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15. Step Functions and initial value problems

with discontinuous forcing

In applications it is frequently useful to consider differen-

tial equations whose forcing terms are piecewise differen-

tiable.

Here we begin to explore techniques which enable us

to deal with this situation.

Def. Let c > 0 be a positive real number. The Heav-

iside c function is the function uc defined by

uc(t) =

 0 if t < c

1 if t ≥ c

There are some simple piecewise continuous functions

which can be constructed using simple operations applied

to various u′cs.

Example 1. Consider the graphs of the functions

uc(t), 1− uc(t), uc − u2c.

These are as in the next figures.

8888888888 give figures 88888888888

We can easily compute the Laplace Transform of uc(t)

as follows

L(uc(t)) =
∫ ∞
0
e−stuc(t)dt



November 1, 2013 15-2

=
∫ ∞
c
e−stdt

= −1

s
e−st

∞

t=c

=
e−cs

s
for s > 0

For a function f (t) defined for t > 0, consider the

function g(t) = uc(t)f (t − c). The graph of g(t) is zero

for 0 < t < c, and the graph of f (t) translated to the

right to start at c.

The Laplace Transform of g(t) is simply related to that

of f .

Theorem. If F (s) = L(f (t)) exists for s > a ≥ 0,

and c is a positive constant, then

L(uc(t)f (t− c)) = e−csL(f (t)) = e−csF (s)

for s > a. Also,

L−1(e−csF (s)) = uc(t)f (t− c).

Proof.

Let F (s) = L(f (t)).

We have, using definitions and the the substitution

ξ = t− c,



November 1, 2013 15-3

L(uc(t)f (t− c)) =
∫ ∞
0
e−stuc(t)f (t− c)dt

=
∫ ∞
c
e−stf (t− c)dt

=
∫ ∞
0
e−s(c+ξ)f (ξ)dξ

= e−sc
∫ ∞
0
e−sξf (ξ)dξ

= e−scF (s).

QED.

An alternative formulation of the above theorem is the

following.

L(uc(t)f (t)) = e−csG(s)

where G(s) = L(f (t + c)).

To see this, just write f (t) = f (t+ c− c) and use the

above theorem.

Let us present some examples of the use of these for-

mulas.

Example 2. Let f (t) be defined by

f (t)

 sin(t) if 0 < t < π
4

sin(t) + cos(t− π
4) if t ≥ π

4

Compute L(f (t)).

We have f (t) = sin(t) + uπ
4
cos(t− π

4).

So,
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L(f (t)) = L(sin(t)) + L(uπ
4
cos(t− π

4
))

=
1

s2 + 1
+
se−s

π
4

s2 + 1
.

Example 3. Find the inverse transform of

F (s) =
1− e−2s

s2
.

We have

L−1(F (s)) = L−1(
1

s2
)− L−1(

e−2s

s2
)

= t− u2(t)(t− 2).

Example 4. Find the inverse transform of

G(s) =
1

s2 − 4s + 5
.

We have

G(s) =
1

s2 − 4s + 5

=
1

s2 − 4s + 4 + 1

=
1

(s− 2)2 + 1
= F (s− 2)
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where

F (s) =
1

s2 + 1
.

So,

F (s) = L(sin(t))

and

G(s) = L(e2tsin(t)).

Example 5. Find L−1(2se−3s

s2+5
).

We first find L−1( 2s
s2+5

).

L−1(
2s

s2 + 5
) = L−1(

2s

s2 + (
√

5)2
)

= 2 cos(
√

5t)

Then, we get

L−1(
2se−3s

s2 + 5
) = 2u3(t) cos(

√
5(t− 3)).

Example 6. Find L(u2(t)t2).

We use the formula

L(uc(t)f (t)) = e−csL(f (t + c)).

We get
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L(u2(t)t2) = e−2sL((t + 2)2)

= e−2s(L(t2) + 4L(t) + 4L(1))

= e−2s(
2

s3
+

4

s2
+

4

s
)

Differential Equations with discontinuous right

hand sides

We apply the above techniques to some initial value

problems.

Example 6

Solve the initial value problem

2y′′ + y′ + 2y = u5(t)− u20(t), y(0) = 0, y′(0) = 0.

From our formulas we have

L(y) =
L(u5(t))−L(u20(t))

2s2 + s + 2

=
e−5s − e−20s

s(2s2 + s + 2)

and we have to take the inverse Laplace transform of

the right side.

This is

L−1(
e−5s

s(2s2 + s + 2)
)− L−1(

e−20s

s(2s2 + s + 2)
).
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This is

u5(t)f (t− 5)− u20(t)f (t− 20)

where

f (t) = L−1(
1

s(2s2 + s + 2)
),

We now compute this last inverse transform.

Using partial fractions, we write

1

s(2s2 + s + 2)
) =

A

s
+

B + Cs

2s2 + s + 2

We determine A,B,C from

2As2 + As + 2A + Bs + Cs2 = 1 ∀ s.

