GROUP REPRESENTATIONS AND
SYMMETRIC FUNCTIONS

Bruce E. Sagan
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027
sagan@math.msu.edu

I. Group representations

II. Representations of the symmetric group, \mathfrak{S}_n

III. Associated combinatorics

IV. Symmetric functions

Copies available at

http://www.mth.msu.edu/~sagan
References

I. Group representations: A. Modules

All groups G will be finite and all vector spaces V will be over \mathbb{C}.

A matrix representation (rep) of a group G is a group homomorphism

$$X : G \rightarrow GL_d(\mathbb{C}).$$

A G-module is a vector space V, $\dim V = d$, with a group homomorphism

$$\rho : G \rightarrow GL(V).$$

This gives a linear action of G on V: $gv = \rho(g)v$.

The parameter d is called the degree or dimension of the rep. We will freely go between matrix rep's and G-modules.

The group algebra is the G-module

$$\mathbb{C}[G] = \{ \sum_{g \in G} c_g g \mid c_g \in \mathbb{C} \}$$

with action $gh = k$ if $gh = k$ in G. The corresponding matrix rep in the basis $B = \{g \mid g \in G\}$ is called the (left) regular rep. The corresponding matrices $X(g)$ are permutation matrices (cf. Cayley’s Theorem).
Ex. Every group G has the trivial rep X^{tri}

$$X^{\text{tri}}(g) = (1) \quad \text{for all } g \in G.$$

A module for this rep is V with dim $V = 1$ and

$$gv = v \quad \text{for all } g \in G, v \in V.$$

Ex. For a cyclic group $G = \{g, g^2, \ldots, g^n = \epsilon\}$ any 1-dim rep would have $X(g) = (c)$ where

$$(c^n) = X(g^n) = X(\epsilon) = (1).$$

So c is an nth root of 1 and all such nth roots give 1-dim rep’s.

If $n = 2$ then the group algebra is $\mathbb{C}[G] = \{c_1\epsilon + c_2g\}$ with action $g\epsilon = g, gg = \epsilon$. So the left regular rep is

$$X(\epsilon) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad X(g) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Changing basis to $\{\epsilon + g, \epsilon - g\}$ gives an equivalent rep

$$Y(\epsilon) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad Y(g) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

which is a direct sum of the rep’s for $\sqrt{1} = \pm 1$.

4
If G acts on a set S then one obtains a representation by linearly extending to the vector space

$$\mathbb{C}[S] = \{ \sum_{s \in S} c_s s \mid c_s \in \mathbb{C} \}.$$

The basis S gives a rep by permutation matrices.

Ex. Given any group G, a subgroup $H \leq G$, and a set of all distinct left cosets

$$S = \{ t_1H, \ldots, t_lH \}$$

there is an action $gt_jH = t_iH$ if $gt_jH = t_iH$. The module $\mathbb{C}[S]$ is called a *coset rep*. If $H = G$ (resp. $H = \{e\}$) then it’s the trivial (resp. regular) rep.

Ex. The symmetric group \mathfrak{S}_n acts by definition on

$$S = \{1, 2, \ldots, n\}.$$

The corresponding module $\mathbb{C}[1, \ldots, n]$ is the *defining rep*. If $n = 2$ then $(1, 2)1 = 2, (1, 2)2 = 1$ so

$$X(e) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad X((1, 2)) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Also \mathfrak{S}_n has the 1-dim *sign rep*

$$X(\pi) = (\text{sgn } \pi) \quad \text{sgn } \pi = \begin{cases} +1 & \text{if } \pi \text{ is even} \\ -1 & \text{if } \pi \text{ is odd.} \end{cases}$$
B. Reducibility and Maschke’s Theorem

A submodule W of G-module V, $W \leq V$, is a subspace closed under G’s action. Every G-module has trivial submodules $W = \{0\}, V$. Module V is irreducible (irr) or an irrep if it has no non-trivial submodules. Every 1-dim module is an irrep.

Ex. The group algebra $\mathbb{C}[G]$ has submodule

$$W = \mathbb{C}[\sum_{g \in G} g]$$

since $h \sum_g g = \sum_g h g$. This W gives the trivial rep.

If $G = \mathfrak{S}_n$ then we can get the sign rep with

$$U = \mathbb{C}[\sum_{\pi \in \mathfrak{S}_n} (\text{sgn } \pi)\pi].$$

Ex. If $G = \mathfrak{S}_n$ and $V = \mathbb{C}[1, \ldots, n]$ then

$$W = \mathbb{C}[1 + 2 + \cdots + n]$$

is a submodule for the trivial rep. Consider the inner product on V: $\langle i, j \rangle = \delta_{i,j}$ (Kronecker δ). Then

$$W^\perp = \{ \sum c_i i \mid \sum c_i = 0 \}$$

is also a submodule and $V = W \oplus W^\perp$ with W, W^\perp irr. (Clear for W, not for W^\perp.)
A G-module V is completely reducible if

$$V = W^{(1)} \oplus \ldots \oplus W^{(k)}$$

where each $W^{(i)}$ is irr.

Theorem 1 (Maschke) If G is finite then every complex G-module V is completely reducible.

Proof. If V is irr, we are done. If not, let W be a non-trivial submodule. Pick a basis for V $\mathcal{B} = \{v_1, \ldots, v_d\}$ with corresponding inner product $\langle v_i, v_j \rangle = \delta_{i,j}$. Now define another inner product

$$\langle v, w \rangle' = \sum_{g \in G} \langle gv, gw \rangle$$

which is G-invariant:

$$\langle hv, hw \rangle' = \sum_{g \in G} \langle ghv, ghw \rangle = \sum_{g \in G} \langle gv, gw \rangle = \langle v, w \rangle'.$$

Now W^\perp (with respect to $\langle \cdot, \cdot \rangle'$) is a submodule since if $v \in W^\perp$, $w \in W$, and $g \in G$ then

$$\langle gv, w \rangle' = \langle v, g^{-1}w \rangle' = 0.$$

So $V = W \oplus W^\perp$ and done by induction on dim V. □

Note: 1. Maschke may not be true if $|G| = \infty$ or the field is different from \mathbb{C}.

2. Henceforth we can just concentrate on irreps.
C. G-homomorphisms and Schur's Lemma

A G-homomorphism (hom) of G-modules \(V, W \) is a linear map \(\theta : V \to W \) such that for all \(g \in G, v \in V \)

\[
\theta(gv) = g\theta(v).
\]

A bijective \(\theta \) is called a G-isomorphism (iso) and then \(V, W \) are G-equivalent (equiv), \(V \cong W \). Turning everything into matrices

\[
TX(g)v = Y(g)Tv \quad \text{for all } g \in G, v \in \mathbb{C}^d
\]

\[
\Rightarrow TX(g) = Y(g)T \quad \text{for all } g \in G
\]

\[
\text{def } TX = YT.
\]

Ex. Let \(V = \mathbb{C}[v] \) be the trivial rep and \(W = \mathbb{C}[G] \) be the group algebra. Then a G-hom is \(\theta : V \to W \) defined by

\[
\theta(v) = \sum_{g \in G} g.
\]

Ex. Let \(G = S_2 \), let \(V = \mathbb{C}[1, 2] \) be the defining rep and \(W = \mathbb{C}[\epsilon, (1, 2)] \) be the group algebra. Then \(\theta : V \to W \) by \(1 \mapsto \epsilon, \ 2 \mapsto (1, 2) \) is an \(S_2 \)-iso, e.g.,

\[
\theta((1, 2)2) = \theta(1) = \epsilon = (1, 2)(1, 2) = (1, 2)\theta(2).
\]
Lemma 2 (Schur) If V, W are irreducible modules and $\theta : V \to W$ is a G-homomorphism then either

1. θ is a G-isomorphism or

2. θ is the zero map.

Proof. Since θ is a G-hom, ker θ and im θ are G-submodules of V and W, respectively. Since V, W are irr, ker $\theta = \{0\}$ or V and im $\theta = \{0\}$ or W. If ker $\theta = \{0\}$ and im $\theta = W$ then θ is a G-iso. All other cases lead to the zero map. ■

Schur’s Lemma is valid for infinite groups and arbitrary fields. For \mathbb{C} more is true.

Corollary 3 If X is an irreducible matrix representation (irrep) of G over \mathbb{C} and T commutes with X then $T = cI$, $c \in \mathbb{C}$.

Proof. Let c be an eigenvalue of T. Then

$$TX = XT \quad \Rightarrow \quad (T - cI)X = X(T - cI).$$

By Schur, $T - cI$ is invertible or zero and the former can’t happen by the choice of c. ■
D. The endomorphism algebra

A G-module V has endomorphism algebra

$$\text{End } V = \{ \theta : V \to V \mid \theta \text{ is a } G\text{-homomorphism} \}.$$

For a d-dim matrix representation X this becomes

$$\text{End } X = \{ T \in \text{Mat}_d \mid TX = XT \}.$$

To describe $\text{End } X$ we use block matrix operations

$$S \oplus T = \begin{pmatrix} S & 0 \\ 0 & T \end{pmatrix}, \quad S \otimes T = (S_{i,j} T) \text{ where } S = (S_{i,j}).$$

Suppose that X decomposes as

$$X = X^{(1)} \oplus X^{(2)} \oplus \ldots \oplus X^{(l)}$$

where the $X^{(i)}$ are irr. Let $T = (T_{i,j}) \in \text{End } X$ have the same block form. Then $XT = XT$ implies

$$T_{i,j} X^{(j)} = X^{(i)} T_{i,j} \text{ so}$$

$$T_{i,j} = \begin{cases} 0 & \text{if } X^{(i)} \not\cong X^{(j)} \text{ (Schur)} \\ c_{i,j} I & \text{if } X^{(i)} \cong X^{(j)} \text{ (Cor)}. \end{cases}$$

Renaming the irreps to collect equiv ones and letting $d_i = \text{dim } X^{(i)}$

$$X = \bigoplus_{i=1}^k m_i X^{(i)} \Rightarrow$$

$$\text{End } X = \{ \bigoplus_{i=1}^k (M_{m_i} \otimes I_{d_i}) \mid M_{m_i} \in \text{Mat}_{m_i} \forall i \}.$$
Otherwise put

$$\text{End } X \cong \bigoplus_{i=1}^{k} \text{Mat}_{m_i}.$$

The center $Z_{\text{Mat}_m} = \{c I \mid c \in \mathbb{C}\}$ and so

$$Z_{\text{End } X} = \{\bigoplus_{i=1}^{k} c_i I_{m_i d_i} \mid c_i \in \mathbb{C} \text{ for all } i\} \cong \text{Diag}_k,$$

where Diag$_k$ are the diagonal matrices in Mat$_k$.

