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Abstract. We show that if f(z) =
∑
anz

n is a holomorphic function in the
Dirichlet space of the unit disk, then almost all of its randomizations

∑
±anzn are

multipliers of that space. This parallels a known result for lacunary power series,
which also has a version for smoothness classes: every lacunary Dirichlet series
lies in the Lipschitz class Lip1/2 of functions obeying a Lipschitz condition with
exponent 1/2. However, unlike the lacunary situation, no corresponding “almost
sure” Lipschitz result is possible for random series: we exhibit a Dirichlet function
with no randomization in Lip1/2. We complement this result with a “best possible”
sufficient condition for randomizations to belong almost surely to Lip1/2. Versions
of our results hold for weighted Dirichlet spaces, and much of our work is carried
out in this more general setting.

Introduction

The Dirichlet space D of the open unit disc U of the complex plane is the
set of holomorphic functions on U for which

D(f) ≡
∫
U

∣∣f ′(z)∣∣2 dA(z) <∞,

where the measure dA is two-dimensional Lebesgue measure normalized so
thatA(U) = 1. If f(z) =

∑
anz

n then it is easily seen thatD(f) =
∑
n |an|2.

The Dirichlet space is a Hilbert space under the norm defined by: ‖f‖2 =
D(f) + |f(0)|2.

A multiplier of the Dirichlet space is a holomorphic function φ on U such
that the pointwise product φ(z)f(z) ∈ D whenever f ∈ D. If φ is a multiplier
of D, then by the closed graph theorem the multiplication operator Mφ :
f 7→ φf is a bounded linear operator on D. The study of such operators on
D and its various weighted generalizations has been attracting considerable
attention; see for example [2], [7], [11], [12], and [15].

1Research supported in part by the National Science Foundation
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Since the constant function f(z) ≡ 1 is in D, every multiplier of D
must itself be in D. An elementary argument using the continuity of point
evaluation functionals shows that every multiplier must also be bounded on
the unit disk ([6], Lemma 11, page 57). Beyond this, however, the multipliers
of D defy simple description. For example, there are bounded functions in D
that are not multipliers of D. Indeed, there are functions in D, continuous
on U, that are not multipliers [15, Theorem 9].

There are two concrete characterizations of the multipliers of D. One,
due to D. Stegenga [14], involves a Carleson-type condition expressed in
terms of logarithmic capacity. The other, due to Kerman and Sawyer [9],
uses a Carleson-type maximal function. However both characterizations can
be difficult to use in practice. For example, it is not clear how one could
use either criterion to decide if the magnitudes of the Taylor coefficients of
a multiplier of D must satisfy a condition that is stronger than the one that
defines D:

∑
n|an|2 <∞.

Our first result, Theorem 1 in §1 below, shows that no stronger condi-
tion is possible: if f(z) =

∑
anz

n is in the Dirichlet space, then the series∑±anzn is a multiplier of D for almost every random choice of signs. In
particular, for every Dirichlet function there is a multiplier with same se-
quence of “Taylor coefficient magnitudes.” So Taylor coefficient magnitude
sequences behave no better for multipliers than they do for arbitrary Dirich-
let functions. Theorem 1 also holds for more general randomizations of the
coefficients of f .

Brown and Shields [3, Proposition 20], recently showed that if f(z) =∑
akz

nk is a Hadamard lacunary power series in D (i.e.,nk+1/nk ≥ λ > 1),
then f is a multiplier of D, and in addition f ∈ lip1/2, the “little-oh” Lip-
schitz class with exponent 1/2. Noting that properties of lacunary series
often have analogues for Rademacher series, Allen Shields suggested to us
that these results might have random versions. We show that this analogy
is correct for multipliers, but breaks down dramatically for Lipschitz spaces.

