Rationality, irrationality, and Wilf equivalence in generalized factor order

Sergey Kitaev Institute of Mathematics, Reykjavík University, IS-103 Reykjavík, Iceland, sergey@ru.is

Jeffrey Liese Department of Mathematics, UCSD, La Jolla, CA 92093-0112. USA, jliese@math.ucsd.edu

Jeffrey Remmel Department of Mathematics, UCSD, La Jolla, CA 92093-0112. USA, remmel@math.ucsd.edu

Bruce E. Sagan Department of Mathematics, Michigan State University East Lansing, MI 48824-1027, sagan@math.msu.edu www.math.msu.edu/~sagan

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ▶ ▲□

Outline

<ロ>

 $P^* = \{w = w_1 w_2 \dots w_k : k \ge 0 \text{ and } w_i \in P \text{ for all } i\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $P^* = \{ w = w_1 w_2 \dots w_k : k \ge 0 \text{ and } w_i \in P \text{ for all } i \}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let ϵ be the *empty* word and let |w| denote the *length* of w.

 $P^* = \{ w = w_1 w_2 \dots w_k : k \ge 0 \text{ and } w_i \in P \text{ for all } i \}.$

Let ϵ be the *empty* word and let |w| denote the *length* of w. Word w' is a *factor* of w if there are words u, v with w = uw'v.

 $P^* = \{w = w_1 w_2 \dots w_k : k \ge 0 \text{ and } w_i \in P \text{ for all } i\}.$

Let ϵ be the *empty* word and let |w| denote the *length* of w. Word w' is a *factor* of w if there are words u, v with w = uw'v. **Example.** w'=322 is a factor of w = 13213221.

 $P^* = \{w = w_1 w_2 \dots w_k : k \ge 0 \text{ and } w_i \in P \text{ for all } i\}.$

Let ϵ be the *empty* word and let |w| denote the *length* of w. Word w' is a *factor* of w if there are words u, v with w = uw'v.

Example. w'=322 is a factor of w = 13213221.

Factor order is the partial order on P^* where $w' \le w$ iff w' is a factor of w.

 $P^* = \{ w = w_1 w_2 \dots w_k : k \ge 0 \text{ and } w_i \in P \text{ for all } i \}.$

Let ϵ be the *empty* word and let |w| denote the *length* of w. Word w' is a *factor* of w if there are words u, v with w = uw'v.

Example. w'=322 is a factor of w = 13213221.

Factor order is the partial order on P^* where $w' \le w$ iff w' is a factor of w. Björner found the Möbius function of factor order.

 $P^* = \{ w = w_1 w_2 \dots w_k : k \ge 0 \text{ and } w_i \in P \text{ for all } i \}.$

Let ϵ be the *empty* word and let |w| denote the *length* of w. Word w' is a *factor* of w if there are words u, v with w = uw'v.

Example. w'=322 is a factor of w = 13213221.

Factor order is the partial order on P^* where $w' \le w$ iff w' is a factor of w. Björner found the Möbius function of factor order.

Now let (P, \leq_P) be a poset.

 $P^* = \{w = w_1 w_2 \dots w_k : k \ge 0 \text{ and } w_i \in P \text{ for all } i\}.$

Let ϵ be the *empty* word and let |w| denote the *length* of w. Word w' is a *factor* of w if there are words u, v with w = uw'v.

Example. w'=322 is a factor of w = 13213221.

Factor order is the partial order on P^* where $w' \le w$ iff w' is a factor of w. Björner found the Möbius function of factor order.

Now let (P, \leq_P) be a poset. *Generalized factor order* on P^* is: $u \leq w$ if there is a factor w' of w with |u| = |w'| and

 $u_1 \leq_P w'_1, \ldots, u_k \leq_P w'_k$ where k = |u|.

▲□▶▲□▶▲□▶▲□▶ □ のへの

 $P^* = \{w = w_1 w_2 \dots w_k : k \ge 0 \text{ and } w_i \in P \text{ for all } i\}.$

Let ϵ be the *empty* word and let |w| denote the *length* of w. Word w' is a *factor* of w if there are words u, v with w = uw'v.

Example. w'=322 is a factor of w = 13213221.

Factor order is the partial order on P^* where $w' \le w$ iff w' is a factor of w. Björner found the Möbius function of factor order.

Now let (P, \leq_P) be a poset. *Generalized factor order* on P^* is: $u \leq w$ if there is a factor w' of w with |u| = |w'| and

 $u_1 \leq_P w'_1, \ldots, u_k \leq_P w'_k$ where k = |u|.

Example. If \mathbb{P} is the positive integers then in \mathbb{P}^* we have $324 \leq 216541$.

