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i.et B be a Banach algebra with an approximate identity (e,) such that
sup il e, || = 1, let X be a left Banach B-module with § x | = sup {lt dx 1 : b B,
§B1 < 1}, and let § denote the strict topology induced on X by B, We show
that every linear subspace of X having B-compact unit ball is a conjugate
Banach space whose bounded weak star topology coincides with 8. This result
is applied to some common conjugate Banach spaces, namely Banach spaces
with boundedly complete bases, and the spaces L¥(G) (1 < p < o0), G a
compact Abelian group. As a by-product we obtain a new representation for the
strict topelogy on the space of bounded analytic functions on the open unit disk.

INTRODUCTION

The bounded weak star topology induced on a conjugate Banach
space by its predual is the strongest topology which agrees on bounded
sets with the weak star topology [3, V.5.3]. It is well-known that the
Banach space H®(D) of bounded analytic functions on the plane
region D is the dual of a quotient space of the bounded Borel measures
on D; and Rubel and Ryff [8] have recently shown that the bounded
weak star topology induced on H®(D) by this duality coincides with
the strict topology. More generally [13], if S is a locally compact
Hausdorff space and C(S) is the space of bounded continuous complex
valued function on S, then any linear subspace E of C(S) whose unit
ball is strictly compact is the dual of a quotient space of the bounded
Borel measures on S, and the bounded weak star topology thus
induced on E is the strict topology.

The purpose of this paper is to extend these results to the general
strict topology introduced by Sentilles and Taylor [12], and to give
applications to some common conjugate Banach spaces. In particular,
we identify the bounded weak star topology on any Banach space with
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a boundedly complete basis; and consider the spaces L?(G)
(I << p < o0), G a compact Abelian group. As a by-product we obtain
a new way of representing the strict topology on the space of bounded
analytic functions on the open unit disc.

1. Tar GeneraL StricT ToroLoGy

In this section, we record some terminology and notation, generally
following that of [12]. We state, mostly without proof, those results
of [12] needed in the sequel.

A net (e, : a€ A) in a Banach algebra B is called an approximate
identity if |eb —bl|—0 and |{be, — b||—0 for every b in B.
A Banach space X which is a left module over B is called a left Banach
B-module if || bx{| < (| b{||| x| for every bin Band xin X. If X isa
left Banach B-module, then its Banach space dual X’ is a right Banach
B-module under the product (x', b) — x'b, where x'b(x) = x'(bx) for
each x in X.

Until further notice, B will denote a Banach algebra with an
approximate identity (e, : « € 4) satisfying

suple, || = 1, (1.1)
and X will be a left Banach B-module such that
x|l = sup{||bx}:be B, b} < 1}. (1.2)

We remark that condition (1.2) was not assumed in [12]. Instead the
right side of the equation was introduced as a new, possibly inequiv-
alent norm on X, and a number of the results below were obtained for
this new norm rather than for the original one.

The essential part X, of X is the closed linear subspace of X spanned
by the set

BX ={bx:be B, xe X}.

If X = X,, then X is called essential. A direct consequence of the
definition and (1.1) is that

X, = norm closure of BX = {xe X :{e.x — xj — 0.

Thus X, is the set of elements in X on which (e,) acts as a left
approximate identity, and it follows immediately from this that both X,



BOUNDED WEAK STAR TOPOLOGY 277

and B are essential B-modules. We now state an important factor-
ization theorem which plays a crucial role both here and in [12]. In
particular, it shows immediately that X, = BX.

THEOREM A (see [12, Theorem 2.1]). If X is essential, Z is a
bounded subset of X, and || e,z — 2z — O uniformly on Z, then there
exists b in B and a bounded subset W of X such that Z = bW.

With obvious modifications, the same theorem holds for right
Banach B-modules. Indeed, it is the right version which will be needed
in the proof of our main result (Theorem 1).

The strict topology B induced on X by B 1s the locally convex
topology given by the family of seminorms

x—bxll (bin B).

Condition (1.2) insures that the strict topology is Hausdorff. A useful
companion to § is the topology « defined by the seminorms

x—|lex]l (xin A).

Clearly, « is a locally convex, Hausdorff topology, and « C 8 C norm
topology.

The following ‘““classical” example helps place these topologies in
perspective (cf. [12, p. 146]). Let X = C(S8), S locally compact and
Hausdorff; and let B == Cy(.S), those functions in C(§) which vanish
at infinity. Then X is a Banach B-module under pointwise multi-
plication, (1.2) is satisfied, and Urysohn’s Lemma assures that 53 has
an approximate identity satisfying (1.1). In this example, £ is the
original strict topology introduced by Buck [1], while « is the topology
of uniform convergence on compact subsets of S.

