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Two dimensional systems

We will apply some topology of the Euclidean plane to obtain information
about two dimensional planar autonomous systems.

Definition. Let S1 = {z ∈ C : | z | = 1} be the unit circle in the plane
R2. A Jordan curve in the plane R2 (or a simple closed curve) in the plane
R2) is the image of a 1-1 continuous map h : S1 → R2.

Theorem (Jordan Curve Theorem).Let γ be a Jordan curve in the
plane R2. Then, R2 \ γ is the union of two disjoint open connected sets
S1, S2 each of which have γ as boundary. Precisely one of the regions S1, S2

is bounded.
Remark. The book refers to the sets Si as being arcwise connected. But

open connected sets in the plane are arcwise connected.
We will not prove this theorem here, instead referring to a course in

topology. The bounded region of R2 \ γ is frequently referred to as the
interior of γ although it is not the interior in the sense of topology.

Unless otherwise stated, we will assume that f is a C1 vector field defined
in the plane R2 and, for each x, the solution φ(t, x) is defined for all t ∈ R.

Let p be a regular point of the vector field f ; i.e., f(p) 6= 0. Let L be a
closed tranversal to f at p. This means that there is a C1 diffeomorphism
h : [−1, 1] → L such that h(0) = p, h′(t) 6= 0, and, for each t ∈ [−1, 1], h′(t)
is not a multiple of f(h(t)). Let L0 be the interior of L; i.e., L0 = {h(s) :
−1 < s < 1}.

Let V = {q ∈ L0 : there is a tq > 0 with φ(tq, q) ∈ L0 and φ(t, q) ∈ R2\L0

for 0 < t < tq}. The set V is the set of points in L0 whose positive orbits
return to L0. Let V ′ = {φ(tq, q) : q ∈ V }. Set W = h−1V,W ′ = h−1V ′ so
that W and W ′ are subsets of (−1, 1).

Define g : W → W ′ by g(w) = h−1φ(th(w), h(w)).
See Figure 1
Lemma.The set W is open in (−1, 1) and the function g is continuous

on W . For any z ∈ W for which the iterates z, g(z), . . . , gn(z) is defined, the
sequence z, g(z), . . . , gn(z) is monotone in (−1, 1).

Proof.
W is open:
Fix w ∈ W , we want to see that if z is near w in (−1, 1), then z ∈ W

also. We can find a flow-box B centered at φ(th(w), h(w)) such that each
connected component of an orbit in B is an arc which only meets L in one
point. Moreover, there is an ε1 > 0 such that if u ∈ B, then there is a η(u) ∈
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(−ε1, ε1) such that φ(η(u), u) ∈ L. Moreover, in the flow-box coordinates on
B, η(u) is obviously a continuous function of u since L ∩ B is the graph of
a continuous function from the vertical direction to the horizontal direction.
This implies that, in the standard coordinates on B, η(u) is still a continuous
function of u.

Now, let sw = th(w). Then, for z near w in W , φ(sw, h(z)) is near
φ(sw, h(w)) so it is in B (since φ(t, x) is a continous function of (t, x)). Then,

φ(η(φ(sw, h(z))), φ(sw, h(z))) = φ(η(φ(sw, h(z))) + sw, h(z)) ∈ L.

This gives that h(z) ∈ W , so W is open. Also, since

g(z) = h−1φ(η(φ(sw, h(z))) + sw, h(z)),

we get that g is continuous.
We now prove the monotonicity statement.
Consider a point z ∈ W . If g(z) = z for all z, there is nothing to prove,

so assume z is such that g(z) > z. In the opposite case in which g(z) < z
one proceeds similarly.

The solution curve from h(z) to h(g(z)) together with the piece, say L1

of L from h(g(z)) to h(z) is a Jordan curve γ. Since solutions always cross
L moving in the same direction, the forward orbit of a point in the interval
L1 \ {h(z)} always lies in the same component of the complement of γ. If
g(g(z)) is defined, then g(g(z)) must be greater than g(z) since otherwise,
the forward orbit of h(g(z)) would have to pass from one component of the
complement of γ to the other one. Now the argument continues replacing z
by g(z). QED.

