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Abstract. This work explores some of the terrain between functional equations, geometric
function theory, and operator theory. It is inspired by the fact that whenever a composition

operator or one of its powers is compact on the Hardy space H2, then its eigenfunctions

cannot grow too quickly on the unit disc. The goal is to show that under certain natural (and

necessary) additional conditions there is a converse: slow growth of eigenfunctions implies

compactness. We interpret the slow-growth condition in terms of the geometry of the principal
eigenfunction of the composition operator (the “Königs function” of the inducing map). We

emphasize throughout the importance of this eigenfunction in providing a simple geometric

model for the operator’s inducing map.

1. Introduction

Each holomorphic self-mapping ϕ of the open unit disc U induces a linear composition
operator Cϕ, defined on the space of functions holomorphic on U by

Cϕf = f ◦ ϕ (f ∈ H(U)).

Interest in this class of operators originates with Littlewood’s Subordination Principle [Lit,
1925], which insures that each one restricts to a bounded operator on the Hardy space H2

of holomorphic functions whose power series have square summable coefficients.
This paper contributes to the body of recent work that explores the connection between

the function theoretic behavior of ϕ and the action of the induced composition operator
on the Hilbert space H2 (see [Cow] for a survey of results up to 1988). We are going to
study the following variation on the compactness problem:

Is it possible to determine if a composition operator is compact, simply by looking
at its eigenfunctions?

Our investigation will lead to interesting connections between functional analysis, geo-
metric function theory, and functional equations. Here is a survey of what we do, with
undefined concepts and missing references deferred to the next section.
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1.1. Schröder’s equation and Königs’s function. The eigenvalue equation for com-
position operators

f ◦ ϕ = λf

is Schröder’s equation, a functional equation that has been around since 1870 [Sch]. Its
holomorphic solutions were first investigated by Königs [Ko], who showed in 1884 that if ϕ
is univalent and fixes a point p of U , then there is a nonconstant function σ holomorphic
and univalent on U that satisfies Schröder’s equation with λ = ϕ′(p). Note that if ϕ is the
identity mapping on U , then any univalent mapping σ will work. To rule out this situation,
we shall always assume that the range ϕ(U) of ϕ is a proper subset of U . Königs showed
that under this assumption σ is unique up to constant multiples. Moreover, all solutions
of Schröder’s equation are obtained by taking positive integer powers of this principal
eigenfunction (or “Königs function”) σ. More precisely, if f is a function holomorphic on
U that satisfies Schröder’s equation for ϕ, then for some positive integer n we must have
f = σn and λ = ϕ′(p)n (clearly all such choices of f and λ provide solutions). We also
note that, since ϕ(U) is a proper subset of U , |λ| < 1.

Stated in classical terms, the goal of this paper is to relate geometric properties of ϕ
with those of its Königs function σ.

There is compelling motivation for doing this. Suppose ϕ is univalent and fixes a point
of U . Let G be the image of U under the Königs function σ. Then by Schröder’s equation
σ(p) = 0, λ · G ⊂ G, and the diagram below commutes, where Mλ is the mapping of
multiplication by λ on G.

(1.1)

U
ϕ−−−−→ U

σ

y
yσ

G −−−−→
Mλ

G

Viewed in this manner, Königs’s theorem makes a geometric assertion:

Every univalent, holomorphic self-mapping of the unit disc with a interior fixed
point is equivalent to multiplication by a constant, acting on some simply con-
nected plane domain that contains the origin.

In diagram 1.1 we call the pair (Mλ, G) the Königs model for ϕ. From this point of view,
one can understand ϕ by learning about G, and this is how we will analyze the compactness
problem for composition operators.

We are not the first to use models to analyze composition operators. Carroll and Cowen
[CarCow] recently used the Schröder model point of view as part of their construction of
compact composition operators not in any Schatten class. More generally, it is known that
for any univalent self-map ϕ of U the situation of diagram 1.1 obtains, with Mλ replaced
by a more general linear-fractional self-map of U (see [Val] [Pomm4], [BaPomm], and
[Cow2]). Such linear-fractional models have proved valuable in studying spectra [Cow3],
co-subnormality [CowKr], and cyclicity [BoS] of composition operators.

We should point out that Königs did not require ϕ to be univalent, insisting only that its
derivative not vanish at the fixed point. If ϕ is not univalent, then σ will not be univalent
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either (and a similar comment applies to the more general linear fractional models). While
it is possible to place at least part of our work in the non-univalent setting, we choose to
keep matters grounded firmly in geometry by insisting that ϕ, and therefore σ, always be
univalent.

Here is a very simple instance of the kind of result that motivates our investigation.
We use this notation: For n a positive integer, ϕn denotes the n-th iterate of ϕ (the
composition of ϕ with itself n times). For f a complex function on U , the supremum of
the moduli of its values on U is denoted by ‖f‖∞.

Proposition. Suppose ϕ fixes a point of U . If ‖ϕn‖∞ < 1 for some positive integer n,
then σ is bounded on U .

Proof. Without loss of generality we may assume that ϕ(0) = 0. Note that σ is still the
Königs function of ϕn, the only difference being that λn replaces λ in Schröder’s equation.
By hypothesis, ϕn(U) lies in a compact subset of U , and by Schröder’s equation, σ(U) =
λ−nσ(ϕn(U)). Thus σ(U) is bounded. ¤

Figure 1 shows that it may take several iterations for ϕ to shrink U into a compact subset
of itself. Here ϕ(z) = σ−1(σ(z)/2), that is, ϕ is conjugate, via σ, to multiplication by 1/2
on G. Note how the picture illustrates the point of view expressed by the commutative
diagram (1.1) above: the action of ϕ is understood from the geometry of G = σ(U).

z → z/2

0

G

Figure 1. Several iterates are required to shrink G.

1.2. Schröder’s equation and spectra. We will see before long that the condition
‖ϕn‖∞ < 1 guarantees that the composition operator Cn

ϕ is compact. Right now we
observe that if this compactness is all we assume, then there results a more sophisticated
smallness condition on Königs’s function.

To see how this comes about, suppose that for some positive integer n, the operator Cn
ϕ

is compact on H2. It is well known to composition operator specialists that ϕ then has
a fixed point p in U , and that the spectrum of Cϕ consists of the points 0 and 1, along
with all the positive integer powers of ϕ′(p) ([C-S]; we provide more details in §2). When
ϕ′(p) 6= 0, the Riesz theory of compact operators tells us that these non-zero spectral
points have to be eigenvalues of finite multiplicity. For univalent maps ϕ, Königs’s results
complete the picture: the multiplicities are all 1, and (since Cn

ϕ = Cϕn) the successive
eigenfunctions are simply the positive integer powers of the univalent map σ. Thus each
power of the Königs function σ belongs to H2, so σ itself must therefore belong to each
Hardy space Hp (p < ∞). In summary:
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Folk-Theorem. If some power of a composition operator is compact on H2, then the
inducing map has an interior fixed point, and its Königs function belongs to Hp for every
p < ∞.

The goal of this paper is to investigate the converse of this folk-theorem. In order to
understand the issues involved, we need to review some of the intuition for how one uses
properties of ϕ to decide if Cϕ is compact.

1.3. The compactness problem. Recall that a Hilbert space operator is compact if
it maps the closed unit ball of the Hilbert space into a compact set. Thus on infinite
dimensional Hilbert space, where balls are not compact, such operators have to do a lot of
compressing. The problem for composition operators is to relate this to the way in which
the inducing maps compress the unit disc into itself.

A couple of elementary cases (discussed in more detail below, and in §2) set the stage:

(a) If the image of ϕ has compact closure in U (i.e., ‖ϕ‖∞ < 1), then Cϕ is compact.
(b) At the other extreme, if ϕ has radial limits of modulus 1 on a set of positive measure

on ∂U (e.g., if ϕ is the identity map on U), then Cϕ is not compact.

Two intermediate cases lend substance to the compactness problem:

(c) If ϕ(z) = (1 + z)/2, so the image of the unit disc is a disc in U that is tangent to
the unit circle at the point 1, then Cϕ is not compact.

(d) On the other hand, if ϕ maps the unit disc into a polygon inscribed in the unit
circle, then Cϕ is compact.

1.4. First taste of the main result. The results of §1.1 and §1.2 tell us that if some
power of a composition operator is compact, then the Königs function of the inducing map
must be small. Here is a simple result that shows how one can go in the other direction.
It is the converse for univalent maps of the Proposition of §1.1.

Proposition. Suppose the univalent map ϕ has a fixed point in U , and its Königs function
σ is bounded on U . Then ‖ϕn‖∞ < 1 for some positive integer n.

Proof. We may suppose without loss of generality that ϕ(0) = 0. Since σ is univalent, we
can call on the continuity of σ−1, and the fact that σ(0) = 0, to provide a positive number
δ such that |σ(z)| < δ implies |z| < 1/2. Since σ is bounded on U , there exists a positive
integer n such that λnσ(U) ⊂ δU (recall that we always have |λ| < 1). Schröder’s equation
(for ϕn) now yields:

σ(ϕn(U)) = λnσ(U) ⊂ δU,

hence our choice of δ insures that ϕn(U) ⊂ U/2. ¤

1.5. Compactness and angular derivatives. The complete characterization of com-
pact composition operators on H2 involves issues of value distribution theory that needn’t
concern us here [Sh]. For univalent inducing maps the situation simplifies considerably
([M-S, Theorem 3.10] and §2 below):

For ϕ univalent; Cϕ is compact on H2 if and only if ϕ has an angular derivative
at no point of ∂U .



COMPACTNESS OF COMPOSITION OPERATORS 5

In this paper, when we say that ϕ has an angular derivative at a point ω ∈ ∂U , we mean
that as z → ω non-tangentially, two things happen: (i) ϕ has non-tangential limit η of
modulus one, and (ii) the difference quotient

η − ϕ(z)

ω − z

has a (finite) limit. It is not difficult to see that the second condition is equivalent to the
existence of the limit of the derivative ϕ′(z) as z → ω non-tangentially [Car, pp. 298–304].
This latter condition is often taken by itself as the definition of angular derivative (cf.
[Pomm1, §10.2]). Thus our definition is somewhat restrictive in requiring the existence of
the angular derivative to also force the image of the unit disc out to the boundary. For
example it mandates that if ‖ϕ‖∞ < 1, then ϕ has an angular derivative at no point of
∂U , even if ϕ is holomorphic across the entire unit circle. The point here is that, in the
study of composition operators, the only interesting phenomena are those that occur as
the image approaches the boundary.

