2a. Bernoulli’s Differential Equation

A differential equation of the form

\[y' + p(t)y = g(t)y^n \] \hspace{1cm} (1)

is called Bernoulli’s differential equation.

If \(n = 0 \) or \(n = 1 \), this is linear. If \(n \neq 0, 1 \), we make the change of variables \(v = y^{1-n} \). This transforms (1) into a linear equation.

Let us see this.

We have

\[v = y^{1-n} \]

\[v' = (1 - n)y^{-n}y' \]

\[y' = \frac{1}{1 - n}y^n v' \]

and

\[y = y^n v \]

Hence,

\[y' + py = gy^n \]

becomes

\[\frac{1}{1 - n}y^n v' + py^n v = gy^n \]
Dividing \(y^n\) through and multiplying by \(1 - n\) gives

\[v' + (1 - n)pv = (1 - n)g.\]

We can then find \(v\) and, hence, \(y = v^{\frac{1}{1-n}}\).

Example.

Find the general solution to

\[y' + ty = ty^3.\]

We put \(v = y^{-2}\)

We get

\[v' = (-2)y^{-3}y',\; y = y^3v\]

So,

\[y' + ty = ty^3\]
\[(-1/2)y^3v' + ty^3v = ty^3\]
\[v' - 2tv = -2t\]
\[\mu = e^{-t^2}\]

\[v = e^{t^2} \left(\int e^{-t^2} (-2t) dt + c \right)\]
\[= e^{t^2} \left(e^{-t^2} + c \right)\]
\[= 1 + ce^{t^2},\]
and,

\[y = v^{-\frac{1}{2}} = \left[1 + ce^{t^2} \right]^{-\frac{1}{2}}. \]
A Bernoulli IVP

Solve \(\frac{dy}{dx} + 5y = 2x^2y^4 \), \(y(1) = 3 \)

or \(y' + \frac{5}{x} y = 2x y^4 \)

Bernoulli with \(n = 4 \)

Let \(u = y^{1-n} = y^{-3} \)

Get \(u' - \frac{15}{x} u = -6x \) linear

\(p = -\frac{15}{x} \)

\(m = e^{\int p \, dx} = e^{-15 \log(x)} = x^{-15} \)

\(u = x^{15} \left[\int -6x^{-14} \, dx + C \right] \)

\(= x^{15} \left(-6 \cdot \frac{x^{-13}}{-13} + C \right) = \frac{6}{13} x^2 + (C x^{15} - \frac{6}{13}) \)

\(u(1) = 3 = \frac{1}{27} \)

Use \(u(1) = \frac{1}{27} \): \(\frac{6}{13} + C = \frac{1}{27} \), \(C = \frac{1}{27} - \frac{6}{13} \)

\(y = \left[\frac{6}{13} x^2 + \left(\frac{1}{27} - \frac{6}{13} \right) x^{15} \right]^{-\frac{1}{3}} \)