Summarizing and taking dimensions:

Theorem 4 Let X be a matrix rep of G with

$$X = m_1 X^{(1)} \oplus m_2 X^{(2)} \oplus \cdots \oplus m_k X^{(k)}$$

where the $X^{(i)}$ are inequiv, irr and with dimensions $\dim X^{(i)} = d_i$. Then

1. $\text{End } X \cong \bigoplus_{i=1}^{k} \text{Mat}_{m_i}$,

2. $Z_{\text{End } X} \cong \text{Diag}_k$,

3. $\dim X = m_1 d_1 + m_2 d_2 + \cdots + m_k d_k$,

4. $\dim(\text{End } X) = m_1^2 + m_2^2 + \cdots + m_k^2$,

5. $\dim Z_{\text{End } X} = k$.

11
E. Group characters and inner products

Matrix rep X has character (char) $\chi : G \to \mathbb{C}$ where

$$\chi(g) = \text{tr} X(g).$$

A G-module also has a unique character since any two bases give conjugate matrix reps.

Ex. If $\dim X = 1$ then χ is called a linear char and

$$\chi(gh) = \text{tr} X(gh) = \text{tr} X(g) \text{tr} X(h) = \chi(g) \chi(h).$$

Ex. If $V = \mathbb{C}[G]$ (regular rep) then the char is

$$\chi^{\text{reg}}(g) = |\{h : gh = h\}| = \begin{cases} |G| & \text{if } g = e \\ 0 & \text{else.} \end{cases}$$

Ex. If $V = \mathbb{C}[1, \ldots, n]$ (defining rep of S_n), then

$$\chi^{\text{def}}(\pi) = \text{number of fixed points of } \pi.$$

Proposition 5 Let group G have matrix representation X with $\dim X = d$ and character χ.

1. $\chi(e) = d$,

2. If K is a conjugacy class: $g, h \in K \Rightarrow \chi(g) = \chi(h),$

3. If rep Y has char ψ: $X \cong Y \Rightarrow \chi = \psi.$
Character χ is a *class function* since it is constant on conjugacy classes K. Let $\chi_K = \chi(g), g \in K$. The *character table* of G has rows indexed by the irreps (χ_{tri} first) columns indexed by the conjugacy classes ($\{\varepsilon\}$ first) and entries χ_K. It is square.

Ex. If $G = \mathbb{S}_3$ then we have

<table>
<thead>
<tr>
<th></th>
<th>${\varepsilon}$</th>
<th>${(1, 2); (1, 3); (2, 3)}$</th>
<th>${(1, 2, 3); (1, 3, 2)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ_{tri}</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>χ_{sgn}</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>χ_{mys}</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

The *inner product* of $\chi, \psi : G \to \mathbb{C}$ is

$$\langle \chi, \psi \rangle := \frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\psi(g)} = \frac{1}{|G|} \sum_K |K| \chi_K \overline{\psi_K}.$$

If G-module V has char ψ then an orthonormal basis for V with respect to a G-invariant inner product on V gives matrices for ψ which are unitary and

$$\langle \chi, \psi \rangle = \frac{1}{|G|} \sum_{g \in G} \chi(g) \psi(g^{-1}).$$

If $G = \mathbb{S}_n$ then g and g^{-1} are conjugate and so

$$\langle \chi, \psi \rangle = \frac{1}{n!} \sum_K |K| \chi_K \overline{\psi_K}.$$
Theorem 6 (Character relations, the 1st kind)
If χ, ψ are irreducible characters of a group G then

$$\langle \chi, \psi \rangle = \delta_{\chi,\psi}. \quad (*)$$

Proof sketch. Let χ, ψ come from reps X, Y. Let
$$Z = (z_{i,j}) \text{ and } W = |G|^{-1}\sum_{g \in G} X(g)ZY(g^{-1}).$$
Then $XW = WY$ and by Schur's Lemma

$$W = \begin{cases}
0 & \text{if } X \not\cong Y, \\
\text{cI} & \text{if } X \cong Y.
\end{cases}$$

Since this is true for all Z, one can get equations relating the entries of X and Y giving $(*)$. ■

Corollary 7 Let $X \cong \bigoplus_{i=1}^{k} m_i X^{(i)}$ where the $X^{(i)}$ are pairwise inequiv with char's $\chi^{(i)}$.

1. $\chi = m_1\chi^{(1)} + m_2\chi^{(2)} + \cdots + m_k\chi^{(k)},$
2. $\langle \chi, \chi^{(i)} \rangle = m_i,$
3. $\langle \chi, \chi \rangle = m_1^2 + m_2^2 + \cdots + m_k^2,$
4. $X \text{ is irr } \Leftrightarrow \langle \chi, \chi \rangle = 1 \text{ (use 3),}$
5. If Y has char ψ then $X \cong Y \Leftrightarrow \chi = \psi \text{ (use 2)}.
Ex. Let $G = G_3$ and $V = \mathbb{C}[1, 2, 3]$ (defining rep) with char $\chi = \chi^{\text{def}}$. Then

$$\chi(\pi) = \text{number of fixed points of } \pi$$

$$\chi(\epsilon) = 3, \ \chi((1, 2)) = 1, \ \chi((1, 2, 3)) = 0.$$

Also

$$\chi = m_1\chi^{\text{tri}} + m_2\chi^{\text{sgn}} + m_3\chi^{\text{mys}} \quad \text{where}$$

$$m_1 = (1 \cdot 3 \cdot 1 + 3 \cdot 1 \cdot 1 + 2 \cdot 0 \cdot 1)/3! = 1$$

$$m_2 = (1 \cdot 3 \cdot 1 + 3 \cdot 1(-1) + 2 \cdot 0 \cdot 1)/3! = 0.$$

So

$$\chi = \chi^{\text{tri}} + m_3\chi^{\text{mys}}.$$

Consider the character

$$\psi = \chi - \chi^{\text{tri}},$$

$$\psi(\epsilon) = 2, \ \psi((1, 2)) = 0, \ \psi((1, 2, 3)) = -1.$$

Then ψ is irreducible since

$$\langle \psi, \psi \rangle = (1 \cdot 2^2 + 3 \cdot 0^2 + 2(-1)^2)/3! = 1.$$

So $m_3 = 1$ and $\chi^{\text{mys}} = \psi$ giving the complete table

<table>
<thead>
<tr>
<th></th>
<th>${\epsilon}$</th>
<th>${(1, 2); (1, 3); (2, 3)}$</th>
<th>${(1, 2, 3); (1, 3, 2)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^{tri}</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>χ^{sgn}</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>χ^{mys}</td>
<td>2</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

Note: For general n, $\chi^{\text{def}} - \chi^{\text{tri}}$ is irreducible.
F. Decomposing the group algebra

Proposition 8 Let $\mathbb{C}[G] = \bigoplus_i m_i V^{(i)}$ where the $V^{(i)}$ are a complete list of all inequiv irreps

1. $m_i = \dim V^{(i)}$ (so all irreps occur),

2. $\sum_i (\dim V^{(i)})^2 = |G|$,

3. $\# \text{ of irreps} = \# \text{ of conjugacy classes } K \text{ of } G$.

Proof sketch. 1. Let $\chi = \chi^{\text{reg}}$. Then

$$m_i = \frac{\sum_{g \in G} \chi(g)\chi^{(i)}(g^{-1})}{|G|} = \frac{\chi(\epsilon)\chi^{(i)}(\epsilon)}{|G|} = \dim V^{(i)}.$$

2. Follows from 1. 3. $# \text{ of irreps} = \dim Z_{\text{End } \mathbb{C}[G]}$.

$\text{End } \mathbb{C}[G] = \{ \phi_V : \phi_V(w) = wv \} \cong \mathbb{C}[G]$.

Now $z \in Z_{\mathbb{C}[G]}$ iff $z = hzh^{-1}$ for all $h \in G$. So for each conjugacy class K of G, $Z_{\mathbb{C}[G]}$ has a basis element

$$z_K = \sum_{k \in K} k.$$
Corollary 9 1. The character table of G is square.

2. The irr characters χ of G form an orthonormal basis for the space $R(G)$ of class functions on G.

3. (Character relations of the second kind) If K, L are conjugacy classes of G and χ is irreducible

$$\sum_{\chi} \chi_K \overline{\chi_L} = \frac{|G|}{|K|} \delta_{K,L}. $$

Proof. 1 and 2 follow from part 3 of the Proposition and the character relations of the first kind.

3. The relations of the first kind also give that the modified character table $U = (\sqrt{|K|} |G| \chi_K)$ has orthonormal rows, thus orthonormal columns.

Ex. We can find χ^{mys} for S_3 another way. By the Proposition, part 2,

$$1^2 + 1^2 + \chi^{mys}(e)^2 = 3! \Rightarrow \chi^{mys}(e) = 2. $$

The other two entries are found using the relations of the second kind. For example, taking $K = \{e\}$ and $L = \{(1,2), \ldots\}$

$$0 = 1 \cdot 1 + 1(-1) + 2\chi^{mys}_L \Rightarrow \chi^{mys}_L = 0.$$
G. Representations of products and subgroups

If X, Y are matrix reps of G, H respectively then the tensor product rep of $G \times H$ is

$$(X \otimes Y)(g, h) = X(g) \otimes Y(h).$$

Proposition 10

1. $X \otimes Y$ is a rep of $G \times H$. If X, Y are irreps then so is $X \otimes Y$.