In addition, our definition insures that the angular derivative is never zero, so the
same proof that shows “analyticity implies conformality” in the interior also applies at
the boundary, and shows that the existence of the angular derivative implies a form of
non-tangential boundary conformality (see §2 for the precise assertions).

To appreciate the utility of this angular derivative criterion for compactness, the reader
might find it instructive to use it verify that the maps ϕ(z) = (1±z)/2 induce non-compact
composition operators, as does any conformal map of the unit disc onto a subdomain whose
boundary contains an arc of the unit circle, while the conformal map of the unit disc onto
an inscribed polygon induces a compact operator.

The angular derivative criterion allows an entirely classical rendering of the folk-theorem
of §1.2:

If for some iterate of a univalent self-map of the disc the angular derivative exists
at no boundary point, then the original map has an interior fixed point, and its
Königs function belongs to every Hp space (p < ∞).

Here is an example that illustrates how this can happen, even if ‖ϕ‖∞ = 1. Let

σ(z) = log
1 + z

1− z
,

so σ maps the unit disc onto the strip {|=z| < π/2}. For 0 < α < 1 let ϕα = σ−1 ◦Mα ◦σ,
so ϕα maps U onto the “lens” that is symmetric about the real axis, and whose boundary
makes angle απ/2 radians with that axis at the points ±1 (Figure 2). We call ϕα a “lens
map.”
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Since non-tangential conformality fails for ϕα at the fixed points ±1, it does not have
an angular derivative at these points (they are fixed points for the map). Since these are
the only places the map could hope to have an angular derivative, it follows that it induces
a compact composition operator on H2. Note that σ is in Hp for every p < ∞ (in fact, σ
is the archetypal BMOA function; see §5 below).

σ σ

ϕ

αz

G

α
-1U

Figure 2. The lens map ϕα.

1.6. The converse fails. Here is a simple example that shows that, if we wish to prove
a converse to the folk-theorem, then some extra hypotheses will be needed.

Let G denote the union of the unit disc and the horizontal strip {0 < =z < 2}. The
Riemann Mapping Theorem produces a univalent map σ that takes U onto G, with σ(0) =
0 and σ′(0) > 0. We define a univalent self-map ϕ on U by the equation

ϕ(z) = σ−1(
1

2
σ(z)).

Then σ is the Königs function of ϕ with λ = 1/2, and the n-th iterate of ϕ is obtained by
replacing the multiplier 1/2 by (1/2)n in the definition of ϕ. As Figure 3 shows, each of
these iterates maps some interval of the unit circle onto another such interval, so by (b) of
§1.3 no power of Cϕ is compact on H2.

z → z/2G

0

Figure 3. All iterates of ϕ induce noncompact operators.
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On the other hand, G = σ(U) is contained in a strip, so a standard subordination argu-
ment shows that σ belongs to Hp for every p < ∞ (and even to BMOA). To summarize:

For a univalent function ϕ with fixed point in U , the Königs function may belong
to every Hp (p < ∞), even though no power of Cϕ is compact.

1.7. Main results. In the example above, each iterate of ϕ has an angular derivative
on a complete arc of the unit circle. However it does not have an angular derivative at
any boundary fixed point. As the result below (which will eventually be Proposition 3.3)
shows, therein lies the key.

Suppose ϕ is univalent, with a fixed point in U . If ϕ fixes a point of ∂U (in the
sense of radial limits) at which it has an angular derivative, then σ(U) contains a
“twisted sector.”

Definition. A domain G contains a twisted sector if there exists an unbounded curve γ ⊂ G
and a positive constant ε such that

δG(w) ≥ ε|w| w ∈ γ.

Here δG(w) denotes the distance from w ∈ G to ∂G.

A standard subordination argument implies that whenever a simply connected domain
contains an angular sector, the Riemann mapping function taking the unit disc onto that
domain must fail to belong to some Hp space. We will prove that the same is true for
twisted sectors, and this will provide the desired Hp estimates for the Königs function.
This “twisted” subordination result, along with Proposition 3.3 above yields our main
results. For their statements, we remind the reader that ϕ is always a univalent self-map
of U that fixes the origin, λ = ϕ′(0), σ is the Königs map of ϕ (the univalent mapping
that shows up diagram 1.1, and G = σ(U), the Königs domain of ϕ.

First Main Theorem. Suppose ϕ is a univalent self-map of U with a fixed point in U ,
and that for some positive integer n0 there are at most finitely many points of ∂U at which
ϕn0 has an angular derivative. Then the following are equivalent:

(a) Some power of Cϕ is compact on H2;
(b) σ lies in Hp for every p < ∞;
(c) G does not contain a twisted sector.

It is useful to replace the initial hypothesis on ϕ by a geometric condition on the image
of ϕ. For example, it is enough to demand that the closure of ϕ(U) intersect the boundary
of U at only finitely many points. More generally, the boundary conformality that follows
from the definition of angular derivative insures that if ϕ has an angular derivative at a
boundary point ω then ϕ(ω) is angularly accessible from ϕ(U), in the following sense:

Definition. A point ζ ∈ ∂U is angularly accessible from V ⊂ U provided that given any
angle Γα(ζ) based at ζ, some truncation Γα(ζ)∩{z ∈ U | |z| > r} is contained in V for some
r < 1. Here Γα(ζ) denotes the convex hull of the point ζ and the disk {z ∈ U | |z| < sin α}.
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In Figure 4, just one point is angularly accessible from ϕ(U), even though the closure
of that image contacts ∂U on an entire arc.

ϕ(U) . . . .

. . . .

Figure 4. Only one point is angularly accessible from ϕ(U).

Corollary 1. Suppose that, for some positive integer n0, at most finitely many points of
∂U are angularly accessible from ϕn0(U). Then the following are equivalent:

(a) Some power of Cϕ is compact on H2;
(b) σ lies in Hp for every p < ∞;
(c) G does not contain a twisted sector.

In keeping with our view that univalent self-maps of the disc that fix an interior point
are modeled, via Königs’s theorem, by multiplication by a constant, it would be nice to
be able to decide if Cϕ is compact by simply looking at a picture of G = σ(U). In this
regard, if we rule out the type of behavior exhibited in §1.6, then it is enough to assume
that G has at most finitely many prime ends at ∞ (i.e., at most finitely many hyperbolic
geodesics from the origin to ∞).

Corollary 2. Suppose that λ · ∂G ⊂ G and that G has only finitely many prime ends at
∞. Then the following are equivalent:

(a) Some power of Cϕ is compact on H2;
(b) σ lies in Hp for every p < ∞;
(c) G does not contain a twisted sector.

The assumption in the First Main Theorem that there are at most finitely many points
where ϕn has as angular derivative is necessary. The same is true for the corresponding
finiteness assumptions in Corollary 1 and Corollary 2. An example proving this will be
provided later. However, our methods do provide the same kind of result when ϕ(U) meets
the boundary infinitely often, provided G is “strictly starlike.”

Definition. A simply connected domain G is strictly starlike (with respect to the origin)
if tw ∈ G for every w ∈ G and every 0 < t < 1.

Now suppose as usual that ϕ is a univalent self-map of U with an interior fixed point, that
σ is the Königs function for ϕ, and that G = σ(U). Recall that bounded Königs functions
are no longer an issue; we have already shown that if G is bounded then Cϕ is compact.
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Second Main Theorem. Suppose G is unbounded and strictly starlike. Then there
exists a positive integer n such that λn > 0. Let n be the least such integer; then the
following are equivalent:

(a) Cn
ϕ is compact on H2;

(b) σ lies in Hp for every p < ∞;
(c) G does not contain a sector.

Note in particular that if λ > 0 then statement (a) becomes: Cϕ is compact.
The First Main Theorem and its corollaries will be proved in §3, and then the example

showing the finiteness assumptions are necessary will be given. §4 will be devoted to the
proof of the Second Main Theorem. The Second Main Theorem turns out to be the easier
one to prove; it only requires Lemma 3.2 and Proposition 3.3 of §3.

After this follows a section on the naturally related question of when the Koenigs func-
tion of ϕ belongs to BMOA or V MOA. In the final section we comment on the status of
the main results for some other function spaces such as the Bergman space (where it still
holds) and the Dirichlet space (where it does not).

In preparation, we collect in the next section those prerequisites necessary for under-
standing what is to follow, along with further bibliographic references. In order to make
this paper accessible to a wide audience we have tried to be reasonably complete, in some
cases sketching proofs of crucial results already in the literature, but not well known outside
the circle of true believers.
Acknowledgement. We wish to thank Professor Paul Bourdon of Washington and Lee
University for pointing out an error in an earlier draft of this paper.

2. Background material

2.1. The Hardy spaces. For 0 < p < ∞ the Hardy space Hp is the collection of
holomorphic functions f on U for which

‖f‖p
p

def
= sup

0<r<1

{
1

2π

∫ 2π

0

|f(reiθ)|pdθ

}
< ∞.

If p ≥ 1 the functional ‖·‖p is a norm that makes Hp into a Banach space [Dur, §3.2, Cor.1].
A straightforward calculation employing the orthogonality of the monomials {zn} on the
unit circle shows that H2 coincides with the space of square-summable power series. More
precisely, if f(z) =

∑
anzn is holomorphic on U , then f ∈ H2 if and only if

∑
|an|2 < ∞,

in which case ‖f‖2 =
(∑

|an|2
)1/2

.
For 0 < p < ∞, each f ∈ Hp obeys the growth restriction

|f (z)| ≤ Cp
‖f‖p

(1− |z|)1/p
(z ∈ U),

where Cp is a constant independent of f and z [Dur, §5.5, Theorem 5.9]. For p = 2 this
condition follows readily from the power series characterization of H2 and the Cauchy-
Schwarz inequality.



10 BY JOEL H. SHAPIRO, WAYNE SMITH AND DAVID A. STEGENGA

2.2. Schröder’s Equation. Suppose ϕ is a holomorphic self-map of U that fixes the
origin, with 0 6= |ϕ′(0)| < 1 (in particular this holds if ϕ is univalent but not an automor-
phism). We are interested in solutions of Schröder’s equation

(2.1) f ◦ ϕ = λf,

where f is holomorphic on U and λ is a complex number.

