Matrix Methods for 2-dim systems of linear d.e.'s.

Consider the system
\[\dot{x} = Ax, \quad x \in \mathbb{R}^n, \quad x = \begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix}, \quad \dot{x} = \begin{pmatrix} \dot{x}^1 \\ \vdots \\ \dot{x}^n \end{pmatrix} \]

Try to find a solution form
\[x(t) = e^{rt} v \quad \text{where} \quad v \neq 0. \]

Then,
\[\dot{x} = re^{rt} v = Ax = Ae^{rt} v. \]

or \[e^{rt} rv = Av. \quad (1) \]

A number \(r \) s.t. \(\text{Non-zero vector} \)
\(v \) sat.(1) is called an eigenvalue of \(A \).

Any non-zero \(v \) as in (1) is an associated eigenvector to \(r \).

We can write \(Av = rv \) as \(Av = rIv \)
\(I = \text{Ident matrix} \)

or \((A - rv) = 0 \) or \((rIA) = 0 \)
\(n \times n \text{ matrix} \)

So, need \(\det (rIA) = 0 \)

- characteristic polynomial
Reversing steps we get

1) If \(\lambda \) is an eigenvalue of \(A \) with associated eigenvector \(\mathbf{v} \) then \(x(t) = e^{\lambda t} \mathbf{v} \) is a solution to \(\dot{x} = Ax \).

2) Now suppose

2) A set \(\{y_1(t), \ldots, y_n(t)\} \) of \(n \)-vector valued functions on \(t \in \text{interval} \) \(J \) is real

is called linearly independent if

\[
\sum_{i=1}^{n} c_i y_i(t) = 0 \quad \text{for} \quad t \in J \Rightarrow c_i = 0 \quad \text{for all} \quad i
\]

3) If \(\{y_1(t), \ldots, y_n(t)\} \) is a linearly independent set of solutions to \(\dot{x} = Ax \), then it is called a fundamental set of solutions.

Once such a fundamental set is found, every solution to \(\dot{x}(t) \) to (1) can be expressed uniquely as

\[
x(t) = \sum_{i=1}^{n} c_i y_i(t). \quad \text{General solution to (1)}
\]

Here the \(c_i \) depend on initial conditions.
Let $y_1(t), \ldots, y_n(t)$ be n solutions to (1).

Form the matrix whose column vectors are the $y_i(t)$'s.

The Wronskian det of the set $y_1(t), \ldots, y_n(t)$ is

$$\text{det}(\mathbf{y}(t)) = W(y_1(t), \ldots, y_n(t))$$

is a real valued function of t.

The set $y_1(t), \ldots, y_n(t)$ is a fundamental set if $W(y_1(t), \ldots, y_n(t)) \neq 0$ for some (t_0, y_{t_0}).

Now we consider the 2-dim case.

So we consider

$x = a_{11} x + a_{12} y$

$y = a_{21} x + a_{22} y$

In vector notation, we have

$x = \begin{pmatrix} x \\ y \end{pmatrix}$, \quad $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$

$x = A x$.

The characteristic
Want to find 2 lin indep solns.
Step 1: Find the characteristic polynomial

\[z(r) \equiv (a_{11} + a_{12})r + a_{11}a_{22} - a_{21}a_{12} \]
\[r^2 = \text{tr}(A) - r + \det(A). \]

Step 2: Factor \(z(r) \).

Case 1: \(z(r) = (r-r_1)(r-r_2) \), \(r_1 \neq r_2 \) real

Find associated eigenvectors.

\[(A-rI)\mathbf{v} = 0 \quad \text{let} \quad \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \]
\[
\begin{pmatrix}
 a_{11} - r & a_{12} \\
 a_{21} & a_{22} - r
\end{pmatrix}
\begin{pmatrix}
 v_1 \\
 v_2
\end{pmatrix} = \begin{pmatrix} 0 \\
 0 \end{pmatrix}
\]

Since \(\det(A-rI) = 0 \) for \(r = r_1 \) or \(r_2 \), these equations are multiples of each other.

So, enough to look at \((a_{11} - r)v_1 + a_{12}v_2 = 0 \) (Assume \(a_{22} \neq 0 \)).

Can take \(v_1 = 1 \),
\[v_2 = \frac{r-a_{11}}{a_{12}} \quad \text{or} \quad \mathbf{v} = \begin{pmatrix} 1 \\ \frac{r-a_{11}}{a_{12}} \end{pmatrix}. \]
Plug in \(r = r_1 \), \(r = r_2 \) and get
\[
\begin{pmatrix} V \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{r_1-a_{11}}{a_{12}} \\ 1 \end{pmatrix}, \quad \begin{pmatrix} W \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{r_2-a_{11}}{a_{12}} \\ 1 \end{pmatrix}
\]
associate to \(r_1 \), associate to \(r_2 \).

Then, general solution to \(\dot{x} = Ax \)
\[
x(t) = \begin{pmatrix} \frac{r_1}{r_1t} \\ e^{r_1t} \end{pmatrix} + \begin{pmatrix} \frac{r_2}{r_2t} \\ e^{r_2t} \end{pmatrix}
\]
where \(c_1, c_2 \) are constants.

Consider IVP: \(\dot{x} = Ax, \ x(0) = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \)

We then have
\[
x(0) = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} C_1V + C_2W \\ V_1 \end{pmatrix} = \begin{pmatrix} V_1 & W_1 \\ V_2 & W_2 \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}
\]
\[
or \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} V_1 & W_1 \\ V_2 & W_2 \end{pmatrix}^{-1} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}
\]

Note: If \(a_{12} = 0 \) but \(a_{21} \neq 0 \) can use 2nd equation in \((A - I)v = 0\)
or \(a_{21}V_1 + (a_{22} - r)V_2 = 0, \ V_2 = 0, \ V_1 = \frac{r - a_{22}}{a_{21}} \).
Note: If $v = (v_1, v_2)$ is an eigenvector for A, any multiple of v is also an eigenvector.

So, we can get a unit eigenvector by taking

$$u = \frac{v}{\|v\|} = \left(\frac{v_1}{\sqrt{v_1^2 + v_2^2}}, \frac{v_2}{\sqrt{v_1^2 + v_2^2}} \right)$$
Case 2: \(z(r) = (r-r^2)^2 \)

Get eigenvector \(\mathbf{v} \) as before

and one soln \(x_1(t) = e^{rit} \mathbf{v} \).

Case 2a: There are two independent eigenvectors, say another one is \(\mathbf{w} \).

\(e.g. x = 2x \)

\(y = 2y \) Then, gen soln is

\[x(t) = c_1 e^{rit} \mathbf{v} + c_2 e^{rit} \mathbf{w} \]

Case 2b: Only have multiples of \(\mathbf{v} \) as eigenvector

Find out from solutions of \((A-r_1 I) \mathbf{v} = 0 \)

Then, get a 2nd independent solution to \(\dot{x} = Ax \)

of the form \(x_2(t) = e^{rit} \mathbf{w} + te^{rit} \mathbf{v} \)

where \((A-r_1 I) \mathbf{w} = \mathbf{v} \).

So, general soln

\[x(t) = c_1 e^{rit} \mathbf{v} + c_2 (e^{rit} \mathbf{w} + te^{rit} \mathbf{v}) \]