WARMUP PROBLEMS (Not to be turned in)

1. Textbook problems:

<table>
<thead>
<tr>
<th>Section</th>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4</td>
<td>8.4.1, 8.4.2</td>
</tr>
</tbody>
</table>

2. Prove one of the following identities concerning unions and intersections of sets:

 (a) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \)

 (b) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \)

3. Given two sets, \(A \) and \(B \), prove one of the following identities:

 (a) \((A \cup B)^c = A^c \cap B^c \)

 (b) \((A \cap B)^c = A^c \cup B^c \)

 Note: These identities hold for arbitrary unions and intersections.

HOMEWORK EXERCISES

1. Textbook exercises:

<table>
<thead>
<tr>
<th>Section</th>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>8.3.7</td>
</tr>
<tr>
<td>8.4</td>
<td>8.4.3, 8.4.6</td>
</tr>
</tbody>
</table>
2. Suppose \(E \subseteq \mathbb{R} \) and \(a, b \in E \), with \(a < b \).

(a) Recall that \([a, b] \subseteq E\) if and only if \(\forall x \in [a, b], x \in E \). The negation of this "if and only if" statement is given by:

\([a, b] \nsubseteq E\) if and only if \(\neg(\forall x \in [a, b], x \in E) \).

Expand the right hand side of the new (logically equivalent) statement.

(b) If \(E \) is connected, show that \([a, b] \subseteq E\).

3. Let \(\{U_\alpha\}_{\alpha \in A} \) be a collection of non-empty sets.

(a) Determine the truth of each of the following statements:

i. If \(x \in \bigcup_{\alpha \in A} U_\alpha \), then \(\exists \alpha \in A \) such that \(x \in U_\alpha \).

ii. If \(x \in \bigcup_{\alpha \in A} U_\alpha \), then \(\forall \alpha \in A, x \in U_\alpha \).

iii. If \(x \in \bigcap_{\alpha \in A} U_\alpha \), then \(\exists \alpha \in A \) such that \(x \in U_\alpha \).

iv. If \(x \in \bigcap_{\alpha \in A} U_\alpha \), then \(\forall \alpha \in A, x \in U_\alpha \).

For each case that is false, present a counterexample.

(b) Write the converse of each statement in (a), and repeat.

4. If \(A \) is non-empty subset of \(\mathbb{R}^n \), we define the \textit{distance} from a point \(x \in \mathbb{R}^n \) and \(A \) as

\[
d(x, A) := \inf_{a \in A} \{\|x - a\|\}.
\]

(a) Show that if \(x \in A \), then \(d(x, A) = 0 \). In fact, a stronger result holds:

(b) Show that \(x \in \overline{A} \) if and only if \(d(x, A) = 0 \).