Königs’s Theorem. The sequence of functions

σk(z)
def
=

ϕk(z)

ϕ′(0)k

converges uniformly on compact subsets of U to a non-constant function σ that solves (2.1)
with λ = ϕ′(0). More generally if f and λ solve (2.1), then there is a positive integer n
such that λ = ϕ′(0)n and f is a constant multiple of σn.

Proof. (cf. [Ko] ) The convergence of the sequence {σk} follows from arguments involving
the Schwarz Lemma. To see how this goes, let F (z) = ϕ(z)/ϕ′(0)z, so that

σk(z) = z

k−1∏

j=0

F (ϕj(z)),

where ϕ0(z) ≡ z. To prove the desired convergence of {σk} we need only prove that the
series

(2.2)

∞∑

j=0

|1− F (ϕj(z))|

converges uniformly on compact subsets of U . Since F is a bounded holomorphic function
on U with F (0) = 1, the Schwarz Lemma shows that

|1− F (z)| ≤ A|z| (z ∈ U),

where A = 1 + |ϕ′(0)|−1.
Now suppose 0 < r < 1 and let K = {z ∈ U : |z| ≤ r}. Another application of the

Schwarz Lemma, this time to ϕ itself, shows that ϕ(K) ⊂ K, and moreover there exists a
constant m < 1 such that for each z ∈ K we have |ϕ(z)| ≤ m|z|. Thus we can iterate the
last inequality, obtaining for each positive integer j,

|ϕj(z)| ≤ mj |z| (z ∈ K).

From the last two displayed inequalities,

|1− F ((ϕj(z))| ≤ A|ϕj(z)| ≤ Amj |z|
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for each z ∈ K. Thus the series (2.2), and therefore the sequence {σk}, converges uniformly
on K, as desired.

Since σn ◦ ϕ = λσn+1, the limit function σ obeys Schröder’s equation (2.1) with λ =
ϕ′(0). Note that the fact that ϕ′(0) 6= 1 forces σ to be non-constant.

As for the uniqueness, suppose f and λ are any solutions of (2.1), with f holomorphic
and non-constant on U . Then λ 6= 1 (else f would be constant), so upon evaluating both
sides of (2.1) at the origin, we see that f (0) = 0. Thus there is a positive integer n and a
holomorphic function g on U such that g(0) 6= 0 and f(z) = zng(z) on U . This equation
along with (2.1) yields for each z ∈ U :

λzng(z) = λf(z) = f (ϕ(z)) = ϕ(z)ng(ϕ(z)),

whereupon

(2.3) λg(z) =

(
ϕ(z)

z

)n

g(ϕ(z)) (z ∈ U, z 6= 0).

Upon letting z → 0 in this equation we see that λg(0) = ϕ′(0)ng(0), so because g(0) 6= 0
we conclude that λ = ϕ′(0)n.

Upon substituting this into (2.3) and recalling that f (z) = zng(z) we obtain

f (z) =

(
ϕ(z)

ϕ′(0)

)n

g(ϕ(z)).

Now substitute ϕj(z) for z in the last equation and use (2.1) one last time to obtain for
each positive integer j:

λjf (z) = f(ϕj(z)) =

(
ϕj+1(z)

ϕ′(0)

)n

g(ϕj+1(z)).

Thus for each j,

f (z) =

(
ϕj+1(z)

ϕ′(0)j+1

)n

g(ϕj+1(z)) (z ∈ U), .

Now let j → ∞ and recall that ϕ(0) = 0. An argument involving the Schwarz Lemma
shows that because of this, ϕn(z) → 0, hence f (z) = g(0)σ(z)n, as desired. ¤

Note that if ϕ is univalent, then so is each normalized iterate σn, and therefore by
Hurwitz’s Theorem, so is σ.

2.3. The Julia-Carathéodory Theorem. Suppose as usual that ϕ is a holomorphic
self-map of U and that ω ∈ ∂U . The Julia-Carathéodory Theorem asserts that the follow-
ing three statements are equivalent:

(a) lim infz→ω
1− |ϕ(z)|

1− |z|
= δ < ∞.

(b) ∠ limz→ω
η − ϕ(z)

ω − z
exists for some η ∈ ∂U .

(c) ∠ limz→ω ϕ′(z) exists, and ∠ limz→ω ϕ(z) = η ∈ ∂U .
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Here ∠ limz→ω denotes “non-tangential limit at ω.” In addition, the Julia-Carathéodory
Theorem establishes that δ > 0 in part (a), that the points η in (b) and (c) are the
same, and that both the derivative in (c) and the difference quotient in (b) have the same
non-tangential limit, namely ωη̄δ (see [Car, §295–§303]).

Statement (b) asserts, of course, the existence of the angular derivative previously de-
scribed in §1.5. Note that the fact that the angular derivative does not vanish and has the
particular form noted above shows that if it exists at ω then ϕ maps the radius to ω to a
curve in U that approaches η tangent to the radius at η. More generally, any curve in U
that ends at ω and makes an angle 0 ≤ α < π/2 with the radius to ω is taken into a curve
that makes the same angle with the radius to η. This is the “boundary conformality”
mentioned in §1.5.

2.4. The compactness problem – univalent case.
Here is the intuition behind the “univalent compactness theorem” of §1.5. A straight-

forward calculation with power series shows that for f (z) =
∑

anzn holomorphic on U ,

(2.4)
∑

|an|2 ≈ |f (0)|2 +

∫

U

|f ′(z)|2(1− |z|2) dA(z)

where dA represents Lebesgue area measure on U , and “≈” means that the left hand
side is bounded above and below by constant multiples of the right hand side, where the
constants are independent of f . Thus f is in H2 if and only if the integral on the right side
of (2.4) converges, and if we ignore the inessential term f (0), the norm of f is essentially
comparable to the square root of that integral. In particular if f ∈ H2 then the change of
variable formula shows that for ϕ a univalent self-map of U ,

‖f ◦ ϕ‖22 ≤ const.

(
|f(ϕ(0))|2 +

∫

ϕ(U)

|f ′(w)|2Ωϕ(w)(1− |w|2) dA(w)

)
,

where

Ωϕ(w)
def
=

1− |z|2

1− |ϕ(z)|2
(w = ϕ(z)).

Suppose for simplicity (and without loss of generality) that ϕ(0) = 0. Then the Schwarz
Lemma insures that Ωϕ(w) ≤ 1 for every ω ∈ ϕ(U), and this establishes the boundedness,
at least for univalent ϕ, of the operator Cϕ. It is often the case in operator theory that if
a “big-oh” condition implies boundedness for a class of operators, then the corresponding
“little-oh” condition will imply compactness. This is exactly what happens here: it turns
out that Cϕ is compact if and only if Ωϕ(w) → 0 as w → ∂ϕ(U), i.e., if and only if

lim
|z|→1−

1− |z|2

1− |ϕ(z)|2
= 0,

and by the Julia-Carathéodory Theorem this is the same as asserting that ϕ has an angular
derivative at no point of ∂U . (For more general compactness results, see [M-S], [Sh].)
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2.5. The Folk-Theorem. We discuss in more detail the fact that:

If Cϕ is compact on H2 then ϕ has a fixed point in U and Königs’s function for ϕ
lies in Hp for every finite p.

The existence of the fixed point comes from the Denjoy-Wolff Theorem which asserts that
if ϕ has no fixed point in U then there is a point ω ∈ ∂U such that ϕn → ω uniformly
on compact subsets of U . Furthermore this “Denjoy-Wolff point” ω has the remarkable
property that the angular derivative of ϕ exists there! Thus if ϕ has no fixed point in U ,
then Cϕ cannot be compact.

Now suppose Cϕ is a compact operator. Because conformal automorphisms of U induce
isomorphic composition operators on H2, we may suppose without loss of generality that
the interior fixed point of ϕ is at the origin: ϕ(0) = 0. Let λ = ϕ′(0), and suppose
for simplicity that ϕ is univalent, so λ 6= 0. Then the matrix of Cϕ with respect to
the orthonormal monomial basis {zn}∞0 is lower triangular, with the sequence {λn} on
the diagonal. Thus the adjoint operator C∗ϕ is upper triangular with {λ̄n} as its diagonal,
hence each of these diagonal entries is an eigenvalue of C∗ϕ (the upper triangularity is crucial
here). Thus the numbers λn belong to the spectrum of the original compact operator Cϕ,
and since they are non-zero, the Riesz theory of compact operators guarantees that each is
an eigenvalue of Cϕ. In other words, for each positive integer n there is a non-zero vector
f ∈ H2 such that

f ◦ ϕ = λnf.

But Königs’s Theorem guarantees that f is a constant multiple of σn, where σ is the
Königs function produced in §2.2. Thus if Cϕ is compact, then every power of σ belongs
to H2, so σ itself lies in Hp for every finite p.

2.6. The Hyperbolic metric. Let ρU denote the hyperbolic metric on U , defined by
(see [A, p. 2])

ρU (z1, z2) = inf





∫

γ

2|dz|
1− |z|2

: γ is an arc in U from z1 to z2





= log
|1− z1z2|+ |z1 − z2|
|1− z1z2| − |z1 − z2|

.

This distance is invariant under conformal self-mappings of the disk, and therefore transfers
to a natural conformally invariant metric on any simply connected proper subset G ⊂ C.
If σ : U → G is any conformal map, this hyperbolic distance on G is given by ρG(w1, w2) =
ρU (z1, z2), where wi = σ(zi) for i = 1, 2. The function

hG(w) =
2

|σ′(z)|(1− |z|2)
, where w = σ(z),

satisfies

hG(w)|dw| =
2|dz|

1− |z|2 , w = σ(z).
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Thus, ρG can be computed by integrating hG(w) over arcs in G. However, hG(w) is not
explicitly computable in terms of G alone. A useful substitute is the quasi-hyperbolic
metric on G, introduced by Gehring and Palka [GP]. For a domain G $ Rn and x ∈ G, let
δG(x) denote the Euclidean distance from x to the boundary of G. The quasi-hyperbolic
distance from x1 to x2 in G is defined to be

kG(x1, x2) = inf





∫

γ

ds

δG(x)
: γ is an arc in G from x1 to x2



 .

Here ds denotes integration with respect to arclength.

The quasi-hyperbolic metric is closely related to the hyperbolic metric. Indeed, if G is
a simply connected domain in the complex plane, then

1

2
≤ hG(w)δG(w) ≤ 2

[Pomm1, p. 22]. It follows that

1

2
ρG ≤ kG ≤ 2ρG .

Due to the geometric nature of its definition, kG is thus very useful in obtaining estimates
for the hyperbolic metric.