The next theorem summarizes some fundamental properties of the
strict topology. These were first proved for the classical case by
Buck [1], and, in general, by Sentilles and Taylor.

TueoreM B [12, Section 3]. (1) B and « coincide on the norm
bounded subsets of X.

(2) A subset of X is norm bounded if and only if 1t is strictly
bounded.

(3) The unit ball of X, is strictly dense in that of X.
(4) The family of sets
weX x|l <1} (bmB)

is a local base for the strict topology.
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Parts (1) and (3) follow more or less directly from the fact that (e,)
is an approximate identity for B satisfying (1.1), while (4) is a conse-
quence of the right version of Theorem A (applied to B, viewed as a
right B-module). Part (2) follows from (1.2) and the uniform
boundedness principle.

Since the strict topology is weaker than the norm topology, the
strict dual of X can be regarded as a linear subspace of X'. Let M
denote the strict dual of X taken in the X' norm. Then the map which
associates to each x in X the linear functional A — A{x) (A in M) 1s a
one-to-one continuous linear transformation taking X into M".
We call this map the canonical imbedding of X into M’, and see easily
from (1.2) that it is an isometry. Note that according to Theorem B(2),
M is the strong dual [10, p. 141] of (X, B), so the above mapping is,
in fact, the canonical imbedding of (X, ) into its strong bidual
[10, p. 143].

Since M is a normed space, M’ is a Banach space. In the classical
example M is the space of bounded Borel measures on .S, which
suggests that M is always a Banach space. This is in fact the case, and
follows from the next result, which is a direct consequence of
Theorem B(3) and (4) and plays an important role in the applications
of our main theorem.

Tueorem C [12, Theorem 4.1 (1)]. A4 linear functional x" on X is
strictly continuous if and only if there exists y' in (X,) and b in B such
that

x'(x) = y'(bx) (xn X).

Moreover, the restriction mapping x' — x|y 1s an isometric module
isomorphism of M onto the essential part of (X)),

CororLarRY. M 5 a right essential Banach B-module.

2. MAaIN THEOREM

In this section, F is a linear subspace of X, and E? is the annihilator
of E in M (the strict dual of X taken in the X' norm). E; denotes the
unit ball of E. We now state our main result,

TrroreMm 1. Suppose E is a linear subspace of X whose unit ball is
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compact in the strict topology. Then the mapping which associates to
each e in E the linear functional

m -+ E®— mle) (minM)

on MJE® is an isometric isomorphism of E onto the dual of M|E®; and the
bounded weak star topology thus induced on E coincides with the strict
topology.

Proof (Cf. [8, Section 2] and [l13, Theorem 2]). Recall from
Section 1 that the canonical imbedding of X into M’ is an 1sometry.
Let o = w(X, M), the weak topology induced on X by A. Then
« C B, so it follows from elementary topology and the strict com-
pactness of E, that « and 8 coincide on E, . Thus £, is a-compact,
hence w(M’, M)-compact; and it follows from the Krein-Smulian
theorem [3; V.5.7] that E is w(M’, M)-closed in M. Standard Banach
space theory now shows that the mapping in question is an isometric
isomorphism of £ onto (M/E®).

Let bw* denote the bounded weak star topology induced on E
by M/E®. Since « coincides on F with w(E, M/E?), and § = « on £,
(hence on all bounded subsets of E), we see that § C bw*. To prove
the reverse inequality, we need the fact that the bounded weak star
topology on a conjugate Banach space is the topology of uniform
convergence on norm null sequences in the predual [3, V.5.4]. 1f
(m; - E°) is a sequence in M/E® which converges to zero in norm,
then (m;) can be chosen from M such that [} m; || — 0; from which it
follows readily that sup, | m;e, — m; || — 0. Since M is an essential
right Banach B-module, the right version of Theorem A insures that
m; = m;b (allj), where b € B and () is a bounded sequence in M, say,
[ 7;{ < C for all j. Denoting the pairing between E and MJE® by
{, 5, we see that for each ¢ in £,

sup [{m; + E% ep] == sup | ny(be)] < Clibe].
i j

Thus 8 D bw* on E, and the proof is complete.

