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13. Laplace Transform

Review of Improper Integrals

An integral of the form∫ b
a
f (t)dt

is called an improper integral if at least one of the

following conditions is satisfied.

1. a = −∞

2. b = +∞

3. limt→a+ f (t) = ±∞

4. limt→b− f (t) = ±∞

At this time, we only need to consider the case where

a is a finite real number and b = +∞. Thus, we consider

expressions of the form∫ ∞
a
f (t)dt.

In this case, we define the value of this expression to

be

lim
b→∞

∫ b
a
f (t)dt

whenever the limit exists. This assumes that the num-

bers F (b) =
∫ b
a f (t)dt exist for each b > a, and the limit

of the numbers F (b) as b approaches plus infinity exists.
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If this limit is finite, then we say the integral converges.

Otherwise, we say the integral diverges.

Let us take some examples.

Example 1:

Fix a positive real number p > 0. Let a > 0, and

consider the improper integral

∫ ∞
a

dt

tp
.

For a < b, we have

∫ b
a

dt

tp
=

t−p+1

−p + 1

t=b

t=a

=
b1−p

1− p
− a1−p

1− p

We have three cases:

1. 0 < p < 1.

lim
b→∞

∫ b
a

dt

tp
dt = lim

b→∞

b1−p

1− p
− a1−p

1− p
= +∞,

so, the integral diverges.

2. p = 1.

lim
b→∞

∫ b
a

dt

tp
dt = lim

b→∞

∫ b
a

dt

t
= lim

b→∞
log(b)−log(a) = +∞,

so, the integral diverges again.
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3. p > 1.

lim
b→∞

∫ b
a

dt

tp
dt = lim

b→∞

b1−p

1− p
− a1−p

1− p
= − a1−p

1− p
,

so, the integral converges.

Example 2.

Consider the integral∫ ∞
0
e−ctdt.

where c > 0 is a positive real number.

We have

∫ ∞
0
e−ctdt = lim

b→∞

∫ b
0
e−ctdt

= lim
b→∞

−1

c
e−ct

t=b

t=0

= lim
b→∞

−1

c
e−cb +

1

c

=
1

c
,

so, the integral always converges.

General Facts about improper integrals:

1. If

lim
t→∞

f (t)

g(t)
= L



August 18, 2010 13-4

exists and is finite, then

∫ ∞
a
f (t)dt

converges if and only if

∫ ∞
a
g(t)dt

converges.

2. Assume 0 ≤ f (t) < g(t) for all t. If
∫∞
0 g(t)dt con-

verges, then so does
∫∞
0 f (t)dt. On the other hand,

if
∫∞
0 f (t)dt diverges, then so does

∫∞
0 g(t)dt.

3. If f (t) is a non-negative nonincreasing function on

the infinite interval (0,∞), then

∫ ∞
1
f (t)dt

converges if and only if the infinite series

∞∑
n=1

f (n)

converges.

Now, we define the Laplace transform L(s) of the func-

tion f (t) to be the integral

L(s) =
∫ ∞
0
e−stf (t)dt.
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This integral may converge only for some values of s,

so the Laplace transform of f (t) will only be defined for

those values of s.

Let us take some examples.

1. Consider the constant function f (t) = 1 for all t. We

write its Laplace transform as L(1). Let’s compute

it.

L(1) =
∫ ∞
0
e−stdt

=
−1

s
e−st

t=∞

t=0

=
1

s

for s > 0.

2. Consider the function f (t) = eat.

We have

L(eat) =
∫ ∞
0
e−steatdt

=
∫ ∞
0
e−st+atdt

=
−1

s− a
e−(s−a)t

t=∞

t=0
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=
1

s− a

for s > a.

3. For n ≥ 0, we have

L(tn) =
n!

sn+1
. (1)

Proof. This is by induction on n.

First we describe the

Principle of Mathematical Induction.

This principle says the following.

Suppose n0 is an integer, and S(n) represents a state-

ment about integers n ≥ n0. If one knows that

(a) S(n0) is true.

(b) Whenever S(n) is assumed true, it follows that

S(n + 1) is also true.

Then, one concludes that

S(n) is true for all integers

greater than on equal to n0.
(2)
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The idea behind this is that if there were some integer

m > n0 for which S(m) were false, one could take

the least such integer. Let us call it n1. Then, we

know that S(n1−1) is true by the choice of n1. But,

by (b), we know that whever S(n) is true, then so

is S(n + 1). This would imply that S(n1) is also

true, which contradicts the earlier statement that it

was false. Hence, the assumption that there is an

m > n0 for which S(m) is false was wrong, and we

conclude that (2) is true.