3. Proof of First Main Theorem and Corollaries.

The following variation on the theme of the First Main Theorem is the crucial step in
its proof. For notational convenience, if ω ∈ ∂U , we write

ϕ(ω) = lim
r→1−

ϕ(rω)

whenever the radial limit on the right exists. If ϕ(ω) = ω, we say ω is a boundary fixed
point of ϕ.

3.1. Theorem. Suppose ϕ is univalent, not an automorphism of U , and has a fixed point
in U . Suppose further that ϕ has a finite angular derivative at some boundary fixed point
ω. Then for some p < ∞ the Königs function of ϕ does not belong to Hp.

The proof requires some preliminaries, the first of which is a Euclidean lower bound on
the quasi-hyperbolic metric. Recall that if G is a domain, and z ∈ G, then δG(z) denotes
the distance from z to ∂G. This simple, but useful estimate occurs in the work of Gehring
and Palka [Ge-Pal, Lemma 2.1]. In order to keep our exposition complete, we provide a
proof.
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3.2. Lemma. If a and b are points of a domain G, then

kG(a, b) ≥ log

(
1 +

|a− b|
min(δG(a), δG(b))

)
.

Proof. Let Γ be any rectifiable curve in G from a to b,where a is the endpoint closest to
the boundary of G. For ζ ∈ Γ let s denote the arc length on Γ from a to ζ and |Γ| the arc
length of Γ. The triangle inequality shows that

δG(ζ) ≤ δG(a) + |a− ζ | ≤ δG(a) + s,

so ∫

Γ

|dζ|
δG(ζ)

≥
∫ |Γ|

0

ds

δG(a) + s

= log

(
1 +

|Γ|
δG(a)

)

≥ log

(
1 +

|a− b|
δG(a)

)
.

The result follows upon taking the infimum of the left hand side over all such curves Γ.
¤

This lemma is the key to the following geometric version of Theorem 3.1.

3.3. Proposition. Under the hypotheses of Theorem 3.1, G = σ(U) contains a twisted
sector about the image of the radius to the boundary fixed point of ϕ. That is, limr→1− σ(rω) =
∞, and there exists a positive constant ε such that

δG(σ(rω)) ≥ ε|σ(rω)|

for every 0 ≤ r < 1.

Remark. To better understand this result, suppose ω = 1, ϕ(0) = 0, and ϕ is real on the
real axis. Then ϕ′(0) is real, so by Schröder’s equation σ is real on the real axis. In this
case Proposition 3.3 asserts that σ(U) contains an angular sector symmetric about the real
axis (with vertex at the origin). Write the angular opening of the sector as (π/p) for some
1 < p < ∞. Consider the mapping

F (z) =

(
1 + z

1− z

)1/p

that takes U conformally onto the sector. Then ψ = σ−1 ◦ F is a holomorphic self-map of
U , and F = σ ◦ ψ . Since the composition operator Cψ maps each Hardy space into itself,
F is in every Hardy space to which σ belongs. Since F is not in Hp, neither is σ.

In order to use Proposition 3.3 to finish the proof of Theorem 3.1, we will have to find
a “twisted” substitute for the above argument.
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Proof of Proposition 3.3. We may suppose without loss of generality that the interior
fixed point of ϕ is at the origin, and that the boundary fixed point at which the angular
derivative exists is the point 1. Thus

lim
r→1−

1− ϕ(r)

1− r
= d ∈ [1,∞).

(The positivity of d follows from the Julia-Carathéodory Theorem, while d ≥ 1 is an
immediate consequence of the Schwarz Lemma. In fact, the proof of the Denjoy-Wolff
Theorem that shows d > 1, but we do not require this fact.) Thus

|ϕ(r)− r| ≤ |1− ϕ(r)|+ |1− r| ≤ 3d(1− r),

for r sufficiently close to 1, say r0 < r < 1. We also have, by the Schwarz Lemma, that
|ϕ(r)| ≤ r, and so δU (z) ≥ 1 − r for each z on the line segment from r to ϕ(r). Hence,
estimating the quasi-hyperbolic distance by integrating along this line segment, we get

ρU (r, ϕ(r)) ≤ 2kU (r, ϕ(r)) ≤ 2 · 3d(1− r)

1− r
= 6d,

provided that r0 < r < 1.
By Schröder’s equation we can transfer this estimate to G = σ(U), with σ(r) playing

the role of r, and λσ(r) cast as ϕ(r):

(3.1) lim sup
r→1−

ρG(σ(r), λσ(r)) ≤ 6d .

Let us show that σ(r) →∞. Suppose otherwise. Then there is a sequence 0 < rn ↗ 1
and a (finite) point w0 such that σ(rn) → w0. Necessarily w0 ∈ G. By the univalence of
σ, the point w0 cannot belong to G, so it must lie on the boundary. But according to (3.1)
above, the hyperbolic distance from σ(rn) to λσ(rn) has to stay bounded, and this forces
λσ(rn) to converge to w0 also. But λσ(rn) converges to λw0, so λw0 = w0, hence λ = 1
(w0 6= 0, since 0 = σ(0) is already in the interior of G). But this forces ϕ to be the identity
map, contradicting our hypothesis that it is not an automorphism. Thus σ(r) →∞.

Now (3.1) and Lemma 3.2 show that

lim sup
r→1−

log
|σ(r) − λσ(r)|

δG(σ(r))
≤ 12d,

and hence

lim sup
r→1−

|1− λ||σ(r)|
δG(σ(r))

≤ exp(12d).

Since λ = ϕ′(0) 6= 1 we can rewrite this last inequality as

lim sup
r→1−

|σ(r)|
δG(σ(r))

≤ exp(12d)

|1− λ|
,

and this, in turn, yields the desired conclusion. ¤
We finish the proof of Theorem 3.1 by translating the geometric conclusion of Proposi-

tion 3.3 into a growth estimate on σ. This requires an elementary covering lemma.
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3.4. Covering Lemma. Let {∆j} be a countable collection of open disks in C, with zj

the center of ∆j . Suppose that zi /∈ ∆j if i 6= j. Then
∑

χ∆j (z) ≤ 5, for all z ∈ C.

Proof. It suffices to establish the result for z = 0. Suppose that 0 ∈ ∆i ∩∆j , where i 6= j.
Then |zj | < |zi − zj |, since 0 ∈ ∆j but zi /∈ ∆j . Similarly, |zi| < |zi − zj |. Thus, by
elementary trigonometry, the angle at 0 determined by zi and zj is (strictly) greater than
π/3. Now suppose that 0 is in N of the disks {∆j}. The centers of these disks determine
N angles at 0, each greater than π/3 and with sum 2π. Thus N ≤ 5, and the result follows.
¤

Completion of Proof of Theorem 3.1. Let γ denote the image under σ of the ray from 0 to
ω. We have in hand Proposition 3.3, so γ is an unbounded curve in G that begins at the
origin, and serves as the “axis” of a twisted sector that lies in G, i.e.,

(3.3) δG(w) ≥ ε|w| (w ∈ γ).

Our intuition is that by the univalence of σ the sector cannot overlap itself, so γ cannot
wrap around too tightly, and this will force the Euclidean distance from points on γ to the
origin to increase rapidly as their hyperbolic distance from the origin increases. Our goal
is to estimate this degree of rapidity, and then turn the result into a growth condition on
σ.

Let G0 = G ∩ U , and for each positive integer n, set

Gn = G ∩ {2n−1 < |w| < 2n} and γn = γ ∩Gn.

We focus for a while on a particular segment γn. Observe that Gn, being a bounded open
set, can be covered by a countable collection of discs

∆j = D(ζj ,
δG(ζj)

2
),

where ζj /∈ ∆i unless i = j.

To see that this is possible, first observe that we may assume that σ′(0) = 1. With this
normalization of σ and the Schwarz Lemma it follows that δG(0) ≤ 1. Choose ζ1 ∈ Gn

so that δG(ζ1) is maximal. Having chosen ζ1, . . . ζj , choose ζj+1 ∈ Gn\(∆1 ∪ · · · ∪∆j) so
that δG(ζj+1) is maximal. Clearly ζj /∈ ∆i whenever i 6= j. We maintain that the disks
{∆j} cover Gn. Indeed, the sequence δj = δG(ζj) is monotone decreasing, and since Gn is
bounded, we see by the Covering Lemma that its limit is zero. By the construction, every
point of Gn\(∆1 ∪ · · · ∪∆j) lies within δj+1 of ∂G. Thus every point of G eventually ends
up in one of the discs ∆j .

We are not interested in all the discs ∆j , only the ones that intersect γn. Let An denote
the set of indices j for which this happens. The key to our proof is an estimate of #An,
the number of indices in An. This proceeds in several steps.

Observe that the condition δG(0) ≤ 1 implies that δj ≤ 2n + 1 and hence that each
disk ∆j lies in 2n+2U . We use this fact and the Covering Lemma again to obtain these
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estimates:

π
∑

j∈An

(
1

2
δG(ζj)

)2

=
∑

j∈An

Area (∆j)

≤ 5 ·Area


 ⋃

j∈An

∆j




≤ 5 ·Area (2n+2U)

= 5π · 22n+4.

Next we need to estimate δG(ζj) for each j ∈ An. For such an index j we choose a point
ζ ∈ γn ∩∆j , and η ∈ ∂G such that δG(ζj) = |ζj − η|. Then

δG(ζj) ≥ |ζ − η| − |ζj − ζ| ≥ δG(ζ)−
1

2
δG(ζj)

hence

δG(ζj) ≥
2

3
δG(ζ) ≥

2

3
ε|ζ |

where the last inequality comes from the twisted sector condition (3). Since ζ belongs to
γn its modulus is > 2n−1 so

δG(ζj) ≥
2n

3
ε

for each j ∈ An. Along with the inequality we obtained by comparing areas, this shows
that (#An)(2n−1ε/3)2 ≤ 5 · 22n+4, and this in turn simplifies to

(3.4) #An ≤
2880

ε2
.

Finally, recall that each disc ∆j has radius equal to half the distance from its center to
the boundary of G. It follows easily that the quasi-hyperbolic distance between any pair
of points in ∆j is no more than 2, so the hyperbolic distance is no more than 4.

Let wn be any point on γ with |wn| = 2n. Then wn and wn−1 lie in a chain of pairwise
intersecting closed discs ∆̄j with j ∈ An, so by (3.4) above,

ρG(wn−1, wn) ≤ 4(#An) ≤ 11520

ε2
.

