7. Some Special Second Order Equations

There are certain second order differential equations, even non-linear, which reduce to first order equations. We will describe some of these now.

Type 1:

\[y'' = f(x, y'). \]

Here the variable \(y \) is missing from the right hand side.

We proceed as follows.

Set \(v = y' \). We get

\[y'' = v' = f(x, v) \]

Thus, we get a first order d.e. for \(v \). If we can use our known methods to solve this, then we get \(y \) by integrating \(v \).

Example 1:

\[y'' = x(y')^2 \]

Set \(v = y' \). Then,

\[y'' = v' = xv^2 \]

is a separable d.e. We solve it.

\[\frac{dv}{v^2} = xdx \]

\[\frac{-1}{v} = \frac{x^2}{2} + C \]

\[v = \frac{1}{\frac{x^2}{2} - C} \]

\[= \frac{1}{C - \frac{x^2}{2}} \quad \text{different C} \]

\[= \frac{2}{C_1^2 - x^2} \]

\[= \frac{1}{C_1(C_1 + x)} + \frac{1}{C_1(C_1 - x)} \]
So,

\[y' = \frac{1}{C_1(C_1 + x)} + \frac{1}{C_1(C_1 - x)} \]

which gives

\[y = \frac{1}{C_1} \log(C_1 + x) - \frac{1}{C_1} \log(C_1 - x) + C_2 \]

as the general solution.

Type 2:

\[y'' = f(y, y'). \]

Here the independent variable is missing. Again, we set \(v = y' \) and get

\[v' = f(y, v). \]

We try to treat \(y \) as a new independent variable. Then,

\[v' = \frac{dv}{dx} = \frac{dv}{dy} \frac{dy}{dx} = \frac{dv}{dy} v. \]

The equation becomes

\[y'' = v' = \frac{dv}{dy} v = f(y, v), \]

or

\[\frac{dv}{dy} = \frac{1}{v} f(y, v). \]

We solve this, and then integrate \(y = v' \) to get \(y \).

Example:

\[y'' = yy' \]

Setting \(y' = v \), we get

\[y'' = v_y v = yv \]
So,

\[v_y = y \]

or,

\[dv = ydy \]

\[v = \frac{y^2}{2} + C \]

\[y' = \frac{y^2}{2} + C' \]

\[\frac{dy}{\frac{y^2}{2} + C'} = dx \]

Then, we solve for \(y(x) \) as before.