NONCONVEX LINEAR TOPOLOGIES WITH THE HAHN BANACH EXTENSION PROPERTY

D. A. GREGORY AND J. H. SHAPIRO

ABSTRACT. Let \((E, E') \) be a dual pair of vector spaces. It is shown that whenever the weak and Mackey topologies on \(E \) are different there is a nonconvex linear topology between them. In particular this provides a large class of nonconvex linear topologies having the Hahn Banach Extension Property.

A linear topology \(T \) on a real or complex vector space \(E \) is said to have the \textit{Hahn Banach Extension Property} (HBEP) if every continuous linear functional on a closed subspace of \((E, T) \) has a continuous linear extension to the whole space. Every (locally) convex topology has the HBEP, by the Hahn Banach Theorem; and even some nonconvex linear topologies have it [1, §7]. In a discussion of this phenomenon P. C. Shields observed that any linear topology between the weak and Mackey topologies of a dual pair has the HBEP, and asked if such a topology could be nonconvex.

The purpose of this note is to settle Shields' question affirmatively:

\textbf{Theorem 1.} Let \((E, E') \) be a dual pair of vector spaces with the Mackey topology \(T_\kappa \) on \(E \) not equal to the weak topology \(T_* \). Then there is a nonconvex linear topology between \(T_\kappa \) and \(T_* \).

Note that in addition to the HBEP such a topology has all of the separation properties guaranteed for convex spaces by the Hahn Banach Theorem. However, it cannot be metrizable, for if \(T \) is a nonconvex metrizable topology, then the convex hulls of the \(T \)-neighborhoods of \(0 \) constitute a base for the Mackey neighborhoods of \(0 \) [4, Proposition 3], hence \(T \) is strictly stronger than its Mackey topology. It is not known if a linear metric space with the HBEP must be convex, although the result has been proved for complete linear metric spaces with bases [4].

The dual pairs \((E, E') \) for which \(T_* = T_\kappa \) have the following characterization:

\textbf{Theorem 2.} Let \((E, E') \) be a dual pair of vector spaces. Then \(T_* = T_\kappa \) if and only if the completion of \((E, T_\kappa) \) is the algebraic dual of \(E' \).

Received by the editors October 22, 1969.

\textit{AMS Subject Classifications.} Primary 4601.

\textit{Key Words and Phrases.} Hahn Banach Theorem, Mackey topology, weak topology, nonconvex topology.

902
In particular, let S be an index set, $\omega(S)$ the space of all scalar valued functions on S, and $\phi(S)$ the space of scalar valued functions on S which vanish at all but a finite number of points. Then $\omega(S)$ and $\phi(S)$ have a natural duality, and $T_\ast = T_k$ on $\omega(S)$ [2, Problem 18G]. In fact if E is a weakly dense subspace of $\omega(S)$ (in particular if E contains $\phi(S)$), then $\langle E, \phi(S) \rangle$ is a dual pair, and it follows from Theorem 2 that $T_\ast = T_k$ on E. Indeed, every dual pair $\langle E, E' \rangle$ for which $T_\ast = T_k$ can be seen to be of this form by setting $E' = \phi(S)$ where S is an index set for a Hamel basis of E'.

We turn to the proofs. Theorem 1 requires three lemmas, the first of which follows from an easy induction argument involving the Hahn Banach Theorem.

Lemma 1. If $\langle F, F' \rangle$ is a dual pair of infinite dimensional vector spaces, then there are sequences (x_n) in F and (y_n) in F' such that $\langle x_i, y_j \rangle = \delta_{ij}$ for all i, j.

Lemma 2. Let $\langle E, E' \rangle$ be a dual pair, and let $(x_n), (y_n)$ be sequences in E, E' respectively such that $\langle x_i, y_j \rangle = \delta_{ij}$ for all i, j. If (y_n) is weakly bounded, and p is defined on E by

\[
p(x) = \sum_{n=1}^\infty 2^{-n} |\langle x, y_n \rangle|^{1/2}
\]

then the pseudometric $d(x, y) = p(x - y)$ determines a nonconvex linear topology on E.