In [13], this theorem was proven for X == C(S), B = Co(5). In
this case, the unit ball of E is strictly compact if and only if it is a
(closed) normal family. The theorem of Rubel and Ryft mentioned in
the Introduction corresponds to the case where S is a plane region
and E is the space of bounded analytic functions on 8. Theorem 1 is
also related to the work of Dorroh [2] and Sentilles [11] on localization
of the strict topology.
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3. APPLICATION TO Bases

In this section, X will denote a Banach space with a basis
(x, 17 = 0). Thus for each & in X, there is a unique scalar sequence
(%,/(x) : n 2= 0)such that x = 3 x,'(x) &, , where the series converges
in the norm of X. It is well-known that the coordinate functionals x,’
are continuous linear functionals on X, and that X can be (equivalently)
renormed such that

n
z x.l.:’(x) X
E==0

ol = sgpl (3.1)
{for this and other background material on bases, see [6, Chap. 3]).

The basis (x,) is called boundedly complete [6, p. 36] if ¥ B.x,
converges for each scalar sequence (8,) such that

n T
Sup l% > By

=0

| < 0.

It is known [6, p. 37, Theorem 11 and Corollary 12] that if (x,) is
boundedly complete, then X is isomorphic to the dual of the closed
linear span of (x,"), where the pairing between the spaces is the obvious
one. The purpose of this section is to represent the bounded weak star
topology induced on X by this duality in terms of the multiplier
algebra of X with respect to (x,,).

Following [7], we define a multiplier of X (with respect to (x,)) to be
a scalar sequence o = (a,) such that for each x in X the series
2 a,x,'(x) x, converges in the norm of X. Under coordinatewise
operations the set of all such multipliers is an algebra called the
multiplier algebra of X (with respect to (x,,)), and denoted by u(X). For
a in pu(X) and x in X, we write

ax = Y %, (%) %, . (3.2)

it follows from the closed graph theorem and the continuity of
coordinate functionals that for each « in w(X) the mapping x — ax
is a bounded linear transformation on X. Straightforward arguments
show that the operator norm

ol = supfliax | : jaf < 1)

makes u(X) into a commutative Banach algebra, and X (under the
product (3.2)) into a left Banach u{X)-module.
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The sequence e, having 1 in the first # places and zero elsewhere is
clearly a multiplier of X (# = 0, 1, 2,...). Let py(X) denote the closed
linear span of (e, : 7 > 0). The main result of this section is the
following.

THeoreM 2. Suppose X is a Banach space with a boundedly
complete basis (x,). Then x is isomorphic to the dual of the closed linear
span of (x,') where the spaces are paired in the obvious way; and the
bounded weak star topology thus induced on X is given by the semunorms

x — H Y (%) Xy, |, (3.3)
where (a,) ranges through p(X).
Proof. Renorm X in accordance with (3.1). Then [le, || = 1

(n =0, 1, 2,...) so {e,) satisfies (1.1). The linear subspace spanned by
(e,) is an algebra for which (e,) i1s an approximate identity, and it
follows from this and (1.1) that the same is true for its closure py(X).
It is clear that X is a left Banach p,(X)-module. Since (x,,) is a basis
for X we have || x — e,x || — 0 for each x in X; so X is essential. It
follows from this and (1.1) that X satisfies (1.2) with B = p(X),
hence the conditions of Section 1 are fulfilled.

Let 5 denote the strict topology induced on X by po(X), and let «
be the topology induced by the seminorms x — || e, x[|{n = 0, I, 2,...).
it follows from Theorem C that the strict dual M of X is isometrically
isomorphic to (X'),. Since x," == x,'e, (n =0,1,2,...), each x,’
belongs to (X”), ; hence the closed linear span of (x,) is contained in
(X", . Conversely, if ¥v" € (X),, then ||y — ¥'¢; || = 0. But y'e; 15 in
the linear span of (x,") (kA =0, 1, 2,...); so ¥ is in its closure. Thus
(X"), is the closed linear span of (x,').

In view of Theorem 1, the proof will be complete if we show that
the unit ball X, of X is strictly compact. Since f =« on X,
(Theorem B), it is enough to show that X is x-compact. Note that «
is simply the topology of coordinatewise convergence on X anc
(although this is not essential) is metrizable. If x € X , then, by (3.1),
l| 2, (%) &, | << 2; hence | x,'(x)! << 2] %, 71 Thus if K, denotes the
set of complex numbers of modulus < 2 || x,, |72, then the coordinate
mapping ¢ : & — (x,’(x)) is a homeomorphism taking (X, , ) into the
compact product space P = [], K,, . We claim that ¢(X)) is closed
in P. To see this, suppose (2,) is a sequence in X, , and suppose the
corresponding coordinate sequences converge in P to a sequence («,);
that is, lim, x,'(2)) = o, (n = 0, 1, 2,...).
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By condition (3.1),

N
> () | < sl < 1.

n=0

So

for N = 0, 1, 2,... . It follows from the bounded completeness of (x,)
that 3 a,x, converges in norm to an element x in X,;. Clearly,
x,' (%) = o, (n = 0, 1, 2,...); s0d(x) = (=,,). Thus(X,)1s closedin P,
hence compact, and so X, is k-compact, and the proof is complete.

