1. Consider the system

$$\begin{aligned} \dot{x} &= 2x - y + z + t^2 * \cos(t) \\ \dot{y} &= x + y + z \\ \dot{z} &= x - 2y + 3z + 2 - t^3 * \exp(t) \end{aligned}$$

Prove that any maximal solution is defined on the whole real line.

2. Let $g : \mathbf{R} \to \mathbf{R}$, be a C^1 function with derivative g'(t) for $t \in \mathbf{R}$. Assume that g(0) = 0 and g'(0) > 0.

Consider the system

$$(*) \qquad \begin{array}{l} \dot{x} &= y \\ \dot{y} &= -g(x). \end{array}$$

Let $G(x) = \int_0^x g(s) ds$, and let $V(x, y) = \frac{y^2}{2} + G(x)$.

- (a) Prove that V is constant on solutions of (*).
- (b) Prove that there is a $\delta > 0$ such that if $|(x, y)| < \delta$, then the solution which passes through the point (x, y) is periodic.
- 3. For this question, we need to discuss the concepts of *stability* and *asymptotic stability*. We will do it only for autonomous equations here. Let f(x) be a C^1 vector field defined in an open subset $D \subset \mathbf{R}^n$, and, for $x_0 \in D$, let $\phi(t, x_0)$ denote the unique solution to $\dot{x} = f(x)$ such that $\phi(0, x_0) = x_0$. We say the solution $t \to \phi(t, x_0)$ is *stable* if, given
 - $\epsilon > 0$, there is a $\delta > 0$ such that if $|x x_0| < \delta$, then (a) the solution $\phi(t, x)$ is defined for all $t \ge 0$, and
 - (b) $|\phi(t, x) \phi(t, x_0)| < \epsilon$ for all $t \ge 0$.

We say that $\phi(t, x_0)$ is asymptotically stable if it is stable and, there is a $\delta > 0$ such that for $|x - x_0| < \delta$, we have

$$\lim_{t \to \infty} |\phi(t, x) - \phi(t, x_0)| = 0.$$

For n > 1, an *n*-th order ODE is *stable* iff its associated first order system is stable. A similar definition holds for asymptotically stable *n*-th order equations.

Discuss the stability and asymptotic stability of every solution of the equations $\dot{x} = x^3 - x$, $\ddot{x} + 3x = 0$.

4. Suppose X is a C^1 vector field in \mathbb{R}^n and all solutions $\phi(t, x)$ exist for all time t. A point x is called *non-wandering* for X if, for every $\epsilon > 0$ and every T > 0 there are a point y and a t > T such that

$$\mid y - x \mid < \epsilon$$

and

$$\mid \phi(t,y) - x \mid < \epsilon$$

The set of non-wandering points for X is denoted NW(X).

- (a) Give an example of an X on \mathbb{R}^2 for which NW(X) is empty.
- (b) Give examples of vector fields X_1, X_2 on \mathbf{R}^2 for which
 - i. $NW(X_1)$ is a single point
 - ii. $NW(X_2)$ consists of exactly two points
- (c) Prove that if $x \in NW(X)$, then $\phi(t, x) \in NW(X)$ for all $t \in \mathbf{R}$. (This property of NW(X) is called *invariance*)
- (d) Prove that $\omega(x) \subset NW(X)$ for every $x \in \mathbf{R}^n$.
- (e) Prove that if X is a vector field on the line \mathbf{R}^1 , then each point in NW(X) is a critical point.
- (f) Give an example of a vector field X on \mathbf{R}^2 for which there is a point $y \in NW(X)$ such that y is not in the ω -limit set of any point in \mathbf{R}^n .
- 5. Let $f: D \to \mathbf{R}$ be a C^2 real-valued function defined in the open set $D \subset \mathbf{R}^n$. Let grad(f)(x) be the gradient of x at the point $x \in D$; i.e., $grad(f)(x) = (\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x))$. The system

$$\dot{x} = grad(f)(x) \tag{1}$$

is called a *gradient system* with potential function f. Let $\phi(t, x)$ be the local flow of the system (1).

- (a) Show that if x is not a critical point of (1), then the function $f(\phi(t, x))$ is strictly increasing for t near 0.
- (b) Suppose f is defined and C^2 on all of \mathbb{R}^n . Show that if $\phi(t, x)$ is a bounded solution of grad(f), then $\omega(x)$ consists of critical points of f.
- 6. Determine, with justification, which of the following systems in \mathbb{R}^2 is a gradient system. If the system is a gradient system, determine the potential function f.

(a)
$$\dot{x} = y^2 - \sin(x)$$
 (b) $\dot{x} = y + exp(x)$ (c) $\dot{x} = y^3 - \sin(x)$
 $\dot{y} = -y^2 + 2xy$ $\dot{y} = x$ $\dot{y} = -x^2 + y$