1. Let
\[\eta(x) = \begin{cases}
 e^{-\frac{1}{x^2}} & \text{if } x > 0 \\
 0 & \text{if } x \leq 0
\end{cases} \]
Prove that \(\eta(x) \) is a \(C^\infty \) function from \(\mathbb{R} \) to \(\mathbb{R} \).

2. Let \(\eta_1(x) = \eta(x)(1 - x) \), where \(\eta \) is as in the previous exercise, and let
\[\xi(x) = \frac{\int_x^1 \eta_1(t)dt}{\int_0^1 \eta_1(t)dt} \]
The function \(\xi(x) \) is a \(C^\infty \) function from \(\mathbb{R} \) to \(\mathbb{R} \) such that \(\xi(x) \geq 0 \forall x, \xi(x) = 0 \) for \(x \leq 0 \), \(\xi(x) = 1 \) for \(x \geq 1 \). Using a modification of \(\xi \) prove that, for any \(a < b \), there is a \(C^\infty \) function \(\rho \) from \(\mathbb{R} \) to \(\mathbb{R} \) such that \(\rho(x) \geq 0 \forall x, \rho(x) = 0 \) for \(x \leq a \), and \(\rho(x) = 1 \) for \(x \geq b \).

3. (a) Let \(x \neq y \) be distinct points in \(\mathbb{R}^n \). Prove that there is a \(C^\infty \) function \(\rho \) from \(\mathbb{R}^n \) to \(\mathbb{R} \) such that \(\rho(u) \in [0,1] \forall u, \rho(x) = 0 \) and \(\rho(y) = 1 \).

(b) Let \(\gamma_1 \) and \(\gamma_2 \) be distinct circles in the plane \(\mathbb{R}^2 \). Prove that there is a \(C^\infty \) function \(\rho \) from \(\mathbb{R}^2 \) to \(\mathbb{R} \) such that \(\rho(x) \geq 0 \forall x, \rho(x) = 0 \) for \(x \in \gamma_1 \), and \(\rho(x) = 1 \) for \(x \in \gamma_2 \).

4. Show that according as \(ad - bc > 0 \) or \(ad - bc < 0 \), the index of the origin with respect to the linear vector field \(f_0(x,y) = (ax + by, cx + dy) \) is \(\pm 1 \).

5. Suppose that \(f(x,y) = (f_1(x,y), f_2(x,y)) \) is a \(C^1 \) vector field with an isolated critical point at \(0 \in \mathbb{R}^2 \) and the derivative of \(f \) at 0 is the linear map \(f_0 \) in exercise 4. Show that if \(ad - bc > 0 \), then the index of \(f \) at 0 is +1 while if \(ad - bc < 0 \), then the index at 0 of \(f \) is -1.

6. Let \(f(z) = z^k \) where \(z = x + iy \) and \(z^k \) means the complex number \(z \) is multiplied by itself \(k \)-times. Consider \(f \) as a vector field in \(\mathbb{R}^2 \). Show that the index of \(f \) at 0 is \(k \).

7. Let \(f(z) = \bar{z}^k \) where \(z = x + iy \) and \(\bar{z}^k \) means the complex conjugate of \(z \) multiplied by itself \(k \) times. Consider \(f \) as a vector field in \(\mathbb{R}^2 \). Show that the index of \(f \) at 0 is \(-k \). Recall that if \(z = x + iy \), then \(\bar{z} = x - iy \) where \(i = \sqrt{-1} \).
8. Let (X,d) be a compact metric space. A map $T : X \to X$ is an isometry if $d(Tx,Ty) = d(x,y)$ for all $x, y \in X$. Suppose that $T : X \to X$ is an isometry such that there is some $x_0 \in X$ whose orbit is dense in X. Prove that for any $y \in X$, both the forward and backward orbits of y are dense in X.

9. A function $\phi : \mathbb{R} \to \mathbb{R}$ is periodic if there is a positive number $\tau > 0$ such that $\phi(x + \tau) = \phi(x)$ for all $x \in \mathbb{R}$. The number τ is called a period of ϕ. Let $S^1 = \{ z \in \mathbb{C} : |z| = 1 \}$ be the unit circle in the complex plane, and let $\rho : \mathbb{R} \to S^1$ be the standard covering projection. Let $C(S^1, S^1)$ be the collection of continuous self-maps of S^1, and let $C(\mathbb{R}, \mathbb{R})$ be the set of continuous self-maps of \mathbb{R}. For an element $f \in C(S^1, S^1)$, a lift of f to $C(\mathbb{R}, \mathbb{R})$ is an element $F \in C(\mathbb{R}, \mathbb{R})$ such that $\rho F = f \rho$.

Let d be an integer. Prove that F in $C(\mathbb{R}, \mathbb{R})$ is a lift of a map $f \in C(S^1, S^1)$ of degree d if and only if there is a periodic function $\phi : \mathbb{R} \to \mathbb{R}$ of period 1 such that $F(x) = d \cdot x + \phi(x)$ for all $x \in \mathbb{R}$.