2. As $X^{(i)}, Y^{(j)}$ run over complete lists of inequiv irreps for G, H resp, $X^{(i)} \otimes Y^{(j)}$ runs over a complete list of inequiv irreps for $X \otimes Y$.

3. If $X, Y, X \otimes Y$ have characters $\chi, \psi, \chi \otimes \psi$ resp then

$$(\chi \otimes \psi)(g, h) = \chi(g)\psi(h).$$

Proof of 2. Suppose that $X^{(i)}, Y^{(j)}$ have chars $\chi^{(i)}, \psi^{(j)}$ resp. Then inequivalence follows from

$$\langle \chi^{(i)} \otimes \psi^{(j)}, \chi^{(k)} \otimes \psi^{(l)} \rangle = \langle \chi^{(i)}, \chi^{(k)} \rangle \langle \psi^{(j)}, \psi^{(l)} \rangle = \delta_{i,k} \delta_{j,l} = \delta_{(i,j),(k,l)}.$$

For list completeness, just check we have the right number of irreps. Let $k(\cdot) = \#$ of conjugacy classes.

$$\# \text{ of irreps of } G \times H = k(G \times H) = k(G)k(H) = (\# \text{ of irreps of } G)(\# \text{ of irreps of } H).$$
If $H \leq G$ and X is a rep of G then the restriction of X to H, $X \downarrow_H = X \downarrow_H^G$, is

$$X \downarrow_H (h) = X(h).$$

It is clear the $X \downarrow_H$ is a rep, but if X is irr then $X \downarrow_H$ need not be. For example, if X is the 2-dim irrep of G_3 and $H = \{e, (1, 2)\} := G_{\{1,2\}} \cong G_2$ then

$$X \downarrow_H \cong X^{\text{tri}} \oplus X^{\text{sgn}}.$$

If Y is a rep of H then $Y(g) := 0$ for $g \not\in H$ doesn’t give a rep. But if $G = \bigcup t_i H$ then the induction of Y to G, $Y \uparrow^G = Y \uparrow^G_H$, has block matrices

$$Y \uparrow^G (g) = (Y(t_i^{-1}gt_j)).$$

Ex. Consider $1 \uparrow^G$ for the trivial char 1 of H. Then

$$1(g) = \begin{cases} 1 & \text{if } g \in H, \\ 0 & \text{if } g \not\in H. \end{cases}$$

So

$$1(t_i^{-1}gt_j) = 1 \iff t_i^{-1}gt_j \in H \iff gt_jH = t_iH.$$

So $1 \uparrow^G$ equals the coset rep $\mathbb{C}[H]$ in the standard basis $\mathcal{H} = \{t_1H, \ldots, t_iH\}$ and so consists of permutation matrices. In general, $Y \uparrow^G$ consists of block permutation matrices.
Proposition 11
1. \(Y \uparrow^G \) is a representation of \(G \) which may be reducible even if \(Y \) is an irrep of \(H \).
2. Two transversals of \(H \) give equiv induced reps.
3. If \(Y, Y \uparrow^G \) have chars \(\psi, \psi \uparrow^G \) resp then
 \[
 \psi \uparrow^G (g) = \frac{1}{|H|} \sum_{x \in G} \psi(x^{-1}gx).
 \]
4. (Frobenius Reciprocity) If \(\chi \) is a char of \(G \) then
 \[
 \langle \psi \uparrow^G, \chi \rangle = \langle \psi, \chi \downarrow H \rangle.
 \]

Proof of 4. We have
\[
\langle \psi \uparrow^G, \chi \rangle = \frac{1}{|G|} \sum_{g \in G} \psi \uparrow^G (g) \chi(g^{-1})
\]
\[
= \frac{1}{|G||H|} \sum_{x,g \in G} \psi(x^{-1}gx) \chi(g^{-1})
\]
\[
= \frac{1}{|G||H|} \sum_{x,y \in G} \psi(y) \chi(xy^{-1}x^{-1})
\]
\[
= \frac{1}{|G||H|} \sum_{x,y \in G} \psi(y) \chi(y^{-1})
\]
\[
= \frac{1}{|H|} \sum_{y \in H} \psi(y) \chi(y^{-1})
\]
\[
= \frac{1}{|H|} \sum_{y \in H} \psi(y) \chi(y^{-1}) = \langle \psi, \chi \downarrow H \rangle.
\]
H. The group determinant

Indeterminates \(\{ c_g | g \in G \} \) give the group matrix

\[
\Gamma = (c_{g^{-1}h})_{g,h \in G}.
\]

In the case \(G = \{ g, g^2, \ldots, g^n = \epsilon \} \), \(\Gamma \) is a circulant.

Ex. If \(n = 3 \) with rows and cols indexed \(\epsilon, g, g^2 \)

\[
\Gamma =
\begin{pmatrix}
c_\epsilon & c_g & c_{g^2} \\
c_{g^2} & c_\epsilon & c_g \\
c_g & c_{g^2} & c_\epsilon
\end{pmatrix}
:=
\begin{pmatrix}
c_0 & c_1 & c_2 \\
c_2 & c_0 & c_1 \\
c_1 & c_2 & c_0
\end{pmatrix}.
\]

Theorem 12 (Frobenius) If the irreps \(G \) are \(X^{(i)} \),
\(\dim X^{(i)} = d_i \), \(1 \leq i \leq k \), then

\[
\det \Gamma = \prod_{i=1}^{k} \Delta_i^{d_i} \text{ with } \Delta_i := \left| \sum_{g \in G} X^{(i)}(g)c_g \right| \text{ irr.} \]

Corollary 13 \(|c_{j-i}| = \prod_{\zeta^n=1} (c_0+c_1\zeta+\cdots+c_{n-1}\zeta^{n-1}) \).

Ex. \[
\begin{vmatrix}
c_0 & c_1 \\
c_1 & c_0
\end{vmatrix} = c_0^2 - c_1^2 = (c_0 + c_1)(c_0 - c_1).
\]

Open Problem. Find a combinatorial proof of the corollary: The det counts \(\mathcal{G}_n \) with weight \(\text{wt}_1 \). The product counts \(\mathcal{F} = \{ f : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\} \} \) with weight \(\text{wt}_2 \). Partition \(\mathcal{G}_n = \bigsqcup_i S_i \), \(\mathcal{F} = \bigsqcup_j F_j \) s.t. \(\sum_{f \in F_j} \text{wt}_2 f = 0 \) for certain \(F_j \) and for the rest there’s a weight preserving bijection with the \(S_i \).
II. Reps of \mathfrak{S}_n: A. Permutation modules

The number of irreps of \mathfrak{S}_n is the number of conjugacy classes which is the same as the number of partitions $\lambda = (\lambda_1, \ldots, \lambda_l)$ of n, $\lambda \vdash n$, i.e.,

$$\lambda \in (\mathbb{Z}^+)^l$$

is weakly decreasing and $\sum_i \lambda_i = n$.

To every λ is associated a Young subgroup

$$\mathfrak{S}_\lambda = \mathfrak{S}_{\{1, \ldots, \lambda_1\}} \times \mathfrak{S}_{\{\lambda_1+1, \ldots, \lambda_1+\lambda_2\}} \times \cdots$$

The corresponding coset rep M^λ (for $1 \uparrow \mathfrak{S}_n^\lambda$) is called a permutation module. These are not irreducible, but we will find an ordering \succ of partitions such that

$$M^\lambda = S^\lambda \bigoplus \bigoplus_{\mu \succ \lambda} K_{\mu \lambda} S^\mu$$

where the S^μ are irreps and the $K_{\mu \lambda}$ multiplicities.

To conveniently describe M^λ: The Ferrers diagram of λ is the set of dots or cells

$$\lambda = \{ (i, j) \in (\mathbb{Z}^+)^2 \mid 1 \leq j \leq \lambda_i \}.$$

Ex.

$$(4, 4, 2) = \bullet \bullet \bullet \bullet = \begin{array}{|c|c|c|c|}
\hline
\bullet & \bullet & \bullet & \bullet \\
\hline
\bullet & \bullet & \bullet & \bullet \\
\hline
\end{array} \equiv \begin{array}{|c|c|}
\hline
2,3 \\
\hline
\end{array}.$$
A Young tableau of shape λ or λ-tableau, written $t = t^\lambda$ or $\text{sh} \ t = \lambda$, is a bijection

$$t : \lambda \to \{1, 2, \ldots, n\}, \quad t_{i,j} := t(i, j).$$

A tabloid, $\{t\}$, is an equivalence class of tableaux with the same corresponding rows.