In §2 we show that if
∑
anz

n ∈ D, then the “randomization” fω(z) =∑±anzn will almost surely belong to Lipγ for all γ < 1/2, but need not a.s.
be in Lip1/2. We show that if the function f obeys the stronger condition∑
n(log n)|an|2 <∞, then fω ∈ lip1/2 almost surely, and this result is “best

possible” in a very strong sense. For this we adapt methods of W.T. Sledd
[13], P.L. Duren [5, Theorem 1], and Anderson, Clunie and Pommerenke
[1, Theorem 3.7], who obtained similar regularity theorems involving spaces
which include BMO and the Bloch space. Results like this also follow from
work of J. P. Kahane [8, Theorem 3 of Ch. 7, Theorem 2 of Ch. 8].
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In §3 we show that the random/lacunary analogy for Lipschitz spaces
breaks down in the worst possible way: there is a series

∑
anz

n in D such
that

∑±anzn is in Lip1/2 for no choice of signs.
All of our work generalizes to a familiar class of “weighted Dirichlet

spaces.” We emphasize this point of view in sections 2 and 3, where it is of
interest to note the connection between the strength of the weight and the
Lipschitz smoothness of randomizations of functions in the space.

1 Random Dirichlet functions are multipliers

Let εn(ω) be a Bernoulli sequence of random variables on a probability space
(Ω,A, P ). This means that the sequence is independent, and each εn takes
the values +1 and −1 with probability 1/2 each. For a concrete example
of such a sequence, take εn to be the nth Rademacher function on the unit
interval, with Lebesgue measure as the probability measure.

If f(z) =
∑
anz

n is analytic in the unit disk U, let

fω (z) = f (z, ω) ≡
∑
n

εn (ω) anzn.

Since the series representing f converges absolutely in U , the function fω(·)
is analytic in U for each ω ∈ Ω. Furthermore if f ∈ D then fω ∈ D for each
ω ∈ Ω.

Theorem 1 If f ∈ D then fω is a multiplier of D almost surely.

The proof of this theorem uses Khintchine’s inequality and a sufficient
condition, due to Brown and Shields, for a function to be a multiplier of D.
We state these tools below as lemmas.

Lemma 1.1 (Khintchine’s Inequality) [16, Thm.V.8.4]. Let {an} be
a sequence of complex numbers and let X(ω) =

∑
εn(ω)an. Then for all

0 < p <∞,

‖X‖Lp(Ω) ≈ ‖X‖L2(Ω) =
(∑

|an|2
)1/2

.

The last equality above holds because the εn’s are orthonormal in L2(Ω).
For the Brown - Shields sufficient condition, we introduce the following

standard notation: If f is holomorphic in U , then for all 0 < p <∞ and all
0 ≤ r < 1 let

Mp (f, r) ≡
(∫

∂U

∣∣∣f (reiθ)∣∣∣p dθ
2π

)1/p

.
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Similarly let
M∞ (f, r) ≡ max

θ

∣∣∣f (reiθ)∣∣∣ .
Lemma 1.2 [3, Proposition 19]. Let φ(z) be a holomorphic function on U,
and suppose that for some 2 < p ≤ ∞, Mp (φ′, r) ∈ L2 ([0, 1], dr). Then φ is
a multiplier of D .

The lemma fails when p = 2, since the condition that M2 (φ′, r) ∈ L2(dr)
says nothing more than that φ is in the Dirichlet space.

Proof of Theorem 1. Let f(z) =
∑
anz

n be in the Dirichlet space, and
let fω(z) =

∑±anzn be the randomization of f . By the lemma above, it
suffices to show that∫ 1

0
M2
p

(
f ′w, r

)
dr <∞ almost surely

for some p > 2. In fact this is true for all 2 < p < ∞. (The case p = ∞
is discussed in §2.) Fix 2 < p < ∞. We will show that the expectation of∫
M2
p (f ′ω, r) dr is finite, from which the result will follow.
Using respectively: Fubini’s theorem, Jensen’s inequality, Fubini’s theo-

rem, and Khintchine’s inequality, we obtain:

E
(∫ 1

0
M2
p

(
f ′w, r

)
dr

)
=

∫ 1

0

∫
Ω

[∫ 2π

0

∣∣∣f ′ω (reiθ)∣∣∣p dθ2π

]2/p

dP dr

≤
∫ 1

0

[∫
Ω

∫ 2π

0

∣∣∣f ′ω (reiθ)∣∣∣p dθ2π
dP

]2/p

dr

=
∫ 1

0

[∫ 2π

0

∥∥∥f ′ω (reiθ)∥∥∥p
Lp(Ω)

dθ

2π

]2/p

dr

≤ Cp

∫ 1

0

[∫ 2π

0

∥∥∥f ′ω (reiθ)∥∥∥p
L2(Ω)

dθ

2π

]2/p

dr

= Cp

∫ 1

0

[∫ 2π

0

(∑
n2 |an|2 r2n−2

)p/2 dθ
2π

]2/p

dr

= Cp

∫ 1

0

(∑
n2 |an|2 r2n−2

)
dr
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= Cp

∞∑
n=1

n2 |an|2
1

2n− 1

≤ Cp

∞∑
n=1

n |an|2 <∞ . ///

Theorem 1 can be generalized in two directions. One direction involves
more general randomizations of the coefficients.

Corollary 1 . Let f(z) =
∑
anz

n be in the Dirichlet space and let
fω(z) =

∑
Xnanz

n where {Xn(ω)} is a sequence of independent complex
random variables satisfying

• E
(
|Xn|2

)
≤ C <∞ for all n;

• −Xn has the same distribution as Xn.

Then fω is a multiplier of D almost surely.

For example, these hypotheses are satisfied when Xn is uniformly dis-
tributed on the unit circle ∂U , or when Xn has a centered Gaussian distri-
bution on the complex plane.

Proof of Corollary 1. The proof follows from what Kahane calls the
“principle of reduction” [8, Sec. 1.7]. Let {Xn} be a sequence of random
variables as in the statement of the corollary and let {εn} be a Bernoulli se-
quence independent of the Xn’s. Let Yn = εnXn. By the independence, {Yn}
can be realized on a product probability space (Ω1 × Ω2,A1 ×A2, P1 × P2)
such that the Xn’s are defined on (Ω1,A1, P1) and the εn’s are defined on
(Ω2,A2, P2). Let E1 denote expectation with respect to P1.

Let f(z) =
∑
anz

n be in the Dirichlet space. Then

E1

(∑
n |anXn|2

)
≤ C

∑
n |an|2 <∞,

so that
P1

{
ω1 :

∑
n |anXn (ω1)|2 <∞

}
= 1.

Let Ω′1 denote the set in braces in the equation above. For each fixed ω1 ∈
Ω′1, Theorem 1 implies that∑

εn(ω2)Xn(ω1)anzn
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is a multiplier of D a.s.[P2]. By Fubini’s theorem,

P2

{
ω2 :

∑
εn(ω2)Xn(ω1)anzn is a multiplier of D a.s. [P1]

}
= 1.

In particular there exists a choice of ± signs such that
∑±Xn (ω1) anzn

is a multiplier a.s.[P1]. Since −Xn and Xn are identically distributed and
the Xn’s are independent, it follows that

∑
Xn(ω1)anzn is a multiplier of D

a.s.[P1]. ///

The second direction of generalization involves weighted Dirichlet spaces.
For each 0 ≤ α < ∞, let Dα denote the set of holomorphic functions f on
U for which

Dα(f) ≡
∞∑
n=1

nα |an|2 <∞.

A straightforward computation with power series, using Lemma 2.4 below,
shows that if f(z) =

∑
anz

n, then for 0 ≤ α < 2,

Dα(f) ≈
∫
U

∣∣f ′(z)∣∣2 (1− |z|)1−α dA(z)

(see, for example, [15], Lemma 2). These weighted Dirichlet spaces Dα form
a monotonically decreasing family of Hilbert spaces, with D1 the original
Dirichlet space D, and D0 the Hardy space H2. It is easy to see that the
multipliers of the Hardy space are precisely the class of bounded holomorphic
functions on U . However for the weighted Dirichlet spaces Dα with 0 < α <
1 the situation is just as complicated as it is for D = D1 (see [9], [14]).