Setting terms of like powers equal we get a system of

three equations in the unknowns A,B,C, which we solve

to get

A =
1

2
, B = −1

2
, C = −1.

Hence, we have

(
1

2
)
1

s
−

1
2 + s

2(s2 + s
2 + 1)

= (
1

2
)
1

s
−

1
4 + s + 1

4

2((s + 1
4)2 + 15

16)

We compute the inverse Laplace transform of this as

the sum of the terms
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L−1(
1

2s
)−L−1(

1
4

2((s + 1
4)2 + 15

16)
)−L−1(

s + 1
4

2((s + 1
4)2 + 15

16)
)

We have

L−1(
1

2s
) =

1

2
,

L−1(
1
4

2((s + 1
4)2 + 15

16)
) = L−1(

1

8
√

15
16

√
15
16

((s + 1
4)2 + 15

16)

=
1

2
√

15
e−

t
4 sin(

√√√√√15

16
t),

and

L−1(
s + 1

4

2((s + 1
4)2 + 15

16)
) =

1

2
e−

t
4 cos(

√√√√√15

16
t).

Impulse functions

In some cases one wants to consider a function which

is very large for a short amount of time. One wants to

take integrals of these functions and to consider them as

forcing terms in differential equations.

The standard impulse function is the Dirac delta func-

tion. This is thought of as a function δ(t) which is in-

finite at t = 0, zero at t 6= 0, and has integral with
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value 1. There is no classical function which these prop-

erties, so it takes some work to make rigorous sense of

this. The mathematical theory of distributions (invented

by the French mathematician Laurent Schwartz) is the

modern way to rigorously justify the concepts and cal-

culations involving Dirac delta functions. This theory is

studied in advanced analysis courses and is beyond the

scope of this course.

Nevertheless, one can operate formally with delta func-

tions by assuming that they have certain properties. So,

we assume that the expression δ(t−t0) represents a “gen-

eralized function” whose value is 0 for t 6= t0, infinite at

t = t0, and ∫ ∞
−∞ δ(t− t0)f (t)dt = f (t0)

for any continuous function f (t).

We assume that the Laplace transform L(δ(t− t0)) is

defined by the formula

L(δ(t− t0)) = e−st0.

Using this one can solve differential initial value prob-

lems of the form

ay′′ + by′ + cy = Aδ(t− t0), y(0) = 0, y′(0) = 0

as we did above with Laplace transform methods. (Here

A is a real constant).



November 1, 2013 15-10

One gets

L(y) = A
L(δ(t− t0))

as2 + bs + c
.

Using L(δ(t − t0)) = e−st0, we can find the inverse

Laplace transform and find y in terms of Heaviside func-

tions as above.

Convolutions.

It is sometimes desirable to compute the inverse Laplace

transform of the product of two functions F (s) and G(s).

This calculation requires an operation on functions

called convolution.

Given f (t), g(t) two piecewise continuous functions of

exponential order a defined on (0,∞), we define

(f ? g)(t) =
∫ t
0
f (t− τ )g(τ )dτ .

The function f ? g is called the convolution of f and

g. It will also have exponential order a.

There are the following properties.

1. f ? g = g ? f (commutativity of ?)

2. f ? (g ? h) = (f ? g) ? h (associativity of ?)

3. f ? (g1 + g2) = f ? g1 + f ? g2 (linearity of ?)

4. f ? 0 = 0
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5. If L(f (t)) = F (s) and L(g(t)) = G(s), then

L((f ? g)(t)) = F (s)G(s)

(product rule for ?)

The first four properties follow directly from well-known

properties of integrals.

The product rule is an application of change of order

of integration in an improper double integral.

Let us describe this.

From the definition of L(f ? g) we have

L(f ? g) =
∫ ∞
0
e−st(f ? g)(t)dt

=
∫ ∞
0
e−st(

∫ t
0
f (t− u)g(u)du)dt

=
∫ ∞
0

(
∫ t
0
e−stf (t− u)g(u)du)dt

Let h(t, u) = e−stf (t− u)g(u).

We think of the last integral as the interated integral

of a double integral in which we first fix t = t0, then

integrate respect to the variable u as u runs from u=0 to

u = t0 along the vertical line through (t0, 0) and finally

let t0 run from 0 to ∞. This is a double integral of

the function h(t, u) over the region in the (t, u) plane

bounded by the lines u = 0 and u = t. We can reverse
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the order of integration, fixing u = u0, integrating with

respect to t as t runs from u0 to∞ along the line u = u0,

and finally letting the horizontal lines u = u0 go from

u0 = 0 to u0 =∞.

Thus, we can rewrite the last integral as∫ u=∞
u=0

(
∫ t=∞
t=u

e−stf (t− u)g(u)dt)du

Let us change variables in the last inside integral, set-

ting v = t− u, thinking of u as a constant.

Then, dv = dt, and the iterated integral becomes∫ u=∞
u=0

(
∫ v=∞
v=0

e−s(u+v)f (v)g(u)dv)du

which is equal to∫ u=∞
u=0

(
∫ v=∞
v=0

e−sue−svf (v)g(u)dv)du.