The usefulness of this theorem in any given situation depends on
how well po(X) can be described. If the basis (x,) is unconditional
(for each x in X, every rearrangement of the series 3 x, '(x)x,
converges), then every bounded scalar sequence is a multipher
[6, Chap. 2, Section 1, Theorem 3]; and the proof of the following
corollary shows that p(X) = ¢, , the space of scalar sequences which
converge to zero.

CororLLary. Suppose X s a Banach space with an unconditional,
boundedly complete basis (x,). Then the bounded weak star topolgy
induced on X by the closed linear span of (x,'} is grven by the seminorms
(3.3), where (n,) ranges through c; .

Proof. Since (x,,) is unconditional, I* C u(X). Consideration of the
products ax, shows that | o, | << | alf for each o 1 u(X). Thus
w(X) =1, and ||afl, << ||« for each « in w(X). The interior
mapping principle guarantees that the norms || -} and {| -{, are
equivalent. So uo( X) = ¢, , and the result follows from Theorem 2.

It was shown in [I3] that the bounded weak star topology on
[® = (I} coincides with the strict topelogy induced by ¢, (this is an
immediate consequence of Theorem 1). The last corollary shows that
the same is true for the bounded weak star topology on [P = (1%
(1 <p << oo, pl 4 gt = 1), and I} = (c;).

With few changes the proof of Theorem 2 yields a more general
result which applies directly to [® as well as [7 (1 <{ p < w). Westate
the result without proof. If (%, , x,’) is a total biorthogonal sequence
in X (i.e., a biorthogonal sequence with (x,") total over X), define p(X)
to be the set of all scalar sequences (x,) such that for each ¥ in X
there is ¥ in X such that x,'(v) = o,x,/ (%) (n =0, 1, 2,...) (see
[7, Definition [.1 and Corollary 3.3]). Define u,{X) as before.
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TuroreMm 2. Suppose (x,, , x,,') is a total biorthogonal sequence in X
such that

(1) X has an equivalent norm satisfving (3.1), and

(2) for every scalar sequence (B,,) such that sup,, || S0 By || << o0,
there exists x in X with x,'(x) = B, (k =0, I, 2,...).

Then X is isomorphic to the dual of the closed linear span of (x,’), and
the bounded weak star topology thus induced on X is given by the
seminorms (3.3}, where (w,) ranges through py( X ).

We remark that conditions (1) and (2) imply that the unit ball of X
is complete in the topology of pointwise convergence on (x,'),
i.e., that X is boundedly complete in the sense of Johnson
[14, Definition I1.2]. If, in addition, (x,) spans a dense linear subspace
of X, then the duality between X and the closed linear span of (x,)
becomes a special case of [14, Theorem I1.5].

4. AprricaTiON TO L¥(G)

Let G be a locally compact Abelian group, and let dx denote Haar
measure on G. Under convolution the spaces L?(G) {1 < p < <0)
are Banach algebras and Banach LY(G)-modules satisfying (1.2). Let g
denote the index conjugate to p : p~1 + ¢t =

Tueorem 3. The following are equivalent:
(a) G s compact

(b) The bounded weak star topology induced on L*(G) by LYG)
(1 < p < o0) coincides with the strict topology induced by LY G).

Proof. Let LP = LP(G) (1 < p < <o), and let (U,) be a base for
the neighborhoods of 0 in G. By Urysohn’s Lemma there is for each «
a nonnegative continuous function e, on G such that e, == 0 off U, and
lle.ll; = 1. By [4, Theorem 20.15], || e, ¥ f — f|| — 0 for each f in
L (1 < p < ), so (e,) is an approximate identity for L' satisfying
(1.1), and L? is an essential L*-module. It follows from Theorem C
that the strict dual of L? (1 < p <¢ o) is L4, where the spaces are
paired by integration (cf. [12, Section 5]).