Ex. All tableaux of shape $(2, 1)$ are

$$\begin{align*}
1 & \ 2, \\
2 & \ 1, \\
1 & \ 3, \\
3 & \ 2, \\
3 & \ 1, \\
2 & \ 1, \\
2 & \ 1
\end{align*}$$

If t is the first tableau in the list

$$\{t\} = \left\{ \begin{array}{c}
1 & 2, \\
2 & 1 \\
3 & 2
\end{array} \right\} = \begin{array}{c}
1 \\
2 \\
3
\end{array} = \begin{array}{c}
1 \\
2 \\
3
\end{array}.$$

A $\pi \in \mathfrak{S}_n$ acts on tableau $t = (t_{i,j})$ by $\pi t = (\pi t_{i,j})$ and thus acts on tabloids. With this action

$$M^\lambda = \mathbb{C}[\{t\} \mid \text{all } \lambda\text{-tabloids } \{t\}].$$

Ex. $\lambda = (n)$ gives the trivial rep

$$M^{(n)} = \mathbb{C}[\begin{array}{c}1 \\
2 \\
\ldots \\
n\end{array}].$$

$\lambda = (1, 1, \ldots, 1) := (1^n)$ gives the regular rep

$$M^{(1^n)} \cong \mathbb{C}[\mathfrak{S}_n].$$

$\lambda = (n-1, 1)$ gives the defining rep (ignore 1st row)

$$M^{(n-1,1)} \cong \mathbb{C}[1, 2, \ldots, n].$$
B. Orderings on partitions

For partitions $\lambda = (\lambda_1, \ldots, \lambda_l)$ and $\mu = (\mu_1, \ldots, \mu_m)$ of n, the dominance partial order, $\lambda \trianglerighteq \mu$, is

for all $i \geq 1$: $\lambda_1 + \cdots + \lambda_i \geq \mu_1 + \cdots + \mu_i$

and the lexicographic (lex) total order, $\lambda > \mu$, is

for some $i \geq 1$: $\lambda_i > \mu_i$ and $\lambda_j = \mu_j$ for $j < i$.

Ex.

$(3, 3) \triangleright (3, 2, 1) : 3 \geq 3, 3 + 3 > 3 + 2, \ldots$
$(3, 3), (4, 1, 1)$ incomp in $\triangleright : 3 < 4, 3 + 3 > 4 + 1.$
$(4, 1, 1) > (3, 3) : 4 > 3.$
$(3, 3) > (3, 2, 1) : 3 = 3, 3 > 2.$

Proposition 14 1. $\lambda \trianglerighteq \mu$ implies $\lambda \triangleright \mu$.

2. (Dominance Lemma, DL) If $\forall i$ entries of row i of tableau s^μ are in different col’s of t^λ then $\lambda \trianglerighteq \mu$.

Proof. 2. Sort each column of t^λ so the entries in the first i rows of s^μ lie in the first i rows of t^λ.

$$\sum_{j \leq i} \lambda_j = \# \text{ elements in first } i \text{ rows of } t^\lambda \geq \# \text{ elements in first } i \text{ rows of } s^\mu = \sum_{j \leq i} \mu_j.$$
C. The irreducible Specht modules

If \(H \subseteq \mathcal{S}_n \) then let
\[
H^- = \sum_{\pi \in H} (\text{sgn} \, \pi) \pi \in \mathbb{C}[\mathcal{S}_n].
\]

If tableau \(t \) has columns \(C_1, \ldots, C_m \) then let
\[
C_t := \mathcal{S}_{C_1} \times \cdots \times \mathcal{S}_{C_m} \text{ (the column group)},
\]
\[
\kappa_t := C_t^- = \kappa_{C_1} \kappa_{C_2} \cdots \kappa_{C_m},
\]
\[
e_t := \kappa_t\{t\} \text{ (the polytabloid)}.
\]

Ex. If \(t = \begin{array}{ccc}
4 & 1 & 2 \\
3 & 5 & 2
\end{array} \) \(\text{then} \)
\[
C_t = \mathcal{S}_{\{3,4\}} \times \mathcal{S}_{\{1,5\}} \times \mathcal{S}_{\{2\}},
\]
\[
\kappa_t = \epsilon - (3, 4) - (1, 5) + (3, 4)(1, 5)
= (\epsilon - (3, 4))(\epsilon - (1, 5)),
\]
\[
e_t = \begin{array}{c}
\frac{4 \ 1 \ 2}{3 \ 5} - \frac{3 \ 1 \ 2}{4 \ 5} - \frac{4 \ 5 \ 2}{3 \ 1} + \frac{3 \ 5 \ 2}{4 \ 1}
\end{array}.
\]

Lemma 15 If \(\pi \in \mathcal{S}_n \) and \(t \) is a tableau then
\[
\kappa_{\pi t} = \pi \kappa_t \pi^{-1} \quad \text{and} \quad e_{\pi t} = \pi e_t.
\]
Partition λ has \textit{Specht module}

\[S^\lambda = \mathbb{C}[e_t \mid \text{all } \lambda\text{-tableaux } t]. \]

\textbf{Ex. 1.} $\lambda = (n)$ gives the trivial rep: Any (n)-tableau t has $e_t = \begin{array}{c} 1 \\ 2 \\ \cdots \\ n \end{array}$ so

\[\pi e_t = e_{\pi t} = e_t. \]

2. $\lambda = (1^n)$ gives the sign rep: For any $t = t(1^n)$

\[\pi e_t = \pi \mathfrak{S}_n \{t\} = (\text{sgn } \pi) e_t. \]

3. $\lambda = (n-1, 1)$: Abbreviate $t = t^\lambda$ to the 2nd row

\[e_t = \begin{array}{c} i \\ \cdots \\ k \\ j \end{array} - \begin{array}{c} j \\ \cdots \\ k \\ i \end{array} = j - i, \]

\[S(n-1, 1) = \mathbb{C}[j - i \mid 1 \leq i < j \leq n], \]

\[= \{ \sum_{i=1}^{n} c_i i \mid \sum_{i=1}^{n} c_i = 0 \}. \]

A G-module U is \textit{cyclic, generated by $u \in U$} if

\[U = \mathbb{C}[gu \mid g \in G]. \]

\textbf{Corollary 16} S^λ is cyclic generated by any $e_t \in S^\lambda$.

Define an \mathfrak{S}_n-invariant inner product on M^λ by

\[\langle \{t\}, \{s\} \rangle = \delta_{\{t\},\{s\}}. \]
Lemma 17 (Sign Lemma, SL) Let $H \leq \mathfrak{S}_n$.

1. $\pi \in H \Rightarrow \pi H^- = H^- \pi = (\text{sgn } \pi) H^-.$

2. $u, v \in M^\lambda \Rightarrow \langle H^- u, v \rangle = \langle u, H^- v \rangle.$

3. $(b, c) \in H \Rightarrow H^- = k(\varepsilon - (b, c))$ for some $k \in \mathbb{C}[\mathfrak{S}_n].$

4. b, c in the same row of tableau s and $(b, c) \in H \Rightarrow H^- \{s\} = 0.$

Corollary 18 I. If $\text{sh } t = \lambda, \text{sh } s = \mu$ with $\kappa_t \{s\} \neq 0$ then $\lambda \triangleright \mu$. If $\lambda = \mu$ then $\kappa_t \{s\} = \pm e_t.$

II. (James’ Submodule Theorem) If U is a submodule of M^μ then $U \supseteq S^\mu$ or $U \subseteq S^{\mu\perp}$.

III. The $S^\mu, \mu \vdash n$, are all inequiv \mathfrak{S}_n-irreps over \mathbb{C}.

Proof. I. b, c in the same row of $s \Rightarrow b, c$ not in the same col of t (else $\kappa_t \{s\} = 0$ by SL4) $\Rightarrow \lambda \triangleright \mu$ (DL).

If $\lambda = \mu \Rightarrow \{s\} = \pi \{t\}$ for some $\pi \in \mathfrak{S}_n$ and by SL1

$$\kappa_t \{s\} = \kappa_t \pi \{t\} = (\text{sgn } \pi) \kappa_t \{t\} = \pm e_t.$$

II. If $u \in U$ and $t = t^\mu \Rightarrow \kappa_t u = ce_t$ for $c \in \mathbb{C}$ by I. If some $c \neq 0 \Rightarrow e_t \in U$ and $S^\mu \subseteq U$. Else use SL2 to show $U \subseteq S^{\mu\perp}$.

27
D. The standard tableaux basis for S^λ

Tableau t is standard if its rows and col’s increase.

Ex. \[1 \ 3 \ 4 \]
2 5

is standard; \[2 \ 3 \ 4 \]
1 5

is not.

Theorem 19 A basis for S^λ is

\[\{ e_t \mid t \text{ a standard } \lambda\text{-tableau} \}. \]

Independence. A composition is a permutation of a partition. If \(\{t\} \) is a tabloid, for \(i \geq 1 \) let

\[\{t\}^i = \text{tabloid of all entries } \leq i \text{ in } \{t\}, \]
\[\lambda^i = \text{the shape of } \{t\}^i, \text{ a composition.} \]

Ex. If \(\{t\} = \frac{2}{1} \frac{3}{1} \) then

\[\{t\}^1 = \frac{0}{1} \frac{1}{1} \]
\[\{t\}^2 = \frac{2}{1} \frac{1}{1} \]
\[\{t\}^3 = \frac{2}{1} \frac{3}{1} \]
\[\lambda^1 = (0, 1) \]
\[\lambda^2 = (1, 1) \]
\[\lambda^3 = (2, 1). \]

Dominance order on tabloids is

\[\{t\} \succ \{s\} \iff \lambda^i \succ \mu^i \quad \forall i. \]

Proposition 20 1. (Tabloid Dominance Lemma) If \(k < l \) and \(k \) is lower than \(l \) in \(\{t\} \) then \((k, l)\{t\} \succ \{t\} \).

2. \(t \) standard and \(\{s\} \) appears in \(e_t \) \(\Rightarrow \{t\} \succ \{s\} \).

3. The standard \(e_t \) are independent.
Span. To show e_t a lin comb of standard e_s one can assume the col’s of t increase. (Else $\exists \pi \in C_t$ with col’s of πt increasing and $e_{\pi t} = (\text{sgn} \, \pi) e_t$.) If t has row descent $a > b$, it suffices to find tableaux s s.t.

1. $e_t = -\sum_s (\text{sgn} \, \pi_s) e_s$ where $\pi_s t = s$,
2. $[s] \triangleright [t]$ for all s, $[s] = \text{col tabloid}$.

A (resp B) := entries of t below a (resp above b).

The s are all tableaux gotten by permuting $A \cup B$ s.t. the elements of $A \cup B$ still increase in their col’s.

