Directions:

- Volunteers will be asked to present solutions in class.
- Each solution you present will count towards your final homework grade.

HOMEWORK EXERCISES

1. Suppose K is compact in \mathbb{R}^n, and $E \subseteq K$. Prove that E is compact if and only if E is closed.

2. Suppose K is compact in \mathbb{R}^n, and for every $x \in K$, there is an $r = r(x) > 0$ such that $B_r(x) \cap K = \{x\}$. Prove that K is a finite set.

3. Suppose $f : \mathbb{R}^n \to \mathbb{R}^m$, and $K \subseteq \mathbb{R}^n$ is compact and connected. For each x, suppose there exists a $\delta = \delta(x) > 0$ such that $f(x) = f(y)$ for all $y \in B_{\delta(x)}(x)$. Prove that f is constant on K.

 Note: This is an excellent example of a “local” to “global” result.

4. Recall that we defined the distance between a point $x \in \mathbb{R}^n$ and a set $A \subseteq \mathbb{R}^n$ as
 $$d(A, x) := \inf \{||x - y|| : y \in A\}$$

 Define the distance between two sets $A, B \subseteq \mathbb{R}^n$ as
 $$d(A, B) := \inf \{||x - y|| : x \in A, y \in B\}.$$

 (a) Prove that if A and B are compact sets that satisfy $A \cap B = \emptyset$, then $d(A, B) > 0$.
 (b) Show that there exist nonempty, closed sets $A, B \subset \mathbb{R}^2$ such that $A \cap B = \emptyset$, but $d(A, B) = 0$.

5. Consider the function
 $$f(x, y) = \left(\frac{x - 1}{y - 1}, x + 2\right),$$
 whose domain is yet to be determined.

 (a) Identify the co-domain of f.
 (b) Find the largest domain E, where the above expression for f makes sense. This is often considered the “natural domain”, or the “maximal domain” of f.

1In general, if you don’t assume that K is connected, you can show that f is constant on every connected component of K.

2I prefer the term “target space” in place of co-domain.
(c) Compute \(\lim_{(x,y) \to (1,-1)} f(x,y) \). You do not need a formal \(\epsilon - \delta \) proof if you cite the correct theorems.

6. Consider the function

\[
f(x, y) = \left(\frac{y \sin(x)}{x}, \tan\left(\frac{x}{y}\right), x^2 + y^2 - xy \right),
\]

whose domain is yet to be determined.

(a) Identify the co-domain of \(f \).

(b) As in the previous problem, find the natural domain of \(f \).

(c) Compute \(\lim_{(x,y) \to (1,-1)} f(x,y) \). Again, there is no need for a formal \(\epsilon - \delta \) proof.

7. Suppose \(f : \mathbb{R}^n \to \mathbb{R}^m \), and \(\lim_{x \to a} f(x) = L \), where \(a \in \mathbb{R}^n \), and \(L \in \mathbb{R}^m \). Prove that there exists a constant \(M \) and an open set \(V \) with \(a \in V \) such that \(\|f(x)\| \leq M \) for all \(x \in V \).