For α > 1 the situation reverts to simplicity. In this case the Hilbert
space Dα is closed under pointwise multiplication ([15], Theorem 7), so every
function in the space is a multiplier (and, as for the unweighted Dirichlet
space, it is easy to see that conversely, every multiplier is in the space).
Theorem 1 can therefore be regarded as a random substitute for this phe-
nomenon when α = 1. We claim that the same kind of random substitute
exists for each 0 < α < 1. For this we need a version of Lemma 1.2 for the
spaces Dα.

Lemma 1.3 Let φ be holomorphic in U , 0 < α ≤ 1, and suppose that for
some p > 2/α, ∫ 1

0
M2
p

(
φ′, r

)
(1− r)1−α dr <∞.

Then φ is a multiplier of Dα.
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The proof of this lemma is very similar to the proof of Proposition 19 in
[3], and we omit the details, except to say that one needs to show that for
0 < α < 1 the space Dα is contained in the Hardy space H2/(1−α) (either
by fractional integration or by interpolation; note that D1 = D is contained
in BMO by Hardy’s inequality), and then one uses Hölder’s inequality as in
[3].

Using this sufficient condition one arrives at the following theorem:

Theorem 2 Suppose that f is in Dα (0 < α ≤ 1) and fω is a randomization
of the type considered in Corollary 1. Then fω is a multiplier of Dα almost
surely.

Proof of Theorem 2. Follow the proof of Theorem 1 to show that

E
(∫ 1

0
M2
p

(
φ′, r

)
(1− r)1−α dr

)
≤ Cp

∑
n2 |an|2

∫ 1

0
r2n−2 (1− r)1−α dr.

The integral on the right hand side is the beta function β(2n − 1, 2 − α).
From the beta function inequality (Lemma 2.4 of §2 below),

β (2n− 1, 2− α) ≤ Cα
1

(2n− 1)2−α ≤ Cαn
α−2

for n ≥ 1. So the expectation above is smaller than Cp,α
∑
nα |an|2, which

is finite since f is in Dα. Thus the sufficient condition in Lemma 1.3 is
satisfied almost surely. ///
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2 Smoothness of random Dirichlet functions

“Smoothness” in this section is expressed by Lipschitz conditions. For 0 <
γ ≤ 1 we denote by Lipγ the class of functions holomorphic on U for which
there exists a constant M < ∞ such that |f(z) − f(w)| ≤ M |z − w|γ for
all z, w ∈ U . Clearly each such function extends continuously to the closed
unit disc, on which it obeys the same modulus of continuity estimate. If,
in addition, γ < 1 and for every ε > 0 there exists δ > 0 such that |f(z) −
f(w)| ≤ ε|z−w|γ whenever |z−w| < δ, (a condition that is non-trivial only
as z and w approach the boundary), then we say f ∈ lipγ .

The connection between Lipschitz classes and the Dirichlet space comes
from the following result of Hardy and Littlewood, which ties the boundary
smoothness of a holomorphic function to the growth of its derivative.

Lemma 2.1 [4, Thm. 5.1, p. 74]. Suppose f is holomorphic on U and
0 < γ < 1. Then f ∈ Lipγ if and only if

M∞(f ′, r) = O

(
1

1− r

)1−γ
(r → 1−).

The corresponding result for lipα holds as well: just replace “big-oh” by
“little-oh” in the growth condition.

To observe this theorem in action, we turn to the work of Brown and
Shields, who, in the course of proving that lacunary Dirichlet functions are
multipliers, showed [3, Prop. 20] that each such function obeys the growth
condition ∫ 1

0
M2
∞(f ′, r) dr <∞.

From this, and the fact that the sup-norm mean M∞(f ′, r) increases with
r, it follows easily that

M∞(f ′, r) = o

(
1

1− r

)1/2

.

Along with Lemma 2.1, this last estimate allowed Brown and Shields to
conclude that: Every lacunary series in the Dirichlet space belongs to lip1/2.

The goal of this section is twofold: We show that this last result does
not have a “random” analogue, but that the slightly stronger hypothesis∑
n log n |an|2 <∞ does imply that fω(z) ∈ lip1/2 almost surely. Moreover,

this sufficient condition is best possible in a very strong sense.
We present this material in the more general setting of weighted Dirichlet

spaces in order to emphasize how containments between the original spaces

8



control smoothness of the resulting randomizations. The statements above
represent the special case α = 1.

