12.) Prove that the following is partially correct with the initial assertion "a and d are positive integers" and the final assertion "q and r are integers such that \(a = dq + r \) and \(0 \leq r < d \).

Proof: Consider the loop invariant
\[p = " a = dq + r \), and \(r \geq 0 \)."

When the program executes, we set \(r = a \) and \(q = 0 \), so \(p \) is true because the initial assertion is true, and \(a = d \cdot 0 + r \).

Inside the loop, the first assignment replaces \(r \) with \(r - d \), because \(r \geq d \), we know \(r - d \geq 0 \), so \(r \) remains positive. \(q \) gets replaced with \(q + 1 \), and we know
\[a = dq + r = d(q+1) + (r-d) \]
so the loop invariant remains true.
Because r is decremented by a positive amount, the loop will terminate.

After termination, we have

\[\text{Condition} \land p = \neg (r \leq d) \land p \]

\[d = (r < d) \land p \]

\[= (r < d) \land \neg \neg a = d \cdot q + r \land r \geq 0 \]

\[= (r < d) \land \neg \neg a = d \cdot q + r \land r \geq 0 \]

\[= (0 \leq r < d) \land \neg \neg a = d \cdot q + r \]