Proof. Since (y_n) is a weakly bounded sequence in E', the convergence of the right-hand side of (1) is assured on E. Clearly d determines a linear topology T_p on E. Let $U_\epsilon = \{ x \in E : p(x) \leq \epsilon \}$. If T_p is convex, then U_ϵ contains a convex T_p-neighborhood of zero; in particular, it contains the convex hull of U_ϵ for some $\epsilon > 0$. But

\[w_k = \epsilon^{k+1} w_k\]

belongs to U_ϵ ($k = 1, 2, \ldots$), and yet

\[p(n^{-1}(w_1 + w_2 + \cdots + w_n)) = en^{1/2},\]

which is larger than 1 for n sufficiently large. Thus U_ϵ does not contain the convex hull of U_ϵ, and we have a contradiction. T_p is therefore nonconvex.

Lemma 3. Let (E, T) be a (not necessarily Hausdorff) topological vector space, and H a subspace whose closure has finite codimension. If the induced topology on H is convex, then T is convex.
Proof. Let \mathcal{H} denote the T-closure of H. It is easily seen that the T-closures of the sets in a neighborhood base of zero in H form a neighborhood base of zero in \mathcal{H}, hence the induced topology on \mathcal{H} is convex. Since \mathcal{H} has finite codimension, E is the topological direct sum of \mathcal{H} and a finite dimensional Hausdorff topological vector space [3, Chapter 1, 3.5]. Since the induced topologies on \mathcal{H} and the finite dimensional space are convex, T must also be convex.

Proof of Theorem 1. Since $T_s \neq T_h$, there is a weakly compact absolutely convex subset A of E' which is not contained in the closed convex hull of any finite set of points in E'. Thus the linear subspace F' of E' spanned by A has infinite dimension, and it follows from Lemma 1 (with $F = E/(F')^\circ$) that there are sequences (y_i) in A and (x_i) in E such that $\langle x_i, y_j \rangle = \delta_{ij}$ for all i, j. Since A is weakly bounded it follows from Lemma 2 that the topology T_s defined on E by (1) is not convex. Moreover p is dominated on E by the T_s seminorm

$$p_s(x) = \sup \{ \langle x, y \rangle : y \in A \}$$

so T_s is weaker than T_h.

Let T denote the supremum of T_s and T_p. Clearly T is a linear topology between T_s and T_h. We claim T is not convex. Suppose otherwise. Then U_ϵ contains a convex T-neighborhood V of 0, which in turn contains a set of the form

$$U_\epsilon \cap \{ x : \langle x, z_i \rangle \leq 1, \quad i = 1, 2, \ldots, n \}$$

for some $\epsilon > 0$ and z_1, z_2, \ldots, z_n in E'. Let H be the subspace of E on which all the z_i vanish. Since $U_\epsilon \cap H$ contains $V \cap H$, hence the convex hull of $U_\epsilon \cap H$, it follows that the restriction of p to H determines a convex (not necessarily Hausdorff) topology on H. Since H is of finite codimension in E, it follows from Lemma 3 that p determines a convex topology on E, contradicting Lemma 2. Thus T is not convex, and the proof is complete.

Proof of Theorem 2. Since E separates E' it may be regarded as a weakly dense subspace of the algebraic dual $(E')^\ast$ of E'. Thus if $T_s = T_h$ then $(E')^\ast$ is the T_h-completion of E.

Conversely if $(E')^\ast$ is the T_h-completion of E, then T_h is the restriction to E of the Mackey topology of the dual pair $(E')^\ast, E'$ [2, §18.9, p. 173]. But it follows from [2, Problem 18G] that the Mackey and weak topologies of this dual pair coincide. Since T_s is the restriction to E of the weak topology of the pair, we have $T_s = T_h$, which completes the proof.
References

Queen’s University, Kingston, Ontario, Canada