Ex. If $t = \begin{pmatrix} 2 & 1 & 5 \\ 3 & 4 & 6 \end{pmatrix}$ with $2 > 1$ \Rightarrow $A = \{2, 3\}$, $B = \{1\}$,

$s_1 = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$ $s_2 = \begin{pmatrix} 1 & 2 & 5 \\ 3 & 4 & 6 \end{pmatrix}$

$\pi_1 = (1, 3, 2)$ $\pi_2 = (1, 2)$

$e_t = -(e_{s_1} - e_{s_2})$.

29
E. Young’s natural representation

The matrix rep \(X^\lambda \) for \(S^\lambda \) in the standard basis is Young’s natural rep. Since \((k, k+1), 1 \leq k < n\), generate \(S_n \) it suffices to compute \(M = X^\lambda((k, k+1)) \). If \(t \) is standard than to find \(M_{t,t} \) we must express \((k, k+1)e_t \) in the standard basis.

1. If \(k, k+1 \) in the same col of \(t \Rightarrow (k, k+1) \in C_t \)

\[
\therefore (k, k+1)e_t = -e_t.
\]

2. If \(k, k+1 \) in the same row of \(t \Rightarrow (k, k+1)t \) has row descent \(k+1 > k \)

\[
\therefore (k, k+1)e_t = e_t \pm \text{ other } e_s \text{ with } [s] \triangleright [t].
\]

3. Else \((k, k+1)t = t' \) where \(t' \) is standard

\[
\therefore (k, k+1)e_t = e_{t'}.
\]

Ex. If \(\lambda = (2, 1) \) then the standard tableaux are

\[
t_1 = \begin{array}{c}
1 \\
2 \\
3
\end{array} \quad \text{and} \quad t_2 = \begin{array}{c}
1 \\
3 \\
2
\end{array}.
\]

If \((k, k+1) = (1, 2)\) then

\[
(1, 2)e_{t_1} = \begin{array}{c}
2 \\
3 \\
1
\end{array} - \begin{array}{c}
1 \\
3 \\
2
\end{array} = -e_{t_1}.
\]

\((1, 2)e_{t_2} \) was essentially computed last slide.

\[
\therefore X^{(2,1)}((1, 2)) = \begin{pmatrix}
-1 & -1 \\
0 & 1
\end{pmatrix}.
\]
F. The Branching and Young Rules

Partition λ has *inner corner* $(i, j) \in \lambda$ if

$$\lambda^- = \lambda \setminus (i, j)$$

is a partition, and *outer corner* $(i, j) \not\in \lambda$ if

$$\lambda^+ = \lambda \cup (i, j)$$

is a partition.

\[\bullet \bullet \bullet \bullet \]

Ex. If $\lambda = \bullet \bullet$ then

\[\lambda^- : \bullet \bullet \bullet \]

\[\lambda^+ : \bullet \bullet \bullet \bullet \]

Theorem 21 (Branching Rule) *If* $\lambda \vdash n$ *then*

1. $S^\lambda \uparrow_{\mathcal{S}_{n-1}} \cong \bigoplus_{\lambda^-} S^{\lambda^-}$,

2. $S^\lambda \downarrow_{\mathcal{S}_{n+1}} \cong \bigoplus_{\lambda^+} S^{\lambda^+}$.

Ex. From the example above

$$S^{(4,2,2)} \uparrow_{\mathcal{S}_9} \cong S^{(5,2,2)} \oplus S^{(4,3,2)} \oplus S^{(4,2,2,1)}.$$
Tableau T is called \textit{semistandard} if it has strictly increasing columns while its rows weakly increase. The \textit{content} of T, $\text{ct } T$, is the composition μ s.t.

$$\mu_i = \# \text{ of } i's \text{ in } T.$$

\textbf{Ex.} $T = \begin{array}{ccc} 1 & 1 & 4 \\ 2 & 4 \end{array}$ has content $\mu = (2, 1, 0, 2)$.

The \textit{Kostka numbers} are

$$K_{\lambda \mu} = \# \text{ of semistandard } T, \text{ shape } \lambda, \text{ content } \mu.$$

\textbf{Theorem 22 (Young’s Rule)}

$$M^\mu \cong \bigoplus_{\lambda \unrhd \mu} K_{\lambda \mu} S^\lambda.$$

\textbf{Ex.} If $\mu = (2, 1, 1)$ then the possible $\lambda \unrhd \mu$ are

$\lambda : (2, 1, 1) \quad (2, 2) \quad (3, 1) \quad (4)$

$$1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 2 \quad 1 \quad 1 \quad 2 \quad 3$$

$T : \quad 2 \quad 2 \quad 3 \quad 3 \quad 1 \quad 1 \quad 3 \quad 2$

So $M^{(2,1,1)} \cong S^{(2,1,1)} \oplus S^{(2,2)} \oplus 2S^{(3,1)} \oplus S^{(4)}$.

\textbf{Note:} For any μ, $K_{\mu \mu} = 1 = K_{(n) \mu}$.
III. Combinatorics: A. Schensted’s algorithm

Let \(\text{SYT}(\lambda) \) be the set of standard \(\lambda \)-tableaux and

\[
f^\lambda := |\text{SYT}(\lambda)| = \dim S^\lambda.
\]

For any group with irreps \(V(i) \): \(\sum_i (\dim V(i))^2 = |G| \).

If \(G = \mathfrak{S}_n \) the formula can be proved combinatorially

\[
\sum_{\lambda \vdash n} (f^\lambda)^2 = n!
\]

Proof. Construct the Robinson-Schensted bijection

\[
\pi \xleftrightarrow{R-S} (P, Q)
\]

where \(\pi \in \mathfrak{S}_n \) and \(P, Q \in \text{SYT}(\lambda) \) for some \(\lambda \).

\(\pi \xrightarrow{R-S} (P, Q) \): *Insert* \(x \in \mathbb{Z}^+ \) into increasing tableau \(P \) to get increasing tableau \(P' \), \(r_x(P) = P' \), by

1. Let \(i := 1 \)
2. If \(x > \) every element of row \(i \) of \(P \), put it at the end of the row and stop.
3. Else exchange \(x \) and the smallest \(P_{i,j} > x \). (We say \(x \) *bumps* \(P_{i,j} \).) Set \(i := i + 1 \) and go to 2.

Ex. Suppose \(x = 2 \)

\[
\begin{align*}
P = & \quad 1 & 3 & \leftarrow & 2 & 1 & 2 & \quad 1 & 2 & 1 & 2 & = r_2(P) \\
& 4 & 5 & \leftarrow & 3 & 3 & 5 & \quad 3 & 5 & & & \leftarrow & 4 & 4
\end{align*}
\]
Now if $\pi = x_1 \ldots x_n$ then construct a sequence of pairs $(\emptyset, \emptyset) = (P_0, Q_0), \ldots, (P_n, Q_n) = (P, Q)$ by

$$
P_k = r_{x_k}(P_{k-1}),$$
$$Q_k = Q_{k-1} \uplus k \text{ with } k \text{ in } \text{sh } P_k \setminus \text{sh } P_{k-1}.
$$

Ex. $\pi = \begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 4 & 1 & 5
\end{array}$ $\xrightarrow{R-S} \begin{pmatrix}
1 & 4 & 5 & 1 & 3 & 5 \\
2 & & & 2 \\
3 & & & 4
\end{pmatrix}$ by

$P_k : \emptyset, 3, 2, 2 4, 1 4, 1 4 5 = P$

$Q_k : \emptyset, 1, 1, 1 3, 1 3, 1 3 5 = Q$

$(P, Q) \xrightarrow{R-S} \pi$: Delete $P_{i,j}, r_{(i,j)}^{-1}P = (P', x)$, by

1. Remove $x : = P_{i,j}$ from its row and set $i : = i - 1$.
2. While $i \geq 1$ exchange x and the greatest $R_{i,j} < x$ and set $i : = i - 1$.

Ex. Do the Ex on the previous page backwards.

Starting with (P, Q) we obtain the reverse sequence $(P_n, Q_n), \ldots, (P_0, Q_0)$ and $\pi = x_1 \ldots x_n$ by

$$
Q_{k-1} = Q_k \setminus k
$$

$$
(P_{k-1}, x_k) = r_{(i,j)}^{-1}P_k \text{ where } Q_{i,j} = k.
$$
B. Properties of Robinson-Schensted

If \(\pi^R \rightarrow^S (P, Q) \) then the \(P \)-tableau of \(\pi \) is \(P(\pi) = P \)
and the \(Q \)-tableau of \(\pi \) is \(Q(\pi) = Q \).

If \(\pi = x_1 \ldots x_n \) then \(\pi^r = x_n \ldots x_1 \).

A subsequence of \(\pi = x_1 \ldots x_n, \sigma \subseteq \pi \), is

\[
\sigma = x_{k_1}, x_{k_2}, \ldots, x_{k_m} \quad \text{with} \quad k_1 < k_2 < \ldots < k_m.
\]

Proposition 23 1. \(P(\pi^r) = P(\pi)^t \) (the transpose)
2. If \(\text{sh} \ P(\pi) = (\lambda_1, \ldots, \lambda_l) \) then

\[
\lambda_1 = \text{length of a longest increasing } \sigma \subseteq \pi,
\]

\[
l = \text{length of a longest decreasing } \sigma \subseteq \pi.
\]

3. If \(\pi^R \rightarrow^S (P, Q) \) then \(\pi^{-1} \rightarrow^S (Q, P) \).

4. \(\sum_{\lambda \vdash n} f^\lambda = \# \text{ of involutions in } \mathfrak{S}_n \).

