1. Suppose $T : X \to Y$ is a linear map of a Banach space X into Banach space Y. Let

$$A = \inf \{ k : |Tx| \leq k|x| \forall x \in X \}$$
$$B = \sup_{x \neq 0} \left\{ \frac{|Tx|}{|x|} \right\}$$
$$C = \sup_{|x| \leq 1} \{|Tx|\}$$

Show that $A = B = C$.

2. Suppose $|\cdot|_1, |\cdot|_2$ are two norms on \mathbb{R}^n. Prove that there are constants $C_1 > 0, C_2 > 0$ such that for every $x \in \mathbb{R}^n$,

$$C_1 |x|_1 \leq |x|_2 \leq C_2 |x|_1$$

3. Suppose $T : X \to Y$ is a one-to-one continuous onto linear map from the Banach space X to the Banach space Y and there is a constant $k > 0$ such that $|Tx| \geq k$ for all $|x| = 1$. Prove that there is a unique continuous linear map $S : Y \to X$ such that $S(Tx) = x$ for all x. For those who know some functional analysis: is the same conclusion true for one-to-one continuous onto linear maps without the assumption that there is such a k?

4. Prove that every linear map from \mathbb{R}^n to \mathbb{R}^n is uniformly continuous.

5. Let $I = [0,1]$ be the closed unit interval. Show that the closed unit ball in the Banach space $\mathcal{C}(I, \mathbb{R}^n)$ is not compact.

6. Show that the Schauder Fixed Point Theorem becomes false if either of the compactness or convexity conditions does not hold.

7. A compact topological space X has the fixed point property or fpp if every continuous self-map of X has a fixed point. Prove that this property is preserved by homeomorphism. That is, if Y is homeomorphic to X and X has the fpp, then Y also has the fpp.
8. Let \(f : [0, 1] \rightarrow [0, 1] \) be continuous. Show that, given \(\epsilon > 0 \), there is a continuous \(g : [0, 1] \rightarrow [0, 1] \) such that \(g \) has only finitely many fixed points and \(|f(x) - g(x)| < \epsilon \) for all \(x \in [0, 1] \).

9. Let \(F \) be an arbitrary closed subset of \(I = [0, 1] \). Show that there is a strictly increasing continuous function \(\phi \) from \(I \) to \(I \) such that the set of fixed points of \(\phi \) is precisely \(F \).

10. Consider the norms \(|\cdot|_p, |\cdot|_\infty \) on \(\mathbb{R}^n \) defined by

\[
| x |_p = \left(\sum_{1 \leq i \leq n} |x_i|^p \right)^{\frac{1}{p}},
\]

\[
| x |_\infty = \sup_{1 \leq i \leq n} |x_i|
\]

where \(p > 1 \).

Prove that

\[
\lim_{p \to \infty} | x |_p = | x |_\infty.
\]