Theorem 3 Let 0 ≤ α < 2 and let f(z, ω) =
∑
εn(ω)anzn, where {εn} is

a Bernoulli sequence of random variables.

(a) If
∑
nα log n |an|2 <∞ ,then almost surely∫ 1

0
M2
∞(f ′ω, r)(1− r)1−αdr <∞.

Consequently if α > 0 then almost surely fω(z) ∈ lipα/2.

(b) On the other hand, given a sequence cn ↘ 0, one can choose coeffi-
cients an > 0 such that

∑
cnn

α log n |an|2 <∞, but with

M∞
(
f ′ω, r

)
6= O

(
1

1− r

)1−α/2
, almost surely.

Consequently if α > 0 then almost surely fω(z) /∈ Lipα/2.

Note that part (a) of this theorem shows that if f ∈ Dα, then almost
surely fω ∈ Lipγ whenever γ < α/2, while part (b) shows that this conclusion
does not extend to γ = α/2.

The proof of part (a) of Theorem 3 follows closely that of the main
theorem in Duren’s paper [5], while the proof of part (b) follows that of
Theorem 3.7 in Anderson, Clunie and Pommerenke [1]. For the sake of
completeness, we present these arguments in some detail. Both rely upon
the following fundamental estimate, due to Salem and Zygmund, of the size
of the L∞ norm of a random trigonometric polynomial:

Lemma 2.2 [10, Theorems 4.3.1, 4.6.1, 4.9.9]. For εk(ω) a Bernoulli se-
quence of random variables, consider the random Fourier series fω(θ) =∑
εk(ω)ckeikθ, and let sn(ω, θ) be the nth partial sum of fω. Let

σn = ‖sn‖2 =

(
n∑
k=1

|ck|2
)1/2

.

(a) There are constants Cω, depending on ω but not on n, such that
almost surely ‖sn (ω, ·)‖∞ ≤ Cω (log n)1/2 σn.
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(b) If in addition {ck} satisfies the regularity condition

n∑
k=1

|ck|4 ≤
const.

n

( n∑
k=1

|ck|2
)2

,

then the opposite inequality holds: almost surely there are positive constants
C ′ω such that ‖sn (ω, ·)‖∞ ≥ C ′ω (log n)1/2 σn for n sufficiently large.

The proof given below of part (a) of Theorem 3 uses two other well-
known inequalities which we list below for easy reference.

Lemma 2.3 (Hilbert’s Inequality) . For any sequence {bj} of complex
numbers, ∣∣∣∣∣∣

∞∑
j=1

∞∑
k=1

1
j + k

bjbk

∣∣∣∣∣∣ ≤ π
∞∑
j=1

|bj |2 .

Lemma 2.4 (Beta function inequality) .
For x ≥ 1 and α > 0, let

β(x, α) ≡
∫ 1

0
tx−1(1− t)α−1dt.

Then
β (x, α) ≤ Cα

1
xα
,

where Cα is a constant that depends only on α.

We omit the proof of Hilbert’s inequality, and instead refer the reader
to [4, Cor. to Thm. 3.14, p. 48]. As for the beta function, it is well-known
that β (x, α) = Γ(x)Γ(α)/Γ(x+α), where Γ(z) is the gamma function. The
desired inequality now follows from Stirling’s formula.

Proof of Theorem 3. (a) Let fω(z) =
∑±anzn with∑

nα log n |an|2 <∞.

Notice that

zf ′ω(z) =
∞∑
1

εn(ω)nanrneinθ,

where z = reiθ. Let

Sn (ω, θ) =
n∑
k=1

εk(ω)kakeikθ,
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and let

σ2
n = ‖Sn (ω, ·)‖2L2[0,2π] =

n∑
k=1

k2 |ak|2 .

By Lemma 2.2, there is an exceptional subset E ⊂ Ω, of probability zero,
such that for every ω ∈ Ω\E, there is a constant Cω, depending on ω but
not on n, such that

max
θ
|Sn (ω, θ)| ≤ Cωσn

√
log n.

