supy 8(k)/B(k + 1) < co. Then on L?(8), the
corresponding space of formal Laurent series, the naturally defined bilateral forward
and backward shifts, u and B respectively [16, §3], are bounded linear operators
inverse to each other. Theorem 2.2 applies directly to this situation, and shows
that: +f B(k) — 0 as k — oo (resp.k — —o0), then B (resp.u) has a universal
vector.

ADDED IN PROOF. After this paper was accepted for publication, we discovered
that Theorem 2.2 had been proved earlier by Carol Kitai as Theorem 1.4 of her
unpublished doctoral dissertation Invariant closed sets for linear operators (Univer-
sity of Toronto, 1982). Kitai’s dissertation contains many interesting results about
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universal vectors (which she terms orbital vectors). For example, she shows that
certain bilateral weighted shifts have universal vectors, yet are not surjective (The-
orem 1.10); hence they do not have the right inverse demanded by the hypotheses
of our Theorem 2.2. This leads to the study of necessary conditions for an operator
to have universal vectors (Chapters 2 and 4). She also studies supercyclic vectors
(Chapter 3); and observes that it is possible for an operator to have supercyclic
vectors, even though no scalar multiple of the operator has a universal vector.
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