By the triangle inequality (writing w0 = 0),

ρG(0, wn) ≤
n∑

k=1

ρG(wk−1, wk)

≤ 11520

ε2
n

= α log |wn|,



COMPACTNESS OF COMPOSITION OPERATORS 19

where α = (11520 log 2)/ε2.
We finish the proof by noting that wn = σ(rnω), where rn → 1−. By the last estimate

and the conformal invariance of the hyperbolic metric,

log

(
1 + rn

1− rn

)
= ρU (0, rnω) = ρG(0, wn) ≤ α log |wn| = α log |σ(rnω)|.

Therefore

|σ(rnω)| ≥
(

1 + rn

1− rn

)1/α

>

(
1

1− rn

)1/α

for each n. Since rn → 1, the growth estimate of §2.1 shows that σ /∈ Hp for any p > α.
¤

Remarks. In view of the discussion following the statement of Proposition 3.3, one might
suppose that σ /∈ Hp for any p > C/ε, for some constant C, rather than p > C/ε2 as
demonstrated in the proof above. This would indeed have been the case had our definition
of a twisted sector (see §1.7) been based on the arclength of the portion of γ to w, rather
than on |w|. It is easy to see that if γ satisfies the definition in §1.7 and γ spirals out to
infinity, it is possible that the arclength of γ to w is comparable to |w|/ε. Thus p > C/ε2

is best possible.
We also note that the proof above could as well have been based on a decomposition

of G into Whitney cubes. The idea is that the minimum number of cubes in a chain of
Whitney cubes containing two points of G is comparable to the quasi-hyperbolic distance
between the points, provided that the distance is at least one (see [Sm-Ste, Lemma 9]).

Proof of the First Main Theorem, completed. We now prove the equivalence of (a), (b),
and (c) in the statement of the First Main Theorem. That (a) implies (b) is just the
statement of the Folk Theorem, while the the proof that (b) implies (c) is contained in the
demonstration that Theorem 3.1 follows from Proposition 3.3. Thus it remains to show
that (c) implies (a).

Recall that ϕ is univalent with a fixed point which we may assume is at the origin, and
the hypothesis is that there is a finite integer n0 such that there are at most finitely many
points on ∂U at which ϕn0 has an angular derivative. We wish to show that if G does not
contain a twisted sector, then the operator Cn

ϕ (which, we recall is just Cϕn) is compact
for some positive integer n. For this we assume that Cϕn is not compact for any n, and
derive the fact that G contains a twisted sector.

Now by the Compactness Theorem for composition operators, our assumption on ϕ is
this: For every positive integer n, the map ϕn has an angular derivative at some point
of ∂U . We are going to show that consequently some iterate of ϕ has a boundary fixed
point at which it has an angular derivative, whereupon an appeal to Proposition 3.3, will
complete the proof of the First Main Theorem.

To start things off, for each positive integer n let En denote the set of points on ∂U at
which ϕn has an angular derivative. Our hypotheses are that each of these sets is non-empty
and that En0 is finite. We will use various aspects of the Julia-Carathéodory theorem to
prove that the sets {En} have the following important properties:

(i) E1 ⊃ E2 ⊃ · · · .
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(ii) ϕ(En+1) ⊂ En for each n.
(iii) ϕ is 1-1 on each En.

Before proving these properties, let’s see how they yield the desired result. Property (i)
asserts that {En} is a decreasing sequence of non-empty sets, and, since En0 is finite, it
must stabilize:

EN = EN+1 = · · · .

for some positive integer N . Thus the set E = EN has these special properties: It is
non-empty, every iterate of ϕ has an angular derivative at each of its points, and (by (ii)
and (iii)) ϕ acts as a permutation on E. Suppose η is any point in E. Then there exist
positive integers n and k such that

ϕn(η) = ϕn+k(η) = ϕk(ϕn(η)).

Thus ω = ϕn(η) is a boundary fixed point of ϕk at which ϕk has a finite angular derivative;
just what we wanted to prove.

It remains only to prove properties (i) - (iii) of the sets {En}.
Proof of (i). Statement (i) says that if ϕn+1 has an angular derivative at a point

ω ∈ ∂U then so does ϕn. According to the Julia-Carathéodory theorem, our assumption

is equivalent to boundedness of the quotient
1−|ϕn+1(rω)|

1−r for 0 ≤ r < 1. But

1− |ϕn(rω)|
1− r

=
1− |ϕn(rω)|

1− |ϕn+1(rω)|
· 1− |ϕn+1(rω)|

1− r
≤ 1− |ϕn+1(rω)|

1− r
,

where the inequality follows from the Schwarz Lemma. Thus 1−|ϕn(rω)|
1−r is also bounded,

so by the Julia-Carathéodory theorem ϕn has an angular derivative at ω, as desired.
Proof of (ii). This is the statement that if ϕn+1 has an angular derivative at ω, then

ϕn has one at ϕ(ω). The existence of the radial limit ϕ(w) ∈ ∂U follows, of course, from
the fact that En ⊂ E1, that is, ϕ has an angular derivative wherever ϕn does.

Let η = ϕ(w). By the Julia-Carathéodory theorem, it suffices to show that

(3.5) lim inf
z→η

1− |ϕn(z)|
1− |z|

< ∞,

and by that same theorem, our hypothesis is equivalent to the boundedness for 0 ≤ r < 1
of the quotient

1− |ϕn+1(rω)|
1− r

=
1− |ϕn(ϕ(rω))|

1− |ϕ(rω)|
· 1− |ϕ(rω)|

1− r
.

Now the last fraction on the right is > 1 by the Schwarz Lemma, so resulting inequality

says that the quotient
1−|ϕn(z)|

1−|z| is bounded on the curve z = ϕ(rω), 0 ≤ r < 1. Since

ϕ(rω) → η, this curve ends at η, so (3.5) is proved.
Proof of (iii). It is enough to prove that ϕ is 1-1 on E1. Here we use the conformality

of ϕ at each point where the angular derivative exists. Fix ω ∈ E1 and let T be a triangle
with one vertex at ω and the other two placed in U so that T is symmetric about the radius
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that ends at ω. Let α be the angle made by this radius with the sides of T that terminate
at ω. Then ϕ(T ) is a curvilinear triangle in U with a vertex at ϕ(w), and the corresponding
sides make an angle α with the radius to ϕ(w). Now suppose ω′ is a different point of E1,
and T ′ another such triangle for ω′, that does not intersect T . By the comments above,
if ϕ(ω) = ϕ(w′), then the images of these two triangles must intersect, contradicting the
univalence of ϕ. Thus ϕ(ω) 6= ϕ(w′), hence ϕ is 1-1 on E1. ¤

Proof of Corollary 1. Recall that the assumption in Corollary 1 is that for some integer n0,
there are at most finitely many points on ∂U that are angularly accessible from ϕn0(U).
Since univalent functions are conformal at each point of ∂U at which they have an angular
derivative, it is clear that ϕn0 can have an angular derivative at no more than finitely
many points on ∂U . Thus Corollary 1 is an immediate consequence of the First Main
Theorem. ¤

For the proof of Corollary 2 we need a sufficient condition for the σ-image of a radius to
tend to ∞. We encountered a similar situation in the proof of Proposition 3.3, where the
angular derivative was involved. In the result below it is the geometry of ∂G that plays
the crucial role. As usual, ϕ is univalent and fixes the origin, σ is its Königs function, and
G = σ(U).

3.5. Lemma. Suppose λ·∂G ⊂ G. If ζ ∈ ∂U and limr→1− |ϕ(rζ)| = 1, then limr→1− σ(rζ) =
∞.

Proof. Suppose σ(rζ) 9 ∞. Then there is a sequence rn → 1− and a point w0 ∈ C such
that σ(rnζ) → w0. Necessarily w0 lies in the closure of G, but by the univalence of σ and
the fact that rn → 1, it cannot lie in G. Thus w0 ∈ ∂G. By Schröder’s equation,

σ(ϕ(rnζ)) = λσ(rnζ) → λw0,

and λw0 ∈ G by our hypothesis on G. Thus

ϕ(rnζ) → σ−1(λw0) ∈ U,

so |ϕ(rζ)| 9 1. ¤

Proof of Corollary 2. Recall that in Corollary 2 we are assuming λ · ∂G ⊂ G and G has
only finitely many prime ends at ∞. Once again, we only need to show that the hypotheses
of the First Main Theorem are satisfied. Consider a point ζ ∈ ∂U that corresponds to a
prime end of G not at infinity; that is, suppose

lim inf
r→1−

|σ(rζ)| < ∞.

By Lemma 3.5, ϕ can not have a radial limit of modulus 1 at ζ. In particular each point
in the set E ⊂ ∂U where ϕ has an angular derivative must correspond to a prime end of
G at infinity, and so E is a finite set. Thus the First Main Theorem can be applied, and
the proof is complete. ¤

We now present an example showing the necessity of the finiteness assumptions in The
First Main Theorem and its corollaries.
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Example. Let

G = {(x, y) : |y| < 1 and x > −1} \
∞⋃

k=1

{(x, y) : |y| = 2−k, x ≥ 2k},

and let σ be the conformal map σ : U → G with σ(0) = 0 and σ′(0) > 0. If we set λ = 1/2,
then λ ·G ⊂ G, and so Schröder’s equation holds, with ϕ(z) = σ−1(σ(z)/2).

Clearly G does not contain a twisted sector, since δG is bounded by 1. Also σ lies in
Hp for every p < ∞, since σ has bounded imaginary part. We now fix a positive integer n
and show that Cn

ϕ = Cϕn is not compact on H2. In what follows, it is convenient to think
of G as a “cubist jellyfish” whose body is the open square of edge length two centered at
the origin, and whose tentacles are the rectangular strips

Tk = {(x, y) : x ≥ 2k+3 and 2−k−1 < y < 2−k} (k = 0, 1, 2, . . . ),

and their reflections in the real axis.
Denote the upper and lower horizontal boundary curves of Tk by I+

k and I−k . These
curves are analytic arcs that are mapped by z/2 into ∂G. It follows from the Schwarz
reflection principle and some elementary conformal mapping that there are open arcs J+

k

and J−k on ∂U , with common boundary point ωk, satisfying σ(J±k ) = I±k . It follows from
Schröder’s equation that ϕ maps an open arc in ∂U centered at ωk onto an open arc in ∂U
containing ωk+1. By the reflection principle ϕ extends to be analytic in a neighborhood of
each ωk. Thus ϕ has an angular derivative at each ωk and, by the univalent compactness
theorem in §1.5, Cϕ is not compact.