For the rest of the proof of part (a) we fix a point ω /∈ E. For this particular
ω we are going to show that fω ∈ lipα/2.

The first thing to note is that Sn is related to f ′w by the formula

zf ′ω(z) = (1− r)
∞∑
n=1

Sn (ω, θ) rn.

So for each θ ∈ [0, 2π],

∣∣zf ′ω(z)
∣∣ ≤ (1− r)Cω

∞∑
n=1

σn (log n)1/2 rn,

and so

M∞
(
f ′ω, r

)
≤ Cω (1− r)

∞∑
n=1

σn (log n)1/2 rn−1.

Now by the beta function inequality,∫ 1

0
(1− r)1−α [M∞ (f ′ω, r)]2 dr
≤ C2

ω

∫ 1

0
(1− r)3−α

[ ∞∑
n=1

σn (log n)1/2 rn−1

]2

dr

= C2
ω

∞∑
j=1

∞∑
k=1

(
σj
√

log j
) (
σk
√

log k
) ∫ 1

0
(1− r)3−α rj+k−2 dr.

≤ Cω,α
∞∑
j=1

∞∑
k=1

(
σj
√

log j
) (
σk
√

log k
)( 1

j + k

)4−α
.
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Using respectively the fact that j+ k ≥ 2
√
j
√
k, and Lemma 2.3, we see

that the expression in the last line above is less than or equal to

Cω,α

∞∑
j=1

∞∑
k=1

1
j + k

(
σj
√

log j(√
j
)3−α

) σk√log k(√
k
)3−α



≤ πCω,α
∞∑
k=1

σ2
k log k
k3−α ,

.
Recall that σ2

k =
∑k

1 n
2 |an|2, so since 0 ≤ α < 2,

∞∑
k=1

σ2
k log k
k3−α =

∞∑
k=1

log k
k3−α

(
k∑

n=1

n2 |an|2
)

=
∞∑
n=1

n2 |an|2
( ∞∑
k=n

log k
k3−α

)

≤
∞∑
n=1

n2 |an|2
C log n
n2−α

= C
∑

nα log n |an|2 <∞.

(In the second line of this display we estimate the sum that involves (log k)/k3−α

by an integral.) We conclude that∫ 1

0
(1− r)1−α [M∞ (f ′ω, r)]2 dr <∞

To show that fω ∈ lipα/2, notice that since M∞(f ′, r) is an increasing
function of r,∫ 1

r
(1− s)1−α [M∞ (f ′ω, s)]2 ds ≥ [

M∞
(
f ′ω, r

)]2 ∫ 1

r
(1− s)1−α ds

=
[
M∞

(
f ′ω, r

)]2 (1− r)2−α

2− α .

But the left-hand side tends to 0 as r → 1, so

M∞
(
f ′w, r

)
= o

(
1

1− r

)1−α/2
.
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If α > 0, then by Lemma 2.1, fω ∈ lipα/2, as promised.

Proof of (b). Let {cn} be a sequence of positive constants, decreasing
monotonically to 0. Choose integers {nk} (as in [1, Thm.3.7]) which initially
satisfy:

• n0 = 1;

• nk > 2nk−1 for k = 1, 2, . . . ;

• ∑ (cnk)1/2 <∞.

Define an > 0 by a1 = 1 and

nαa2
n =

1
nk log nk

√
cnk−1

(nk−1 < n ≤ nk).

Then

∞∑
n=1

cna
2
nn

α log n ≤
∞∑
k=1

cnk−1
log nk

nk∑
n=nk−1+1

nαa2
n ≤

∞∑
k=1

√
cnk−1

<∞.

We will apply Lemma 2.2 to the Cesàro means of the partial sums of f ′ω.
Let

snk (ω, θ) =
nk∑
j=1

(
1− j

nk

)
jajεj(ω)eijθ.

Let σn = ‖sn‖2. Since nk > 2nk−1,

σ2
nk
≥

∑
nk
2
≤j≤ 3nk

4

(
1− j

nk

)2

j2a2
j

≥ nk
4

1
42

(
nk
2

)2−α
· 1
nk log nk

√
cnk−1

.