Proof. 1. One can define column insertion \(c_y(P) \)
and prove \(r_x c_y(P) = c_y r_x(P) \). Then

\[
P(\pi^r) = r_{x_1} \cdots r_{x_n}(\emptyset) = r_{x_1} \cdots r_{x_{n-1}} c_{x_n}(\emptyset)
= c_{x_n} r_{x_1} \cdots r_{x_{n-1}}(\emptyset) = \ldots = c_{x_n} \cdots c_{x_1}(\emptyset) = P(\pi)^t.
\]

4. By 3: \(\pi^R \rightarrow^S (P, P) \) iff \(\pi = \pi^{-1} \). So

\[
\sum_{\lambda \vdash n} f^\lambda = \# \text{ of } P = \# \text{ of involutions } \pi.
\]
When does $P(\pi) = P(\sigma)$?

Ex. For \mathfrak{S}_3: $P(123) = 1\ 2\ 3$, $P(321) = (1\ 2\ 3)^t$, $P(213) = P(231) = \frac{1\ 3}{2}$, $P(132) = P(312) = \frac{1\ 2}{3}$.

π, σ differ by a **Knuth transposition** if for $x < y < z$:

1. $\{\pi, \sigma\} = \{x_1 \ldots yxz \ldots x_n, \ x_1 \ldots yzx \ldots x_n\}$, or
2. $\{\pi, \sigma\} = \{x_1 \ldots zxy \ldots x_n, \ x_1 \ldots zyx \ldots x_n\}$.

Also π, σ are **Knuth equivalent**, $\pi \equiv_K \sigma$, if

$$\pi = \pi_1, \pi_2, \ldots, \pi_k = \sigma$$

with π_i, π_{i+1} differing by a Knuth transposition $\forall i$.

Ex. $2\ 1\ 3 \equiv_K 2\ 3\ 1$ and $1\ 3\ 2 \equiv_K 3\ 1\ 2$.

Theorem 24 (Knuth) $P(\pi) = P(\sigma) \iff \pi \equiv_K \sigma$.

Proof sketch. "\Leftarrow" Type 1 transposition: x's (resp z's) insertion path is weakly left (resp strictly right) of y's so $P(\pi) = P(\sigma)$. Type 2: then π^r, σ^r differ by type 1 and

$$P(\pi^r) = P(\sigma^r) \Rightarrow P(\pi)^t = P(\sigma)^t \Rightarrow P(\pi) = P(\sigma).$$
C. Schützenberger’s jeu de taquin

If $\mu \subseteq \lambda$ then one has the skew diagram

$$\lambda/\mu = \{(i, j) \mid (i, j) \in \lambda, (i, j) \notin \mu\}.$$

Ex. If $\mu = (2, 1)$ and $\lambda = (4, 4, 1)$

$$\lambda/\mu = \begin{array}{|c|c|}
\hline
& \\
\hline
& \\
\hline
& \\
\hline
\end{array}$$

If P is an increasing tableau, $\text{sh} \ P = \lambda/\mu$, a **backward slide** into an inner corner c of μ, $j^c(P) = P'$, is

While $c = (i, j)$ is not an inner corner of λ, exchange c and the smaller of $P_{i+1,j}, P_{i,j+1}$.

Ex. If $c = (1, 2)$ then

$$P = \begin{array}{|c|c|}
\hline
& 1 5, & 1 5, & 1 3 5, & 1 3 5 \\
\hline
2 3 7 & 2 3 7 & 2 7 & \\
4 & 4 & 4 & 4 \\
\hline
\end{array} = j^c(P).$$

A **forward slide** into outer corner $d = (i, j)$ of λ, $j_d(P) = P'$, exchanges d with the larger of the numbers $P_{i-1,j}, P_{i,j-1}$, etc. until an outer corner of μ is reached. Clearly if $j^c(P) = P'$ vacating d then

$$j_dj^c(P) = P \quad \text{and} \quad j^cj_d(P') = P'.$$
Let $\delta_n = (n - 1, n - 2, \ldots, 1)$. Any $\pi = x_1 \ldots x_n$ has a δ_{n+1}/δ_n-tableau with x_j in $(n - j + 1, j)$.

Ex. $\pi = 132$ has tableau $\pi = \begin{array}{c} 2 \\ 3 \\ 1 \end{array}$.

A backward slide sequence for $P = P_1$ is

$$(c_1, \ldots, c_l) \text{ with } P_{i+1} = j^{c_i}(P_i) \text{ defined } \forall i.$$

If $l = |\mu|$ where $\text{sh } P = \lambda/\mu$ let $j(P) := j^{c_1} \cdots j^{c_l}(P)$.

Ex. (cont) If $c_1 = (2, 1), c_2 = (1, 2), c_3 = (1, 1)$

$$\begin{array}{c} 2 \\ 3 \\ 1 \end{array}, \begin{array}{c} 2 \\ 1 \end{array}, \begin{array}{c} 2 \\ 1 \\ 3 \\ 3 \end{array} = j(\pi).$$

Theorem 25 (Schützenberger) $j(\pi) = P(\pi)$.

Proof sketch. If P has rows R_1, \ldots, R_l then its row word is $\rho(P) = R_l R_{l-1} \ldots R_1$.

Ex. $P = \begin{array}{c} 1 \\ 2 \end{array} \begin{array}{c} 3 \\ 4 \end{array} \begin{array}{c} 5 \\ 6 \end{array} \begin{array}{c} 7 \end{array}$ has $\rho(P) = 2 4 6 1 3 5 7$.

It is easy to prove $P(\rho(P)) = P$. Furthermore if P is skew and $P' = j^c(P)$ then $\rho(P') \overset{K}{=} \rho(P)$. So

$$\rho(j(\pi)) \overset{K}{=} \rho(\pi) = \pi \overset{\text{apply } P}{\Rightarrow} j(\pi) = P(\pi). \blacksquare$$
D. The hook formula

The hook and hooklength of \((i, j) \in \lambda\) are
\[
H_{i,j} = \{(i', j), (i, j') \in \lambda \mid i' \geq i, j' \geq j\}, \quad h_{i,j} = |H_{i,j}|.
\]
The arm length and leg length of the hook are
\[
a_{i,j} = |\{(i, j') \in \lambda \mid j' > j\}|, \quad l_{i,j} = |\{(i', j) \in \lambda \mid i' > i\}|.
\]
Ex. In \(\lambda = (4^2, 3, 1)\)
\[
H_{2,2} = \begin{array}{ccc}
\bullet & a & a \\
\cdot & \cdot & \cdot \\
\end{array}
\text{and } h_{2,2} = 4, \quad a_{2,2} = 2, \quad l_{2,2} = 1.
\]

Theorem 26 (Frame-Robinson-Thrall) If we have \(\lambda \vdash n\), then
\[
f^{\lambda} = \frac{n!}{\prod_{(i,j)\in\lambda} h_{i,j}}.
\]
Ex. \((3, 2) \vdash 5\) has hooklengths
\[
\begin{array}{ccc}
4 & 3 & 1 \\
2 & 1 \\
\end{array}
\]
So \(f^{(3,2)} = \frac{5!}{4\cdot3\cdot2\cdot1^2} = 5\) which agrees with
\[
123, \quad 124, \quad 125, \quad 134, \quad 135.
\]
\[
45, \quad 35, \quad 34, \quad 25, \quad 24.
\]

Show \(n! = f^\lambda \prod_{(i,j)} h_{i,j} \) with a bijection

\[T \leftrightarrow (P, J) \]

where \(\text{sh} \, T = \text{sh} \, P = \text{sh} \, J = \lambda \), \(T \) is any Young tableau, \(P \) is standard, and

\[-l_{i,j} \leq J_{i,j} \leq a_{i,j} \quad \forall (i, j) \in \lambda.\]

\(T \rightarrow (P, J) \): If \(T \) is standard of shape \(\lambda/\mu \) and entry \(x \in \mathbb{Z}^+ \) is in \(c \) then \(j^c(T) \) has \(x \) moving in place of \(\bullet \) and terminating when it becomes standard.

Ex. If \(c = (1, 2) \) contains 6

\[
T = \begin{array}{cccc}
6 & 1 & 5, & 1 & 6 & 5, & 1 & 3 & 5 \\
2 & 3 & 7, & 2 & 3 & 7, & 2 & 6 & 7 \\
4 & 4 & 4 & 4
\end{array} = j^c(T).
\]

Lex order \(\lambda \)'s cells \(c_1 > c_2 > \ldots > c_n \). Define

\[T = T_1, \ldots, T_n = P \quad \text{where} \quad T_k = j^{c_k}(T_{k-1}). \]

Define \(J_1, \ldots, J_n = J \) by \(J_1 = 0 \) and if \(j^{c_k} \) starts in \(c_k = (i,j) \) and ends in \((i',j') \) then \(J_k = J_{k-1} \) except

\[
(J_k)_{i,l} = \begin{cases}
(J_{k-1})_{i,l+1} + 1 & \text{for } j \leq l < j', \\
 i - i' & \text{for } l = j'.
\end{cases}
\]
Ex. For spacing purposes we use \bar{I} for -1.

$$
T_1 = 645, 645, 645, 643, 623, 123 = P,
231, 213, 123, 125, 145, 456
$$

$$
J_1 = 000, 000, 000, 00\bar{I}, 0\bar{I}\bar{I}, 00\bar{I} = J.
000, 010, 200, 200, 200, 200
$$

$(P, J) \rightarrow T$: To reconstruct $(P, J) = (T_n, J_n), \ldots, (T_1, J_1) = (T, 0)$, assume (T_k, J_k) has been constructed. The possible cells for $c_k = (i, j)$ in T_k are

$$
P = \{(i', j') | i' \geq i, j' \geq j, (J_k)_{i,j'} \leq 0, i' = i - (J_k)_{i,j'}\}.
$$

Define j_d for $d \in P$ by having the slide stop at c_k. (must prove well-defined) The code of j_d replaces each move north (resp west) with N (resp W) written in reverse order.