Similar considerations show that Cn
ϕ is not compact for any n ≥ 1. Note that ϕ(U) is

a Jordan subregion of the unit disc minus a countable collection of “ingrown hairs” whose
“roots” lie on the unit circle, and converge to the point 1. See Figure 5 below.

There is no contradiction here with either the First Main Theorem or with Corollary 1
because ϕn has an angular derivative at each of the infinitely many interior points of each
arc Jk, and each interior point of ϕn(Jk) is angularly accessible from ϕn(U). Thus the
finiteness assumptions of these results are not satisfied, and indeed these assumptions are
necessary.

The above example does not apply to Corollary 2, since λ · ∂G is not contained in G.
However, G can be modified to produce an example showing the necessity of the finiteness
assumption here as well.

Refined example. We begin with the original example, but widen out the omitted horizontal
lines to rectangular channels

Ck = {(x, y) : x ≥ 2k and
1

2k
≤ y ≤ 3

2k+1
} (k = 1, 2, . . . ),

and their reflections in the real axis. This example has the same properties as the one
above, except that one obtains ϕ(U) by removing from the unit disc, not a sequence of
hairs, but instead a sequence of small notches with bases on the unit circle.
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The “modified jellyfish” has tentacles

Tk = {(x, y) : x ≥ 2k+3 and
3

2k+2
< y <

1

2k
} (k = 0, 1, 2, . . . ),

and their reflections in the real axis.

G/2

ϕ

M
1/2

σ σ

10

U

G

ϕ(  )U

0

Figure 5. The original jellyfish; heavy curves go to heavy ones. Two
radii and their images are shown dotted.

We describe a modification of the upper half of G, with the understanding that the
same process is simultaneously taking place on the lower half.

As in the previous example, each tentacle corresponds to a prime end of G and the
corresponding point ωk ∈ ∂U has the property that the σ-image of any curve that ends
at ωk is a curve in G that tends to infinity through Tk. Moreover, ϕ maps an open arc in
∂U centered at ωk onto an open arc of ∂U containing ωk+1 Again, the reflection principle
yields that ϕ has a finite angular derivative at each ωk. Let dk = |ϕ′(ωk)|.

We now modify G so that 1
2
· ∂G ⊂ G, yet the finiteness of these angular derivatives is

preserved. The key is that small changes in compact parts of ∂G induce only small changes
in a particular boundary point ωk and the corresponding angular derivative ϕ′(ωk) (we
leave it as an exercise for the reader to show this).

For each integer j ≥ 1, let Vj be the half open vertical strip Vj = {(x, y) : 2j ≤ x < 2j+1}
and let Uj be its interior. The j-th step in the modification takes place entirely in Vj . The
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first step of the modification of G = G0 is accomplished by a slight uniform narrowing of
the portion of C1 in V1 to obtain a domain G1 satisfying G0∩U1 ⊂ G1, { 1

2
·∂G1}∩V1 ⊂ G1,

|ϕ′(ω0)| < d0+ 1
2d0, and so that the new position of ω0 is within 1/2 of the original position.

(We continue to denote by ϕ the self map of U corresponding to G1.) This also changes
the position of ωk and dk for k > 1, but that is of no consequence. We also use the same
notation for the perturbed point and the altered angular derivative magnitude.

Proceeding by induction, we assume that j ≥ 1 stages of the modification have been
accomplished, producing a domain Gj satisfying:

(1) For each i ≥ 1, Gj ∩ Ui is a disjoint union of 2i + 1 rectangles with sides parallel
to the coordinate axes,

(2) Gj−1 ∩ Uj ⊂ Gj ,

(3) {1
2 · ∂Gj} ∩

⋃j
i=1 Vi ⊂ Gj ,

(4) the new position of ωi is within 2−j+i of its position at the last stage, 0 ≤ i ≤ j−1
(so that eventually the different positions of the ωi form a Cauchy sequence),

(5) the new magnitude |ϕ′(ωi)| is < (2− 2−j+i)di, 0 ≤ i ≤ j − 1.

For the j +1-st stage, we uniformly narrow the portions of C1, . . . Cj+1 that are in Vj+1

by a small amount so that (1) through (5) above are satisfied when j is replaced by j + 1.
Note that the assumption that (2) holds for j allows us to have (3) satisfied for j + 1,
provided that the narrowing taking place in the j + 1-st stage is sufficiently small. Also,
(4) and (5) will hold for j + 1 if the narrowing is small, by the continuity of the positions
of the ωi and the angular derivatives ϕ′(ωi) under this modification.

In the limit we obtain a domain G∞ that looks like the original one, but now with
tentacles that gently narrow to the original dimensions. Moreover, 1

2
· ∂G∞ ⊂ G∞, and

the ends of the tentacles correspond to points ωk on the unit circle, for which |ϕ′(ωk)| <
2dk < ∞ for each k. Then ϕ′2(ω0) = ϕ′(ϕ(ω0))ϕ

′(ω0) = ϕ′(ω1)ϕ
′(ω0), and by induction

ϕ′n(ω0) = ϕ′(ωn−1) · · ·ϕ′(ω0). Hence |ϕ′n(ω0)| < 2ndn−1 · · · d0 < ∞, and so, for each n,
Cn

ϕ fails to be compact by the univalent compactness theorem in §1.5.

The passage to the limit requires the fact that if {ϕj} is a sequence of holomorphic self-
maps of U that converges uniformly on compact subsets of U to a map ϕ, and if {ηj} is a
sequence of points on ∂U with ηj → η and |ϕ′(ηj)| < M for each n, then ϕ has an angular
derivative at η with |ϕ′(η)| < M . This follows from the Julia-Carathéodory Theorem (in
our application the sequence {ηj} represents the position of a particular ωk at the j-th
stage of modification). ¤

4. Proof of the Second Main Theorem

Recall that a plane domain G is strictly starlike if tw ∈ G for each w ∈ G and
0 < t < 1. This section treats univalent maps ϕ whose Königs functions take the unit
disc onto strictly starlike domains. We begin by observing that unless there is considerable
circular symmetry, the derivative of such a map must have “rational argument.”

4.1. Lemma. Suppose G is an unbounded strictly starlike domain and λG ⊂ G for some
complex number λ 6= 0. If G is not the whole plane, then λn > 0 for some positive integer
n.
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Proof. Choose a sequence {wn} in G with |wn| → ∞. By passing to a subsequence, if
necessary, we may assume that the sequence {wn/|wn|} converges to a complex number ω
of modulus one. Let

L = {rω : 0 ≤ r < ∞},

an entire ray. We claim that L ⊂ G. To see this, fix 0 < r < ∞. For all sufficiently large
n we have r/|wn| < 1, so the strict starlikeness of G insures that rwn/|wn| ∈ G. Thus
rω = lim rwn/|wn| ∈ G, as desired.

Since G is invariant under multiplication by λ, so is G, hence λnL ⊂ G for every positive
integer n. Thus if the argument of λ is an irrational multiple of π, then G contains a dense
set of rotates of L whereupon G is the entire complex plane. Since we are assuming this
does not happen, some power of λ must be positive. ¤

Now we return to our standard setup: ϕ is a univalent self-map of U with a fixed
point p ∈ U , λ = ϕ′(p), σ is the Königs function of ϕ, and G = σ(U). Recall that
Schröder’s equation forces σ(p) = 0, so 0 ∈ G. Before getting to the heart of the proof of
the Second Main Theorem, we record some standard facts about the boundary behavior
of σ.

4.2. Lemma. (a) σ has a radial limit (possibly ∞) at almost every point of ∂U . These
limiting values cannot be constant on any subset of ∂U of positive measure.

(b) If γ : [0,∞) → G is a curve that tends to ∞ as t →∞, then there is a point ω ∈ ∂U
such that

lim
t→∞

σ−1(γ(t)) = ω.

Proof. (a) This follows immediately from the fact that every univalent function on the
unit disc belongs to the Hardy space Hp, for all p ∈ (0, 1/2) ([Dur, Th. 3.16, page 50]).
In our strictly starlike situation, a more elementary argument suffices. For now G cannot
be dense in the plane, so if w0 is any point at the center of a disc that does not intersect
G, then (σ(w) − σ(w0))

−1 is a bounded analytic function, and therefore has the desired
properties, which it passes on to σ.

(b) Let Γ = σ−1 ◦γ, so Γ parameterizes a curve in U . It follows from the continuity of σ
that |Γ(t)| → 1 as t → 1−. Suppose Γ(t) does not tend to a single point on ∂U . Then the
intersection of its plane closure with ∂U is a connected subset of ∂U that contains at least
two points, and therefore contains one of the non-trivial open arcs between these points.
Call this arc I. By part (a), σ has a radial limit at almost every point of I. But the radius
to any point of I intersects Γ infinitely often, and σ tends to ∞ on Γ. Therefore σ has
radial limit ∞ a.e. on I , which contradicts the conclusion of part (a). Thus Γ tends to
exactly one point on ∂U , as desired. ¤.

We can now begin the proof of the Second Main Theorem. In view of Lemma 4.1 it is
enough to assume that 0 < λ < 1, in which case n = 1 in the statement of the Theorem.
As in the proof of the First Main Theorem it suffices to prove (c) =⇒ (a).

Suppose Cϕ is not compact on H2, so that ϕ has an angular derivative at some point
of ∂U . We may, without loss of generality, assume this point is 1. Our goal is to show
that g = σ(U) contains a sector. Now ϕ has a radial limit ϕ(1) ∈ ∂U . If we can show that
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ϕ(1) = 1, then an appeal to Proposition 3.3, along with some elementary geometry, will
finish the proof. Here are the details.

First, observe that Lemma 3.5 insures σ(r) → ∞ as r → 1. Let θ(r) be a continuous
determination of the argument of σ(r). As r ↗ 1 either limr→1− θ(r) exists, or it does
not. If it does not, the argument of the ray from the origin to σ(r) swings between distinct
upper and lower limits α and β as r tends to 1. By strict starlikeness, each of these rays
lies entirely in G, so G must contain the interior of the sector bounded by the rays of
arguments α and β. By the remarks following Proposition 3.3, σ /∈ Hp for some p < ∞.

Suppose, therefore, that the limit exists:

lim
r→1−

θ(r) = α.