So
σnk

√
log nk ≥ Cλkn(1−α/2)

k ,

where λk =
(
cnk−1

)−1/4. Note that λk →∞ as k →∞.
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Furthermore,

nk∑
j=nk−1+1

(
1− j

nk

)4

j4a4
j ≤ (nk − nk−1)n4−2α

k · 1
n2
k (log nk)

2 cnk−1

≤ C
σ4
nk

nk
.

In addition to the three original requirements placed on the sequence {nk},
let us further demand that it grow fast enough so that

nk∑
j=nk−1+1

(
1− j

nk

)4

j4a4
j ≥

nk−1∑
j=1

(
1− j

nk

)4

j4a4
j .

Thus
nk∑
j=1

(
1− j

nk

)4

j4a4
j ≤ 2C

σ4
nk

nk
.

By Lemma 2.2 (see also [1, Lemma 3.3]), there are constants Cω (inde-
pendent of k) such that

max
θ∈[0,2π]

|snk (ω, θ)| > Cωλkn
1−α/2
k

for k sufficiently large, almost surely. But since {snk} are Cesàro means of
the partial sums of f ′ω(z),

max
|z|=1

|snk (ω, z)| ≤ 4 max
|z|=1−1/nk

∣∣f ′ω(z)
∣∣ .

Letting rk = 1− 1/nk, one has

M∞
(
f ′ω, rk

)
> Cωλk

(
1

1− rk

)1−α/2
.

Since λk →∞, ∣∣f ′ω(z)
∣∣ 6= O

(
1

1− |z|

)1−α/2

as |z| → 1, almost surely. Again it follows from Lemma 2.1 that if α > 0
then fω /∈ Lipα/2 almost surely. ///
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3
∑±anzn ∈ Lipα/2 for no choice of signs

According to the work of the previous section, there are functions∑
anz

n ∈ Dα such that for almost every choice of signs,
∑±anzn /∈ Lipα/2.

In this section we show that more is true:

Theorem 4 Suppose 0 < α < 2. Then there exists a function
∑
anz

n ∈ Dα
such that for every choice of signs,

∑±anzn /∈ Lipα/2.

Since every lacunary series in Dα belongs to Lipα/2, the functions of
Theorem 4 cannot be lacunary (see Sec. 2). However the example produced
in the proof is a “lacunary sum of lacunary polynomials.”

Proof of Theorem 4. For any “sign sequence” ε = εk, each of whose
terms is +1 or −1, and any holomorphic function f(z) =

∑
anz

n, write
fε(z) =

∑
εnanz

n. Our example will be built from the functions

gN (z) = N−1/22−αN/2
N∑
j=1

z2N+2j (N = 1, 2, . . .).

which are easily seen to form a bounded orthogonal sequence in Dα. Thus
if {Nk} is any strictly increasing sequence of positive integers, and {ak}
any square summable sequence of complex numbers, the series

∑
akgNk

will
converge in Dα. In particular this is true of the function

f =
∞∑
k=1

1
k
gNk

,

where Nk = 2k. This is the function that will occupy our attention for the
rest of the section.

We are going to show that for any sign sequence ε, the function fε does
not belong to Lipα/2. To clarify the main points of the argument, we first
consider only the “unperturbed” function f.

For this proof it is convenient to replace the Hardy-Littlewood inequality
employed in the previous section (Lemma 2.1) by a similar result that uses
Cesàro means in place of restrictions to circles (i.e., Abel means). For f(z) =∑
anz

n, let σN (f) denote the N th Cesàro mean of f :

σN (f) =
N∑
j=0

(
1− j

N

)
ajz

j .

15



Then for 0 < γ < 1,

f ∈ Lipγ ⇐⇒ ‖σN (f ′)‖∞ = O
(
N1−γ

)
(N →∞),

where ‖ ‖∞ is the norm of L∞(∂U) ([16, Ch. VII, Ex. 14, p. 296] or see the
paragraph at the end of the last section for the implication we are going to
use).