Corollary. The ω−limit set ω(γ) of an orbit γ can intersect the interior
L0 of a transversal L in at most one point. If γ = γ(p) is the orbit through
p, and ω(γ) meets the interior of a transversal at p0, then, either ω(γ) = γ
in which case γ is periodic or the points in the forward orbit O+(p) in L0

approach p0 monotonically in L0.
Proof.
We assume that L0 is small enough that it fits inside a single flow box B.
Since ω(p) ∩ L0 ⊃ {p0}, there is a sequence t1 < t2 < . . . with tk → ∞

such that φ(tk, p)→ p0 in L0.
Case 1:
For some j < k, φ(tj, p) = φ(tk, p). Then, γ is periodic. It must be equal

to its own ω−limit set.
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Case 2:
For all k < j, φ(tj, p) 6= φ(tk, p).
Constructing a Jordan curve using pieces of orbits φ(ti, p), φ(ti+1, p) and

pieces of L0 as before shows that the forward orbit O+(p) in L0 approach p0

monotonically in L0 as required. QED.
Corollary. If some regular point of O+(p) is also in ω(p), then O(p) is

periodic.
Proof. This is another corollary of the Jordan curve theorem and the

flow box theorem.
Theorem.A bounded minimal set of a C1 autonomous planar vector field

is a critical point or a periodic orbit.
Proof.
If the minimal set is not a critical point, then it contains no critical points.

But each of its orbits must be dense in the set. Thus, each of its points is in
its own ω−limit sets. Hence, by the previous corollary, each of its orbits is
periodic. Since it is minimal, it must be a single orbit. QED.

Theorem (Poincare-Bendixson). Suppose that O+(x) is a bounded
positive semi-orbit of an autonomous C1 vector field f in the plane. If ω(x)
does not contain a critical point, then ω(x) consists of a periodic orbit O(p).
Either O(p) = O(x) or O(p) = Closure(O+(x)) \O+(x).

Proof.
Since O+(x) is bounded, Closure(O+(x)) 6= ∅ and ω(x) is a non-empty,

invariant set. By hypothesis, it contains only regular points. It also contains
a minimal set Σ which must be a periodic orbit, O(p). Let L0 be a small
open transversal arc to the periodic orbit O(p) at p. Since, p is in ω(x),
there is a sequence t1 < t2 →∞ such that φ(ti, x) ∈ L0 and φ(ti, x)→ p. as
i→∞. Let zi = φ(ti, x). If, for some i0, zi = zi+1, then O(x) is periodic and
must equal O(p). If not, then the sequence of points zi with different i is a
sequence of distinct points in L0. By the flow-box theorem and the Jordan
curve theorem, the sequence zi converges monotonically to p. It follows that
O(p) = Closure(O+(x)) \O+(x). QED

Lemma. Suppose that ω(p0) contains a regular point, p1 which is not in
the orbit of p0. Then, p0 cannot be in ω(x) for any x.

Proof.
Take a small open transversal L0 to p1. The positive orbit of p0 must cross

L0 and monotonically converge to p1. Then, pieces of this orbit together with
pieces of L0 form Jordan curves which trap the positive orbit of any point
near p0. Hence, p0 cannot be in ω(x) for any x. QED.
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Theorem. Suppose O+(x) is a positive semi-orbit in a closed bounded
subset K of the plane for a C1 vector field f . Assume that K contains only
a finite number of critical points. Then, one of the following holds.

(i) ω(x) is a critical point.

(ii) ω(x) is a periodic orbit.

(iii) ω(x) consists of a finite number of critical points and a set of orbits
γi such that each γi has its ω−limit set ω(γi) and α−limit set α(γi)
consisting of a critical point.

Definition. A cycle of critical points is a finite sequence p1, p2, . . . , pn of
critical points such that p1 = pn and, for each 1 ≤ i < n, there is a point xi
such that α(xi) = pi and ω(xi) = pi+1. A solution γ whose α and ω limit
sets are critical points is called a separatrice.

Remark. One way in which condition (iii) occurs is that ω(x) consists
of separatrices of a cycle of critical points. There can also be several regular
orbits whose α and ω limits are the same critical point.
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Proof.
If ω(x) contains no regular points, then since it is connected, it must

consist of a single critical point. This is case (i).
Thus, we may assume ω(x) contains at least one regular point, say p0.

If O(p0) is periodic, and L0 is an open transversal at p0, then O+(x)
⋂
L0

converges monotonically to p0, so ω(x) = O(p0) which is case (ii).
If the orbit O(p0) is not periodic, then its ω−limit set must be disjoint

from O(p0). If ω(p0) contained a regular point, then the previous lemma
would contradict the assumption that p0 is itself an ω−limit point (of x).
Therefore, ω(p0) consists only of critical points. Since it is connected, it
must be a single critical point. A similar argument works for α(p0).

We have therefore proved that each regular, non-periodic, ω−limit point
or α−limit point of x must have each of its own ω−limit and α−limit sets
reducing to single critical points. QED.
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