The argument used to prove Lemma 4.1 shows that the entire ray

L = {teiα : t ≥ 0}

lies in G. Since 0 < λ < 1, and G is strictly starlike, we have L = λL ⊂ G. Let Γ = σ−1(L).
Then Γ is a curve in U which by Lemma 4.2 (b) ends at a point on the unit circle:

lim
t→∞

σ−1(teiα) = η ∈ ∂U.

Now σ(Γ) = L = λL = λσ(Γ) = σ(ϕ(Γ)), hence ϕ(Γ) = Γ. Thus ϕ(z) tends to η as z tends
to η along Γ, so by Lindelöf’s theorem the same is true as z tends to η radially. That is,
ϕ(η) = η.

So far we know that the angular derivative of ϕ exists at 1, and have just shown that ϕ
has a boundary fixed point at η = ϕ(1). To apply Proposition 3.3 we need only show that
η = 1. With this in mind, let C denote the image of the unit interval under σ. As we are
assuming that limr→1− θ(r) = α, it may happen that C and L intersect at infinitely many
points, which tend to ∞. Then back in the disc, Γ and the unit interval must intersect at
the preimage points, an infinite sequence that tends to the boundary. Thus the interval
and Γ share the same endpoint on ∂U , as desired.

In the remaining case, Γ has some last point r0 of intersection with the unit interval.
Let Γ0 be the part of Γ from r0 to η. Let L0 be the part of L from σ(r0) to ∞, and let
C0 = σ([r0, 1)). Let V be the Jordan subregion of U bounded by the interval [r0, 1), the
curve Γ0, and, in case η 6= 1 (which we are trying to show does not happen), the arc on
∂U from η to 1. Let W be the Jordan sub-region of the Riemann Sphere that is bounded
by the L0 and C0 and contains σ(V ).

We claim that W = σ(V ). Suppose otherwise. Then W contains some point b not in
G (but necessarily on ∂G). Because G is strictly starlike, it must also omit all of the line
Lb = {ρb : ρ ≥ 1}. But limr→1− θ(r) = α, so C0 has to intersect Lb (see Figure 6 below),
and this contradicts the fact that C0 ⊂ G. The claim is established.

Thus σ takes the Jordan region V univalently onto the Jordan region W , and it follows
from Carathéodory’s theorem [Rud, Sections 14.19 and 14.20, pp. 310–311] that σ extends
to a homeomorphism of boundaries (where ∞ is regarded as a boundary point of W ). But
σ(η) = σ(1) = ∞, so we must have η = 1.
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So far we have established that ϕ has an angular derivative at the boundary fixed point
+1, so by Proposition 3.3, G contains a twisted sector about the σ-image of the unit
interval, i.e. there exists ε > 0 such that

δG(σ(r)) ≥ ε|σ(r)| 0 ≤ r < 1.

Now we are assuming that arg σ(r) → α, and that L = {w : arg w = α}. A straightforward
estimate shows that because of this,

δG(w) ≥
1

2
ε|w|

for all sufficiently large w ∈ L. Thus G actually contains an ordinary sector about L, as
we wished to show. ¤.

0

Γ
V

+1

η

Lα

C 0
0r

σ L b
W b

Figure 6. Regions V and W , and (nonexistent) line Lb

5. When is the Königs function in BMOA?

By BMOA we mean the collection of functions in H2 with boundary function of
bounded mean oscillation (see [Garn, Chapter VI] for background material). Our present
interest in BMOA stems from two important phenomena:

(1) H∞ ( BMOA (
⋂

p<∞ Hp. Moreover theorems that assert membership in Hp

for every finite p frequently have BMOA improvements.
(2) A univalent map of U belongs to BMOA if and only if its image does not get too

wide, that is, if and only if supz∈G δG(z) < ∞ ([Pomm2] or [Ste-St]).

As an illustration of (2) above, note that the example of section 1.6 has Königs function
in BMOA. In this vein, recall that our initial motivation came from the fact that if
a self-map of the disc induces a compact composition operator on H2, then that map’s
Königs function belongs to Hp for every finite p. However our Second Main Theorem shows
that the Königs function need not belong to BMOA. Indeed, suppose Γ is the domain
that lies between the curves y = ±

√
(x + 1) for x ≥ −1, let σ denote the Riemann map of

U onto G, with σ(0) = 0 and σ′(0) > 0, and define ϕ on U by ϕ(z) = σ−1(σ(z)/2). Clearly
σ /∈ BMOA, yet because G is strictly starlike and contains no sector, Cϕ is compact.

On the other hand, the Königs function of each of the lens maps of §1.5 does lie in
BMOA. In this section we use the lens maps to prove a comparison principle that helps
predict the “BMOA-behavior” of σ. A surprising byproduct of our work is the fact that
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membership of the Königs function in BMOA does not depend solely on the behavior of
ϕ near the boundary. We will produce two univalent self-maps of the disc whose images
coincide near the boundary, yet the Königs function of one will belong to BMOA, while
that of the other will not.

The key to our analysis is the Julia-Carathéodory ratio of ϕ, defined for z ∈ U by

(5.1) Jϕ(z) =
|φ′(z)|(1− |z|2)

1− |ϕ(z)|2
.

This is sometimes called the hyperbolic change of scale [Bear-C]; our terminology comes
from the Julia-Carathéodory theorem (§2.3), which implies that if ϕ has an angular de-
rivative at a point ω ∈ U , then Jϕ(z) → 1 as z → ω non-tangentially. The geometric
significance of the Julia-Carathéodory ratio is explained by the next lemma, where we
continue to assume that ϕ is a univalent self-map of U that fixes the origin and that σ is
the Königs function, so ϕ ◦ σ = λσ (Schröder’s equation), where λ = ϕ′(0). Recall from
§2.6 the hyperbolic density of G = σ(U), given by

(5.2) hG(σ(z)) =
2

(1− |z|2)|σ′(z)|
.

Our first result establishes the connection between the Julia-Carathéodory ratio of ϕ and
the hyperbolic density on G.

5.1. Lemma. For each z ∈ U ,

Jϕ(z) = |λ|hG(λσ(z))

hG(σ(z))
.

Proof. Upon differentiating both sides of Schröder’s equation we obtain

(5.3) σ′(ϕ(z))ϕ′(z) = λσ′(z)

for each z ∈ U . Thus

hG(λσ(z))

hG(σ(z))
=

hG(σ(ϕ(z))

hG(σ(z))
(Schröder’s equation)

=
|σ′(z)|(1 − |z|2)

|σ′(ϕ(z))|(1 − |ϕ(z)|2)
(by(5.2))

=
|ϕ′(z)|σ′(z)|(1− |z|2)
|λ||σ′(z)|(1 − |ϕ(z)|2) (by (5.3))

= |λ|−1Jϕ(z). ¤

Of particular importance is the behavior of Jϕ for the “lens map” ϕα (0 < α < 1).
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5.2. Corollary. Suppose 0 < α < 1. Then Jϕα(x) = α for each −1 < x < 1.

Proof. We have λ = ϕ′α(0) = α > 0 here, and G = σ(U) = {|=w| < π/2}. Since real
translations are hyperbolic isometries of G, the hyperbolic density is unaffected by each
such mapping. In other words, hG is constant on horizontal lines. Since the real line is
taken into itself upon multiplication by α, the result follows from Lemma 5.1. ¤

Of course this result could also have been verified by direct computation. It will be
applied in concert with the next theorem, the main technical result of this section, which
shows explicitly how the Julia-Carathéodory ratio is connected with the geometry of G.

5.3. Proposition. Suppose ϕ is real on the real axis, and ϕ(1) = 1 (non-tangential limit).
Then λ > 0, and if

lim inf
r→1−

Jϕ(r) > λ,

then
lim

r→1−
δG(σ(r)) = ∞,

so σ /∈ BMOA.

Proof. Since ϕ is univalent and real on the interval (−1, 1), and ϕ(r) → 1 as r → 1,
we see that ϕ is monotonically increasing on that interval. Thus λ = ϕ′(0) > 0. By
Schröder’s equation, σ, which is also univalent, is real on (−1, 1), and since σ′(0) 6= 0 it is
monotone increasing there. It follows readily from Schröder’s equation that limr→1− σ(r) =
∞.

Now our hypothesis and Lemma 5.1 combine to show that there exist positive numbers
x0 and ε such that

x > x0 =⇒ hG(λx)

hG(x)
> 1 + ε.

Upon replacing x by λNx we obtain for each positive integer N ,

hG(λNx) > (1 + ε)hG(λN−1x) for λNx > x0.

Since λ < 1 we may iterate this inequality to obtain

(5.4) hG(λNx) > (1 + ε)NhG(x) (x > λ−Nx0).

Now choose N so that (1 + ε)N > 8, and recall from §2.6 that the product of δG and hG

always lies between 1/2 and 2. Thus (5.4) and our choice of N yields

δG(x) > 2δG(λNx) (λ−Nx > x0).

Upon replacing x by λ−Nx in this inequality, we obtain

δG(λ−Nx) > 2δG(x) (x > x0).

To finish the proof, let δ0 = min{δG(x) : x0 ≤ x < λ−Nx0}. Then, for λ−kNx0 ≤ x <

λ−(k+1)Nx0, we have

δG(x) > 2δG(λNx) > 4δG(λ2Nx) · · · > 2kδG(λkNx) ≥ 2kδ0.

Thus δG(x) →∞ as x →∞, as desired. ¤
Proposition 5.3 provides the means for constructing the class of examples promised at

the beginning of this section. In the statement below, 0 < α < 1, and ϕα is, as usual, the
lens map defined earlier.
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5.4. Theorem. Suppose ϕ = ϕα ◦ ψ where ψ is a univalent self-map of U with these
additional properties:

(1) ψ (0) = 0 and ψ (1) = 1 (non-tangential limit).
(2) ψ is real on the real axis.
(3) The angular derivative of ψ exists at the boundary point 1.
(4) ψ is not the identity map.

Then the composition operator Cϕ is compact on H2, but the Königs function of ϕ is not
in BMOA.

Proof. We know that Cϕα is compact, and the definition of ϕ, interpreted on the operator
level, says that Cϕ = Cψ Cϕα . Thus Cϕ is compact, since the product (in either order) of
a bounded operator and a compact operator is compact (see [Con, Prop. 4.2, page 41], for
example).