Ex. For $c_6 = (1, 1)$: $P = \{(1, 1), (1, 2), (2, 3)\}$ and

$$
j_{1,1} : \emptyset, \quad j_{1,2} : W, \quad j_{2,3} = NW W.
$$

Lex order the codes using $W < \emptyset < N$. Then

$$
T_{k-1} = j_d(T_k) \text{ where } d \in P \text{ has maximum code.}
$$

Also if $c_k = (i, j), d = (i', j')$ then $J_{k-1} = J_k$ except

$$
(J_{k-1})_{i,l} = \begin{cases} (J_k)_{i, l-1} - 1 & \text{for } j < l \leq j' \\ 0 & \text{for } l = j. \end{cases}
$$
E. The determinantal formula

Theorem 27 (Frobenius) If \((\lambda_1, \ldots, \lambda_i) \vdash n\) then
\[
f^\lambda = n! \det(1/(\lambda_i - i + j)!)\]
where the determinant is \(l \times l\) and \(1/r! = 0\) if \(r < 0\).

\[\text{Ex. } f^{(3,2)} = 5! \begin{vmatrix} 1/3! & 1/4! \\ 1/1! & 1/2! \end{vmatrix} = 5.\]

Proof. It suffices to show the determinant equals the hook formula. We have
\[
\lambda_i + l = h_{i,1} + i \quad \Rightarrow \quad \lambda_i - i + j = h_{i,1} - l + j.
\]
So every row of the determinant is of the form
\[
[\cdots \quad 1/(h-2)! \quad 1/(h-1)! \quad 1/h!].
\]
After factoring out \(\prod_i 1/h_{i,1}\) we get rows
\[
[\cdots \quad h(h-1) \quad h \quad 1]
\]
which by column operations can be turned into
\[
[\cdots \quad (h-1)(h-2) \quad h-1 \quad 1].
\]
Putting \(\prod_i 1/(h_{i,1}-1)!\) back in we get \(\prod_i 1/h_{i,1}\) times the det for \(\lambda\) with its first column removed, so we're done by induction.
IV. Symmetric functions: A. Bases

Let \(x = \{x_1, x_2, \ldots \} \) and also consider \(\mathbb{C}[[x]] \), the corresponding formal power series algebra. Then \(\pi \in \mathfrak{S}_n \) acts on \(f \in \mathbb{C}[[x]] \) by

\[
\pi f(x_1, x_2, \ldots) = f(x_{\pi 1}, x_{\pi 2}, \ldots), \quad \pi(m) := m, m > n.
\]

We say \(f \) is symmetric if

\[
\pi f = f, \quad \forall \pi \in \mathfrak{S}_n, \forall n.
\]

Each partition \(\lambda = (\lambda_1, \ldots, \lambda_l) \) has an associated monomial symmetric function

\[
m_\lambda = m_\lambda(x) = \sum x_{i_1}^{\lambda_1} \cdots x_{i_l}^{\lambda_l}
\]

where the sum is over all distinct monomials that have exponents \(\lambda_1, \ldots, \lambda_l \).

Ex.

\[
m_{(2,2,1)} = x_1^2x_2^2x_3 + x_1^2x_2x_3^2 + x_1x_2^2x_3^2 + x_1^2x_2^2x_4 + \cdots
\]

The algebra of symmetric functions is

\[
\Lambda = \Lambda(x) = \mathbb{C}[m_\lambda].
\]

Note: \(f = \prod_{i \geq 1} (1 + x_i) \) is symmetric but isn’t in \(\Lambda \). We have a grading by degree

\[
\Lambda = \bigoplus_{n \geq 0} \Lambda^n, \quad \dim \Lambda^n = p(n), \text{ the } \# \text{ of } \lambda \vdash n.
\]
\[p_n := m(n) = \sum_{i \geq 1} x_i^n \quad \text{power sum}. \]
\[e_n := m(1^n) = \sum_{i_1 < \ldots < i_n} x_{i_1} \cdots x_{i_n} \quad \text{elementary}. \]
\[h_n := \sum_{\lambda \models n} m_\lambda = \sum_{i_1 \leq \ldots \leq i_n} x_{i_1} \cdots x_{i_n} \quad \text{complete homo}. \]

\textbf{Ex.} \quad p_3 = x_1^3 + x_2^3 + x_3^3 + \cdots \]
\[e_3 = x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + \cdots \]
\[h_3 = x_1^3 + \cdots + x_1^2 x_2 + \cdots + x_1 x_2 x_3 + \cdots \]

\textbf{Proposition 28} \quad \text{We have the generating functions}

1. \(E(t) := \sum_{n \geq 0} e_n(x) t^n = \prod_{i \geq 1} (1 + x_i t). \)
2. \(H(t) := \sum_{n \geq 0} h_n(x) t^n = \prod_{i \geq 1} \frac{1}{1 - x_i t}. \)
3. \(P(t) := \sum_{n \geq 1} p_n(x) t^n = \ln \prod_{i \geq 1} \frac{1}{1 - x_i t}. \)

If \(f = p, e, \) or \(h \) and \(\lambda = (\lambda_1, \ldots, \lambda_l) \) let \(f_\lambda = \prod_i f_{\lambda_i}. \)

\textbf{Theorem 29} \quad \text{Three bases for } \Lambda^n \text{ are}

1. \(\{ e_\lambda \mid \lambda \models n \} \), 2. \(\{ h_\lambda \mid \lambda \models n \} \), 3. \(\{ p_\lambda \mid \lambda \models n \} \).

\textbf{Proof.} \ 1 \Rightarrow \text{XS2.} \quad |\{ h_\lambda \}| = p(n) \text{ so it suffices to show every } e_n \text{ is a polynomial in } h_k. \ \text{But } H(t)E(-t) = 1 \text{ and taking the coefficient of } t^n, \ n \geq 1,
\[
\sum_{k=0}^{n} (-1)^k h_{n-k} e_k = 0 \Rightarrow e_n = h_1 e_{n-1} - h_2 e_{n-2} + \cdots \]
B. Schur functions

For tableau T let $x^T = x^\mu = x^{\mu_1} \cdots x^{\mu_m}$ where T’s content is $\mu = (\mu_1, \ldots, \mu_m)$. A Schur function is

$$s_\lambda(x) = \sum_T x^T$$

summed over all semistandard T of shape λ. Note $s_{(n)} = h_n$ and $s_{(1^n)} = e_n$.

Ex.

$T: \begin{array}{ccccccc}
1 & 1 & 1 & 2 & \cdots & 1 & 2 & 1 & 3 & \cdots \\
2 & 2 & \cdots & 3 & 2
\end{array}$

$s_{(2,1)} = x_1^2 x_2 + x_1 x_2^2 + \cdots + 2 x_1 x_2 x_3 + \cdots$

The **alternant** for $\lambda = (\lambda_1, \ldots, \lambda_l)$ is

$$a_\lambda = |x^\lambda_{i,j}|_{1 \leq i, j \leq l}.$$

If $\delta = (l - 1, l - 2, \ldots, 0)$ then $a_\delta = \text{Vandermonde}$. Let χ^λ be an irr character and k_μ be the size of a conjugacy class in \mathfrak{S}_n. Let $K_{\lambda \mu}$ be a Kostka number.

Theorem 30 If $\lambda = (\lambda_1, \ldots, \lambda_l)$ then

1. $\{s_\lambda \mid \lambda \vdash n\}$ is a basis of Λ^n.
2. $s_\lambda = \sum_{\mu \subseteq \lambda} K_{\lambda \mu} m_\mu$.
3. $s_\lambda = \frac{1}{n!} \sum_{\mu \vdash n} k_\mu \chi^\lambda_\mu p_\mu$.
4. $s_\lambda(x_1, \ldots, x_l) = \frac{a_{\lambda+\delta}}{a_\delta}$.
5. (Jacobi-Trudi) $s_\lambda = |h_\lambda_{i-i+j}|_{1 \leq i, j \leq l}$.
Proof of 5. (Gessel-Viennot-Lindström) A lattice path in \mathbb{Z}^2 is $p = s_1, s_2, \ldots$ where each s_i is a unit step N or E. Label the E steps by

$$N(s_i) = \text{(number of } N \text{ steps preceding } s_i) + 1.$$

$$p = \begin{array}{cccc}
\vdots & \vdots & \vdots & s_8 \\
\vdots & \vdots & \vdots & s_7 \\
2 & 3 & 3 & s_6 \\
2 & 2 & s_5 & s_4 \\
s_2 & s_3 & s_4 & . \\
s_1 & . & . & .
\end{array}$$

$$x^p = x_2^2 x_3^2.$$

If p is from (a, b) to (c, d) write $(a, b) \xrightarrow{p} (c, d)$. Let

$$x^p := \prod_{s_i \in E \in p} x_{N(s_i)} \Rightarrow h_n = \sum_{(a,b) \xrightarrow{p}(a+n,\infty)} x^p.$$

Fix $(u_1, \ldots, u_l), (v_1, \ldots, v_l)$ & form $\mathcal{P} = (p_1, \ldots, p_l)$ where for all $i: u_i \xrightarrow{p_i} v_{\pi i}$ for some $\pi \in \mathcal{S}_l$. Let

$$x^\mathcal{P} := \prod_{i} x^{p_i} \quad \text{and} \quad \text{sgn } \mathcal{P} := \text{sgn } \pi.$$

$$\mathcal{P} = \begin{array}{cccc}
u_4 & v_3 & v_2 & v_1 \\
\vdots & \vdots & \vdots & \vdots \\
u_4 & u_3 & u_2 & u_1 \\
\end{array}$$

$$x^\mathcal{P} = x_2^4 x_3^2 x_4,$$

$$\text{sgn } \mathcal{P} = \text{sgn}(1, 2, 3)(4) = +1.$$
Given $\lambda = (\lambda_1, \ldots, \lambda_l)$ pick

$$u_i := (1 - i, 0) \quad \text{and} \quad v_i := (\lambda_i - i + 1, \infty) \implies h_{\lambda_i - i + j} = \sum_{u_j \rightarrow v_i} x^p \quad \text{and} \quad |h_{\lambda_i - i + j}| = \sum_{\mathcal{P}} (\text{sgn } \mathcal{P}) x^p.$$