The terms in this integral involving v separate from

those involving u, and the integral becomes the product

(
∫ v=∞
v=0

e−svf (v)dv)(
∫ u=∞
u=0

e−sug(u)du)

This is just L(f (t))L(g(t)).

Some more examples of Laplace transforms:

Find the Laplace transforms of the following functions.

1.

f (t) =

 0 t < 3

(t− 3)2 t ≥ 3
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2.

f (t) =

 0 t < 3

t2 − 6t + 12 t ≥ 3

Solution for the first function.

We have

f (t) = u3(t)(t− 3)2.

Using the formula for uc(t)f (t− c), we get

e−3sF (s)

where

F (s) = L(t2) =
2

s3

Solution for the second function.

We have

f (t) = u3(t)((t− 3)2 + 3) = u3(t)((t− 3)2) + u3(t)3.

We get the Laplace transform is

e−3s 2

s3
+ 3

e−3s

s
.

Impulse response functions

Convolutions give us a way of representing quite gen-

eral inverse Laplace transforms as certain integrals. They
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are mainly of theoretical use because it may be very dif-

ficult to actually compute the integrals involved.

Consider the initial value problem (IVP) for the gen-

eral second order non-homogeneous equation

y′′ + p(t)y′ + q(t)y = g(t), y(0) = y0, y
′(0) = y′0 (1)

If we find the solution yh(t) of the homogeneous IVP

y′′ + p(t)y′ + q(t)y = 0, y(0) = y0, y
′(0) = y′0 (2)

and a particular solution y1(t) of the IVP (with initial

conditions y(0) = 0, y′(0) = 0)

y′′ + p(t)y′ + q(t)y = g(t), y(0) = 0, y′(0) = 0, (3)

then the sum yh(t) + y1(t) solves the original IVP.

In the case of constant coefficients (i.e., p(t) = b, q(t) =

c with b and c constants), the method of Variation of

Parameters applies to allow us to write the solution to

(1) in terms of an integral involving g(t) and the first and

second fundamential solutions of y′′ + py′ + qy = 0.

For functions g(t) which have Laplace transforms, there

is an alternate way of solving the IVP (1) using convolu-

tions.
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To discuss this method, we make the following defini-

tion.

Consider a second degree polynomial z(s) = as2+bs+

c with a, b, c constants and a 6= 0.

The impulse-reponse function of z(s) is the inverse

Laplace transform L−1( 1
z(s)).

This is a very special function of t which depends on

the roots of z(s).

To see what these functions can be involves the various

cases for the roots.

Case 1: (real distinct roots) z(s) = a(s−r1)(s−r2),

r1 6= r2, both real.

Using partial fractions and writing

1

a(s− r1)(s− r2)
=

A

s− r1
+

B

s− r2
we get that

L−1

 1

z(s)

 = Aer1t + Ber2t

Case 2: (real multiple root) z(s) = a(s− r1)2

We have

L−1

 1

z(s)

 =
ter1t

a

Case 3: (complex roots) z(s) = a(s − (α + iβ)(s −
(α− iβ)) with β 6= 0
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We have

L−1

 1

z(s)

 =
1

a

1

(s− α− iβ)(s− α + iβ)

=
eαt

a
L−1(

1

(s− iβ)(s + iβ)
)

=
eαt

a
L−1(

1

s2 + β2)

=
eαt

aβ
sin(βt)

The following Solution Decomposition Theorem gives

us a theoretical way to write solutions of non-homogeneous

second order equations with constant coefficients using

Laplace transform techniques and convolutions.

Theorem (Solution Decomposition Theorem)

Consider the IVP

ay′′ + by′ + cy = g(t), y(0) = y0, y
′(0) = y′0 (4)

where a, b, c, y0, y
′
0 are constants with a 6= 0 and g(t)

is a function defined for t > 0 which has a Laplace

transform.

Let z(s) = as2 + bs+ c be the characteristic polyno-

mial of (4) (as a function of s) and let
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yδ = yδ(t) = L−1

 1

z(s)


be the impulse respsonse function of z(s).

Then the unique solution to (4) can be written as

y(t) = yh(t) + yδ ∗ g

where yh(t) is the unique solution of the homoge-

nous IVP

ay′′ + by′ + cy = 0, y(0) = y0, y
′(0) = y′0

Proof. The proof of this theorem is easy.

We have that the solution y(t) of (4) satisfies

y(t) = L−1

(as + b)y0 + ay′0 + L(g(t))

z(s)



= L−1(as + b)y0 + ay′0
z(s)

+ L−1

L(g(t)

z(s)



The first term yh(t) = L−1
[
(as+b)y0+ay

′
0

z(s)

]
clearly sat-

isfies the homogeneous IVP, and the second term is the

inverse transform of the product of 1
z(s) and L(g(t)).

By the convolution theorem this last term equals yδ∗g.

QED.