Suppose G is compact. Then (L®), == C(GY); so the strict dual of L®
is M(G), = LM G), again in the integration pairing. Fix 1 < p < oo.
We claim that the unit ball § of L? is strictly compact. By Theorem B
it is enough to show that .S is k-compact. Let S, = S x ¢, . Since S 1s
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weak star compact and the map f - f % e, (f in LP) is weak star contin-
uous, .S, is weak star compact, and hence norm closed in L?. But the
members of S, are continuous on G, uniformly bounded by | e, il ,
and have moduli of continuity bounded by that of ¢, . It, therefore, fol-
lows from Ascoli’s theorem that S, is relatively compact in C(G), hence
norm compact in L” (here we use the fact that dx is a finite measure,
since G 1s compact). Thus the norm and weak star topologies coincide
on each S, . Consequently, the product space P = [], S, is compact,
and the map f - (f x ¢,) is a homeomorphism of (S, «) into P which
remains continuous even when S has the weak star topology. The
image of S in P is therefore compact; so S is r-compact, and (b)
follows from Theorem 1.

Conversely, if G is not compact, then there is a sequence (x,)1In G
and a compact neighborhood U of 0 such that the sets U, = x, - U
are pairwise disjoint. Let f be the characteristic function of U, and
let f, be the characteristic function of U, , so f,(x) = fx — x,). Then
| fally = | fll, for all n, so (fn) is a bounded sequence in L?. By
Holder’s inequality, there exists C > 0 such that for each gin Ly,

:Inga’x

‘The right term tends to zero because

S rerax <l < e

n ¥ Un

|ffng dx

So (f,) converges to zero in the weak star topology. However, for each
¢ in L1,

fn x ﬁb(x) ﬁf*‘#('x - ‘Y,’ﬂ) (x in G)

So || f, *éi, =l f*¢], for all . Thus (f.) does not converge to
zero in the strict topology. It follows that the weak star and strict
topologies differ on the bounded set (f,), so the strict topology cannot
be the bounded weak star topology on L7, and the proof is complete.
The same theorem and proof remain valid for M(G), the space of
bounded Borel measures on G, considered as the dual of Co(G).

CorOLLARY 1. If G is a compact Abelian group, then LA(G)
(I < p < ) in the bounded weak star topology induced by LY(G) is a
topological algebra under convolution. The same is true for M (G) in the
bounded weak star topology induced by C(G).
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Proof. From Theorem A, each ¢ in LY(G) can be written as
b == ¢y x ¢y, where ¢, , ¢, € LYG). Thus if f, g € LP(G) or M(G), then

(f+g) =l = lI(f=dr) % (g x o)l <Uf xyliflgxdall

and the resuit follows.

We close with an application of Theorem 3 to bounded analytic
functions. Let H* denote the space of bounded analytic functions in
the open unit disk U. Let T denote the unit circle. Then, for each f
in H®, the radial limit

lim f(re®) = f(re)

exists a.e. df. Moreover fe L(T), and the mapping f— f is an
isometric isomorphism taking H® onto a weak star closed subspace of
L™(T) [S, pp. 34-39]. In the statement of the following corollary,
B will denote the strict topology induced on H® by Cy(U); that is, the
topology given by the seminorms

f**lsyp | /(%) &=)l, (4.1)

i<l

where & ranges through Cy(U).

CoroLLary.  The topology B is also described by the seminorms
=il (pinLYT)).
Hence (I, ) is a topological algebra under convolution.

Proof. A result of Rubel and Shields {9, Theorem 4.23 and
its proof] shows that w(H*, L{T)) = w(H*, M(U)), where the spaces
are paired by integration in the obvious way. It follows that the
bounded weak star topology that H/* has as the dual of a quotient of
LX(T) coincides with the one it has as the dual of a quotient of M(U).
But the latter topology is f, as we have pointed out before; and the
former is the restriction to H*® of the bounded weak star topology
induced on L*(T) by LY(T). The result now follows from Theorem 3.

It 1s clear from (4.1) that (H*, £) is also a topological algebra under
pointwise multiplication (for a detailed study of this algebra see
[9, Section 5]). Thus H® in its bounded weak star topology is a
topological algebra under both convolution and pointwise multipli-
cation. From Theorem 3, L*(T) in its bounded weak star topology is
a topological algebra under convolution, and it is natural to ask if the
same 1s true for pointwise multiplication.
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ProrosiTION, In its bounded weak star topology, LT is not a
topological alpebra under pointwise multiplication.

Proof. Let f,(e") = cosnf (n = 0, 1, 2,...). Then (f,) 1s bounded
in L®(T), and the Riemann-Lebesgue lemma insures that f, — 0 in
the weak star topology, and hence in the bounded weak star topology.
But the 0-th Fourier coefficient of /215 1/2 (n = 1, 2,...); so (f,,%) does
not converge to () in the bounded weak star topology (Fourier coeffi-
cients are bounded weak star continuous linear functionals), and the
proof is complete.
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