In what follows, the symbol C, with or without subscripts, will denote a
positive universal constant, which may nevertheless change from line to line.
When divided by z2N , both g′N and σ3·2N (g′N ) become Hadamard lacunary
polynomials, so by Sidon’s theorem [16, Ch. VI, Th. 6.1, p. 247] the L∞

norm of each is bounded below by a constant multiple of its `1 coefficient
norm (the sum of the magnitudes of its Fourier coefficients). Since the `1

coefficient norm is clearly an upper bound for the L∞ norm, we have

C1

√
N · 2(1−α/2)N ≤ ‖g′N‖∞ ≤ C2

√
N · 2(1−α/2)N . (1)

As for σ3·2N (g′N ), observe that if the integer j is in the “Fourier support”
of gN , so that j ≤ 2N+1, then the jth Cesàro coefficient multiplier for σ3·2N
is 1− j

3·2N , which lies between 1 and 1/3. Thus

1
3
‖g′N‖1 ≤ ‖σ3·2N (g′N )‖1 ≤ ‖g′N‖1 ,

where ‖ · ‖1 denotes the `1 coefficient norm. Thus the reasoning of the last
paragraph yields

C1

√
N · 2(1−α/2)N ≤ ‖σ3·2N (g′N )‖∞ ≤ C2

√
N · 2(1−α/2)N . (2)

Fix a positive integer K; for simplicity of notation let us temporarily
write σ instead of σ3·2NK . Since 2Nk > 3 · 2NK for k > K, (this is where the
definition Nk = 2k first plays a role), we see that σ(gNk ) = 0 for all k > K.
Thus

σ(f) =
K∑
k=1

1
k
σ(gNk ),

from which follows

‖σ(f ′)‖∞ ≥
1
K
‖σ(g′NK )‖∞ −

K−1∑
k=1

1
k
‖σ(g′Nk)‖∞.

By (2) above, the first term on the right side of the last inequality is bounded
below by a (universal) constant multiple of K−1

√
NK ·2(1−α/2)NK . An upper

bound for each term of the second sum is its `1 coefficient norm, so

16



‖σ(g′Nk)‖∞ ≤ C
√
Nk · 2(1−α/2)Nk (1 ≤ k ≤ K).

Using this information in the least sophisticated way, we obtain

‖σ(f ′)‖∞ ≥ C1K
−1
√
NK · 2(1−α/2)NK − C2(logK)

√
NK−1 · 2(1−α/2)NK−1

= K−1
√
NK · 2(1−α/2)NK (C1 − C2 · o(1)) .

Since C1 > 0, this implies that n−(1−α/2)‖σn(f ′)‖∞ →∞ as n runs through
the subsequence {3 ·2NK}. The characterization of Lipschitz classes that was
given above now shows that f /∈ Lipα/2.

What about the perturbations fε of f? The arguments just given de-
pended only on the magnitudes of the Taylor coefficients of the polynomials
gN , so the estimates obtained for these polynomials hold as well for each
of their perturbations (gN )ε. Since different polynomials gN involve distinct
powers of z, we have fε =

∑
k−1(gNk )ε for any sign sequence ε. Thus the

proof that fε /∈ Lipα/2 proceeds exactly as it did for f . ///
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Added in Proof. Professor J.M. Anderson has pointed out to us the
following facts:

(a) A known result on fractional integrals asserts that
∑
anz

n belongs to
lip1/2 if and only if

∑
n−1/2an ∈ λ∗, the “Little Zygmund Class.” It follows

that the question of whether or not random Dirichlet functions are a.s. in
lip1/2 is equivalent to one raised in Anderson’s paper [1] with Clunie and
Pommerenke, and answered by them in Theorem 3.7 of that paper.

(b) This question also appears as Question 17 in A.L. Shields’s survey
article Cyclic vectors in Banach spaces of analytic functions, which appeared
in the book Operators and Function Theory, S.C. Power, ed., Reidel 1985.

(c) Although we assert in §2 that the sufficient condition
∑

(n log n)|an|2 <
∞ for a random power series

∑
ωnanz

n to a.s. belong to lip1/2 is best pos-
sible “in a very strong sense,” there is in [1] a result equivalent to the fact
that the stronger condition:

sup
n

∑
2n≤k<2n+1

(k log k)|an|2 <∞

is also sufficient.
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