Define a sign-reversing involution $\mathcal{P} \leftrightarrow \mathcal{P}'$ by

1. If \mathcal{P} is non-\cap then $\mathcal{P}' = \mathcal{P}$.
2. Else, let (i, j) be the lex least pair s.t. $p_i \cap p_j \neq \emptyset$, and $w \in p_i \cap p_j$ be SW-most, so $\mathcal{P}' = (\mathcal{P} \setminus p_i, p_j) \cup p'_i, p'_j$.

$$p'_i := u_i \xrightarrow{p_i} w \xrightarrow{p_j} v_{\pi j} \quad \text{and} \quad p'_j := u_j \xrightarrow{p_j} w \xrightarrow{p_i} v_{\pi i}.$$

All terms in the det cancel except \mathcal{P} for non-\cap paths which correspond to semistandard λ-tableaux T.

$$\mathcal{P} = \begin{array}{cccc} \cdot & v_3 & & v_1 \\ \cdot & & v_2 & \\ 4 & 3 & \cdot & \\ \cdot & & & \\ u_3 & u_2 & u_1 & \cdot \end{array} \quad T = \begin{array}{ccc} 1 & 2 & 2 \\ \cdot & 3 & \cdot \\ 2 & 2 & \cdot \\ 2 & \cdot & \cdot \\ 4 & \cdot & \cdot \end{array}$$
C. Knuth’s algorithm

Theorem 31 (Littlewood) If \(y = \{y_1, y_2, \ldots \} \) then
\[
\sum_{\lambda} s_{\lambda}(x)s_{\lambda}(y) = \prod_{i,j \geq 1} 1/(1 - x_i y_j).
\]

Proof (Knuth). Want a wt-preserving bijection
\[\pi \xleftarrow{R-S} \xrightarrow{K} (T, U) \]
where \(T, U \) are semistandard of the same shape,
\[\text{wt}(T, U) = x^T y^U. \]
Furthermore, \(\pi \) is a generalized permutation: a 2-line array with entries in \(\mathbb{Z}^+ \) in lex order, and
\[\text{wt} \pi = \prod x_j y_i \]
where the product is over all col \(\binom{i}{j} \in \pi \).

Ex. \(\pi = \begin{array}{cccccc}
1 & 1 & 1 & 2 & 2 \\
2 & 3 & 3 & 1 & 2
\end{array} \), with \(\text{wt} \pi = x_1 x_2^2 x_3^2 y_1^3 y_2^2 \).

The bijection is now the same as R-S.

Ex. (cont)
\[T_i : \begin{array}{cccccc}
\phi & 2 & 2 & 3 & 2 & 3 \\
\end{array} \]
\[\begin{array}{cccccc}
1 & 3 & 3 & 1 & 2 & 3 \\
2 & 2 & 3
\end{array} = T, \]
\[U_i : \begin{array}{cccccc}
\phi & 1 & 1 & 1 & 1 & 1 \\
\end{array} \]
\[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2
\end{array} = U. \]
D. The characteristic map

Let \(R^n = R(\mathcal{S}_n) \) (class functions) and \(R = \oplus_{n \geq 0} R^n \). The characteristic map, \(\text{ch} : R \rightarrow \Lambda \), linearly extends

\[
\text{ch}(\chi) := \frac{1}{n!} \sum_{\mu \vdash n} k_\mu \chi_\mu \, p_\mu \quad \text{where} \quad \chi \in R^n.
\]

If \(\chi^\lambda \) is an irr character then \(\text{ch}(\chi^\lambda) = s_\lambda \) so \(\text{ch} \) is a v.s. iso which becomes an isometry if we define

\[
\langle s_\lambda, s_\mu \rangle = \delta_{\lambda, \mu}.
\]

Finally for \(\chi, \psi \) chars of \(\mathcal{S}_n, \mathcal{S}_m \) let

\[
\chi \cdot \psi = (\chi \otimes \psi) \uparrow_{\mathcal{S}_n \times \mathcal{S}_m}
\]

and extend linearly. Then we have

\[
\begin{align*}
\text{ch}(\chi \cdot \psi) &= \langle \chi \cdot \psi, p \rangle \\
&= \langle (\chi \otimes \psi) \uparrow_{\mathcal{S}_n \times \mathcal{S}_m}, p \rangle \\
&= \langle (\chi \otimes \psi), p \downarrow_{\mathcal{S}_n \times \mathcal{S}_m} \rangle \\
&= \frac{1}{n!m!} \sum_{\lambda \vdash n, \mu \vdash m} k_\lambda k_\mu \chi_\lambda \psi_\mu p_\lambda p_\mu \\
&= \text{ch}(\chi) \text{ch}(\psi).
\end{align*}
\]

Theorem 32 The map \(\text{ch} : R \rightarrow \Lambda \) is an isomorphism of algebras.
E. The Littlewood-Richardson Rule

Word $R = r_1 \ldots r_n \in (\mathbb{Z}^+)^n$ is a lattice permutation (lp) if for all $R_i = r_1 \ldots r_i$ and all $j \in \mathbb{Z}^+$

number of j’s \geq number of $j + 1$’s in R_i.

Such R corresponds to a standard tableau P by

if $r_i = j$ then put i in row j of P.

1 2 6

Ex. $R = 1 1 2 3 2 1 3 \longleftrightarrow P = 3 5 4 7$.

Theorem 33 (Littlewood-Richardson, L-R) If

\[s_\lambda s_\mu = \sum_{\nu} c^{\nu}_{\lambda \mu} s_\nu \]

then $c^{\nu}_{\lambda \mu}$ is the number of semistandard T such that

1. $sh T = \nu / \lambda$ and $ct T = \mu$,

2. the reverse row word $\rho(T)^r$ is an lp.

Ex. For $s(2)s(2,1)$

\[
T: \begin{array}{cccccccc}
\bullet & \bullet & 1 & 1, & \bullet & \bullet & 1, & \bullet & \bullet \\
2 & 1 & 2 & 1 & 1 & 1 & 1 & 2 & 2
\end{array}
\]

\[s(2)s(2,1) = s(4,1) + s(3,2) + s(3,1^2) + s(2^2,1)\]

The L-R rule generalizes both the Branching Rule (for $s_\lambda s(1)$) and Young’s Rule (for $s(l)s(m)$).
F. The Murnagham-Nakayama Rule

A rim hook, H, is a skew shape that's a lattice path. A rim hook tableau T has rows and cols weakly increasing and all i's in a rim hook for each $i \in T$.

Ex. $H = \begin{array}{ccc} & & \hline \end{array}$ and $T = \begin{array}{cccc} 1 & 1 & 1 & 2 & 4 \\ & 2 & 2 & 2 & 4 \\ 3 & 3 & 3 & 4 & 4 \end{array}$.

Rim hook H has leg length

\[l(H) = (\text{number of rows of } H) - 1 \]

and a rim hook tableau T has sign

\[\text{sgn } T = \prod_{H \in T} (-1)^{l(H)}. \]

Ex. (cont) $l(H) = 2$, $\text{sgn } T = (-1)^{0+1+0+2} = -1$.

Theorem 34 (Murnagham-Nakayama) We have

\[\chi^\lambda_\mu = \sum_{T} \text{sgn } T \]

sum over all rim hook tableaux, $\text{sh } T = \lambda$, $\text{ct } T = \mu$.■

Note $\chi^\lambda_{(1^n)} = f^\lambda$ is a special case.

Ex. For $\chi = \chi^{(2,1)}$

<table>
<thead>
<tr>
<th>μ</th>
<th>(1³)</th>
<th>(2,1)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>1 2, 1 3</td>
<td>1 1, 1 2</td>
<td>1 1</td>
</tr>
<tr>
<td></td>
<td>3 2</td>
<td>2 1</td>
<td>1</td>
</tr>
<tr>
<td>χ_μ</td>
<td>1 + 1 = 2</td>
<td>1 - 1 = 0</td>
<td>-1</td>
</tr>
</tbody>
</table>

51
G. Chromatic symmetric functions

A proper coloring of $G = (V, E)$ is $c : V \rightarrow \{1, \ldots, t\}$

$uv \in E \Rightarrow c(u) \neq c(v)$.

The chromatic polynomial of G is

$P(G) = P(G, t) := \# \text{ of proper } c : V \rightarrow \{1, \ldots, t\}.$

Ex. If $G = v_2 \triangle v_3$ then

$P(G) = \prod_i (\# \text{ of } c(v_i)) = t(t - 1)(t - 2)$.

The chromatic symmetric function of G is

$X(G) = X(G, x) = \sum_{\text{proper } c : V \rightarrow \mathbb{Z}^+} x_{c(v_1)} \cdots x_{c(v_n)}.$

Ex.

$G : \begin{array}{ccc}
1 & 2 & 1 \\
\downarrow & \downarrow & \downarrow \\
2 & 1 & 2 \\
\end{array}$

$X(G) = x_1^2 x_2 + x_1 x_2^2 + \cdots + 6 x_1 x_2 x_3 + \cdots$

Poset P has incomparability graph $G = \text{inc } P$ with

$V = P$, \quad $E = \{uv \mid u, v \text{ incomparable in } P\}$

and is 3+1-free if it has no induced $\{a < b < c, d\}$.

Conjecture 35 (Stanley-Stembridge) If poset P is 3+1-free and $X(\text{inc } P) = \sum_{\lambda} c_\lambda e_\lambda \Rightarrow c_\lambda \in \mathbb{Z}^+ \cup \{0\}$.

Gasharov has proved this with e_λ replaced by s_λ.

52
Acknowledgment. I would like to thank Shalom Eliahou for carefully reading these slides and pointing out a number of errata.