To see that σ /∈ BMOA we compute the Julia-Carathéodory ratio of ϕ on the interval
(−1, 1). Note that, as before, the univalence and symmetry assumed for ϕ insures that ψ
is monotonically increasing on (−1, 1). Applying (in this order) the Chain Rule, Corollary
5.2, and the Julia-Carathéodory theorem, we obtain for −1 < r < 1,

Jϕ(r) = Jϕα( ψ (r))J ψ (r) → α as r → 1− .

But ψ ′(0) < 1 since ψ is not the identity map, hence

ϕ′(0) = ϕ′α(0)ψ ′(0) < ϕ′α(0) = α,

and so limr→1− Jϕ(r) > ϕ′(0). Thus ϕ satisfies the hypotheses of Proposition 5.3, so its
Königs function is not in BMOA. ¤

5.5. A class of examples. Let Vα = ϕα(U), where ϕα is a lens map, and take V to be
any proper subregion of Vα that is symmetric about the real axis and coincides with Vα in
some disc centered at the boundary point 1. For example, V could be the standard lens
with two small subintervals of equal length removed from the imaginary axis, with outer
endpoints on the boundary of the lens.

Let ϕ be the univalent map of U onto V that fixes both the origin and the point 1, and
has positive derivative at the origin. Then ψ = ϕ−1

α ◦ ϕ is a univalent self-map of U that
clearly obeys hypotheses (1), (2), and (4) of Theorem 5.4, and is not the identity map.
Because the images of ϕ and ϕα coincide in a neighborhood of the point 1, ψ maps an arc
of ∂U centered at 1 to another such arc. Thus ψ has an analytic extension across that arc,
and in particular it has an angular derivative (in fact an ordinary complex derivative) at
1. The hypotheses of Theorem 5.4 are therefore satisfied, so the Königs function of ϕ is
not in BMOA. ¤

5.6. Vanishing Mean Oscillation. The notion of “bounded mean oscillation” is a
“big-oh” condition asserting that certain integral means involving the amount by which
a function differs from its average over an interval, when taken over all subintervals of
∂U , form a bounded set. The corresponding “little-oh” condition, as the lengths of those
subintervals tend to zero, is called “vanishing mean oscillation.” The corresponding sub-
space of BMOA is called V MOA. For our purposes it is enough to know that a univalent
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mapping of the unit disc onto a region G is in V MOA if and only if δG(w) → 0 as w →∞
through G (see, as before, [Pomm2], or [Ste-St]).

It is therefore not surprising that appropriate modifications of the arguments given
above lead to these companion theorems for V MOA:

(1) Under the hypotheses of Proposition 5.3,

lim sup
r→1−

Jϕ(r) < |λ| =⇒ lim
r→1−

δG(σ(r)) = 0.

(2) In particular, suppose ϕ fixes both the origin and the point 1, and ϕ(U) is symmet-
ric about the real axis, properly contains a standard lens, and coincides with that
lens outside some disc |z| < r < 1. Then the Königs function of ϕ is in V MOA.

As an example of the situation in (2) above, take G = ϕ(U) to be a standard lens with
two small discs of equal radius adjoined so that their centers lie at the points where the
imaginary axis intersects the boundary of the lens.

5.7. Symmetry assumptions. The pervasive assumption of symmetry about the real
axis first appeared in Proposition 5.3. It can be weakened a little; the arguments will still
work if we only assume that the curve σ([0, 1]) is taken into itself upon multiplication by
λ. However without some such extra hypotheses, the Proposition is false, as the following
example shows.

Example: lim infr→1− Jϕ(r) > |ϕ′(0)|, but σ ∈ BMOA. Suppose that λ /∈ R has small
modulus and small argument. Let γ be the curve {λt | −∞ < t < ∞}, so that λγ = γ.
Now take Ω to be a simply connected domain containing 0 with the properties that γ∩{z :
|z| ≥ R} ⊂ ∂Ω, for some R > 0, and that δΩ(w) is bounded. Thus Ω can be visualized as
the union of a disk centered at the origin and an unbounded spiraling strip with γ an edge
of the strip. The conformal mapping σ : U → Ω with σ(0) = 0 and σ([0, 1)) unbounded is
in BMOA, since δΩ(w) is bounded. Furthermore, since γ ∩ {z : |z| ≥ R} ⊂ ∂Ω and γ is
invariant under multiplication by λ, it follows that

δΩ(σ(r))

δΩ(λσ(r))
≥ C

1

|λ|
, r ≥ r0,

for some r0 ∈ (0, 1) and C > 0. Using (2) as in the proof of Lemma 5.1, we see that

hΩ(λσ(r))

hΩ(σ(r))
≥ 1

4
· δΩ(σ(r))

δΩ(λσ(r))
.

Thus if |λ| is sufficiently small, we will achieve the promised inequality on the Julia-
Carathéodory ratio.

It may be objected that this example is special in that a large part of the boundary of
Ω is taken into itself upon multiplication by λ, but it is clear that a small perturbation of
Ω will produce a domain G for which λ · ∂Ω ⊂ Ω, and for which all the other features of
the original example are preserved.
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5.8. Higher orders of compactness. The examples produced in §5.5 are actually “very
compact” in that they belong to all the Schatten p-classes for p < ∞. (see [Sh-Tay, page
496]). Thus, even in the presence of higher orders of compactness, the Königs function
need not belong to BMOA. On the other hand, the condition ‖ϕ‖∞ < 1, which, as we
saw in §1, forces σ to be bounded, can be regarded as inducing even stronger compactness
on Cϕ (for example, Cϕ now takes the unit ball into a subset that is compact in H∞). It
might be interesting to to see if there are reasonable intermediate “hyper-compactness”
conditions, say on the approximation numbers of Cϕ, that force the Königs function of ϕ
into BMOA.

6. Final remarks.

We close with some comments about how our main results fare in different settings.

6.1. The Bergman spaces. The Bergman space Ap of the unit disc is the space of
functions f holomorphic on U for which

‖f‖p
p =

∫
|f |p dA < ∞,

where dA = 1
π
dxdy is normalized Lebesgue measure on U . A2 is a Hilbert space on which

composition operators act boundedly (in fact, composition operators act boundedly on Hp

and Ap regardless of p), and on which the angular derivative criterion of §2.5 characterizes
compactness even in the absence of univalence (see [M-S] or [Sh, §6]).

Now it is easy to check that for each p < ∞ the Bergman space Ap contains Hp, so the
same is true of their intersections for p < ∞. In fact this containment of intersections is
proper. For example, the function

∑
z2n

belongs to the Bloch space, which is contained
in every space Ap for p < ∞, but it belongs to no Hp since it has radial limits almost
nowhere (see for example [Pomm3, Example 1, page 696]). Nevertheless:

Proposition. Under the hypotheses of either of our two Main Theorems, if the Königs func-
tion of ϕ lies in Ap for every p < ∞, then some power of Cϕ is compact on H2.

To see why this is true, we need only note that the only property of Hp needed for the
proofs of either Main Theorem is the fact that for each f ∈ Hp, the modulus |f (z)| is
bounded by a constant multiple of a negative power of 1− |z|. In fact the same is true for
Ap.

Lemma. If f ∈ Ap then for each z ∈ U ,

|f (z)| ≤
‖f‖p

(1− |z|)2/p
.

Proof. For z ∈ U , let ∆z = {w : |w− z| < 1− |z|}. Then the subharmonicity of |f |p yields

|f (z)|p ≤ 1

A(∆z)

∫

∆z

|f |p dA ≤
‖f‖p

p

(1 − |z|)2



COMPACTNESS OF COMPOSITION OPERATORS 33

as promised. ¤

In view of the folk theorem of §1.2, there results this curious fact:

If, under the hypotheses of either of the Main Theorems, σ ∈ ∩p<∞Ap, then
σ ∈ ∩p<∞Hp.

6.2. The Dirichlet space. The Dirichlet space D of the unit disc is the space of functions
f holomorphic on U for which f ′ ∈ A2. D is a Hilbert space in the norm ‖ ‖ defined by

‖f‖2 = |f (0)|2 +

∫

U

|f ′|2 dA < ∞.

Since the integral on the right is the “multiplicity area” of the image of f , a univalent
function is in D if and only if it takes the unit disc onto a region with finite area. If
ϕ is a univalent self-map of the unit disc, then a simple change of variable shows that
the composition operator induced by ϕ acts boundedly on D. The compactness of such
operators is characterized by the following lemma ([M-S], Proposition 5.1, p. 892, with
α = 0).

Lemma. If ϕ is a univalent mapping of the disc into the disc, then Cϕ is compact on D
if and only if

lim
ε→0+

sup
ζ∈∂U

A(ϕ({z ∈ U | |z − ζ | < ε}))/ε2 = 0.

D is a proper subset of H2, and one might hope that analogs of our two Main Theorems
would hold for D as well. In particular, does σn ∈ D for all integers n ≥ 1 (the analog of
σ ∈ Hp for all p < ∞) imply that Cϕ is compact on D? The following example shows that
the answer is no.

Example. Let

G =
∞⋃

k=0

Rk,

where R0 is the unit disc, and for each k ≥ 1,

Rk = (0, 4k)× (− exp(−4k), exp(−4k)).

Define σ to be the conformal map from U to G with σ(0) = 0 and σ′(0) > 0, and define
ϕ by ϕ(z) = σ−1(σ(z)/2), z ∈ U . It is not difficult to see that, for each integer n ≥ 1,
σn ∈ D, since the restriction of σn to the intersection of U with a sufficiently small disc
centered at 1 is univalent.

On the other hand, ϕ is modeled by multiplication by 1/2 on G, and a simple estimate
using the quasi-hyperbolic metric (see §2.6) shows that there is a constant C > 0 such that
the hyperbolic distance on G satisfies

1

C
≤ ρG((x, 0), ∂(

1

2
G)) ≤ C,
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for each integer k ≥ 1 and x such that 4k ≤ x ≤ 2 · 4k . By conformal invariance of the
hyperbolic metric, on U this becomes

1

C
≤ ρU (r, ∂(ϕ(U))) ≤ C, 4k ≤ ϕ(r) ≤ 2 · 4k.

For each integer k ≥ 1, define rk ∈ (0, 1) by ϕ(rk) = 4k, so that rk → 1. We have
seen that ϕ(U) contains a hyperbolic disc centered at rk of radius 1/C , so it contains an
Euclidean disc of radius (1− rk)/C1 and center rk, where C1 is comparable to C. Since C1

is independent of k and rk → 1, the Lemma characterizing compact composition operators
on D shows that Cϕ is not compact.
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