Let us return to the proof of (1).

We have already done the case n = 0. Assume it

holds for n, we show it holds for n + 1.

Integrating by parts, and using the inductive assump-

tion for n, we have

L(tn+1) =
∫ ∞
0
e−sttn+1dt

= −1

s
e−sttn+1

t=∞

t=0

− (
∫ ∞
0
−1

s
e−st(n + 1)tndt

=
1

s
(n + 1)L(tn)

=
1

s
(n + 1)

n!

sn+1
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=
(n + 1)!

sn+2

which is the statement for n + 1.

4.

L(sin(at)) =
a

s2 + a2

L(cos(at)) =
s

s2 + a2

These can be proved by integration by parts or using

complex variables. We present the second method.

Note that if f (t) = u(t) + iv(t) is a complex valued

function of t, then

L(f (t)) =
∫ ∞
0
e−st(u(t) + iv(t))dt

=
∫ ∞
0
e−st(u(t))dt + i

∫ ∞
0
e−st(v(t))dt

= L(u(t)) + iL(v(t))

Using this, we have

L(sin(at)) = L(Im(eiat))

= Im(L(eiat))

= Im(
1

s− ai
)
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= Im(
s + ai

s2 + a2
)

=
a

s2 + a2

Also,

L(cos(at)) =
s

s2 + a2
.

Some useful facts

1. If L(f (t)) = F (s), then L(eatf (t)) = F (s− a).

To verify this, notice that

F (s− a) =
∫ ∞
0
e−(s−a)tf (t)dt

=
∫ ∞
0
e−st+atf (t)dt

=
∫ ∞
0
e−steatf (t)dt

= L(eatf (t)).

2. If L(f (t)) = F (s), then L(tf (t)) = −F ′(s).
The verification is an application of differentiation

under the integral sign.

This states that if H(s, t) and dH(s,t)
ds are continu-

ous functions of t, then
∫ b
aH(s, t)dt is a differentiable

function of s, and
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d

ds

(∫ b
a
H(s, t)dt

)
=

∫ b
a

dH(s, t)

ds
dt

This holds for finite definite integrals, and, passing

to the limit, for convergent integrals of the form

∫ ∞
a
H(s, t)dt

Applying this to F (s) = L(f (t)), we get

dF

ds
=

d

ds

∫ ∞
0
e−stf (t)dt

=
∫ ∞
0

(
d

ds
e−stf (t))dt

=
∫ ∞
0
−te−stf (t))dt

= −L(tf (t))

Note that we can iterate this and get, for each n > 0,

L(tnf (t)) = (−1)nF (n)(s)

where F (n)(s) denotes the n− th derivative of F at

s.

General Properties of the Laplace transform.
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1. Linearity: The functionL is linear. That is, if F (s) =

L(f (t)), and G(s) = L(g(t)) and a, b are constants,

then

L(af (t)+bg(t)) = aL(f (t))+bL(g(t)) = aF (s)+bG(s).

2. Existence: Let us say that a function f defined on the

closed interval [α, β] is piecewise continuous if there

is a finite set of points α = α0 < α1 < . . . < αr = β

such that f is continuous on each interval αi < t <

αi+1. We say that f is piecewise continuous on the

interval [0,∞) if it is piecewise continuous on each

finite subinterval [0, A] for A > 0.

If f is piecewise continuous on the interval [0,∞)

and there are constants C > 0 and a > 0 such that

| f (t) | ≤ Ceat, ∀t ∈ [0,∞), (3)

then L(f (t)) exists for s > a.

A piecewise continuous function f satisfying the in-

equality (3) is said to be of exponential order.

3. Uniqueness: if f and g are piecewise continuous and

satisfy

| f (t) | ≤ Ceat, and | g(t) | ≤ Ceat, ∀t ∈ [0,∞)
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and L(f (t)) = L(g(t)) for s > a, then f (t) = g(t)

except for at most a sequence of points. Indeed for

any A > 0, there are at most finitely many points in

[0, A] at which f (t) and g(t) can fail to be equal.

In the above case, ifL(f (t)) = F (s), we sayL−1(F (s)) =

f (t), and we call the operatorL−1 the inverse Laplace

transform. It is defined on those functions which are

of exponential order.