 $P^* = \{ w = w_1 w_2 \dots w_k : k \ge 0 \text{ and } w_i \in P \text{ for all } i \}.$

Let ϵ be the *empty* word and let |w| denote the *length* of w. Word w' is a *factor* of w if there are words u, v with w = uw'v.

Example. w'=322 is a factor of w = 13213221.

Factor order is the partial order on P^* where $w' \le w$ iff w' is a factor of w. Björner found the Möbius function of factor order.

Now let (P, \leq_P) be a poset. *Generalized factor order* on P^* is: $u \leq w$ if there is a factor w' of w with |u| = |w'| and

 $u_1 \leq_P w'_1, \ldots, u_k \leq_P w'_k$ where k = |u|.

Example. If \mathbb{P} is the positive integers then in \mathbb{P}^* we have $324 \leq 216541$.

Note that generalized factor order becomes factor order if P is an antichain.

 $P^* = \{ w = w_1 w_2 \dots w_k : k \ge 0 \text{ and } w_i \in P \text{ for all } i \}.$

Let ϵ be the *empty* word and let |w| denote the *length* of w. Word w' is a *factor* of w if there are words u, v with w = uw'v.

Example. w'=322 is a factor of w = 13213221.

Factor order is the partial order on P^* where $w' \le w$ iff w' is a factor of w. Björner found the Möbius function of factor order.

Now let (P, \leq_P) be a poset. *Generalized factor order* on P^* is: $u \leq w$ if there is a factor w' of w with |u| = |w'| and

 $u_1 \leq_P w'_1, \ldots, u_k \leq_P w'_k$ where k = |u|.

Example. If \mathbb{P} is the positive integers then in \mathbb{P}^* we have $324 \leq 216541$.

Note that generalized factor order becomes factor order if P is an antichain. If $P = \mathbb{P}$ then factor order is an order on compositions.

$$\mathbb{Z}\langle\langle \boldsymbol{P} \rangle\rangle = \left\{ f = \sum_{\boldsymbol{w} \in \boldsymbol{P}^*} \boldsymbol{c}_{\boldsymbol{w}} \boldsymbol{w} : \boldsymbol{c}_{\boldsymbol{w}} \in \mathbb{Z} \text{ for all } \boldsymbol{w} \right\}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$\mathbb{Z}\langle\langle \boldsymbol{P} \rangle\rangle = \left\{ f = \sum_{w \in \boldsymbol{P}^*} c_w w : c_w \in \mathbb{Z} \text{ for all } w \right\}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

If $f \in \mathbb{Z}\langle\langle P \rangle\rangle$ has no constant term, i.e., $c_{\epsilon} = 0$, then define

$$f^* = \epsilon + f + f^2 + f^3 + \cdots$$

$$\mathbb{Z}\langle\langle \boldsymbol{P} \rangle\rangle = \left\{ f = \sum_{w \in \boldsymbol{P}^*} c_w w : c_w \in \mathbb{Z} \text{ for all } w \right\}.$$

If $f \in \mathbb{Z}\langle\langle P \rangle\rangle$ has no constant term, i.e., $c_{\epsilon} = 0$, then define

$$f^* = \epsilon + f + f^2 + f^3 + \cdots = (\epsilon - f)^{-1}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

$$\mathbb{Z}\langle\langle \boldsymbol{P} \rangle\rangle = \left\{ f = \sum_{w \in \boldsymbol{P}^*} c_w w : c_w \in \mathbb{Z} \text{ for all } w \right\}.$$

If $f \in \mathbb{Z}\langle\langle P \rangle\rangle$ has no constant term, i.e., $c_{\epsilon} = 0$, then define

$$f^* = \epsilon + f + f^2 + f^3 + \cdots = (\epsilon - f)^{-1}.$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Then *f* is *rational* if it can be constructed from finitely many elements of *P* using the algebra and star operations.

$$\mathbb{Z}\langle\langle \boldsymbol{P} \rangle\rangle = \left\{ f = \sum_{w \in \boldsymbol{P}^*} c_w w : c_w \in \mathbb{Z} \text{ for all } w \right\}.$$

If $f \in \mathbb{Z}\langle\langle P \rangle\rangle$ has no constant term, i.e., $c_{\epsilon} = 0$, then define

$$f^* = \epsilon + f + f^2 + f^3 + \cdots = (\epsilon - f)^{-1}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Then *f* is *rational* if it can be constructed from finitely many elements of *P* using the algebra and star operations. A *language* is any $\mathcal{L} \subseteq P^*$.

$$\mathbb{Z}\langle\langle \boldsymbol{P} \rangle\rangle = \left\{ f = \sum_{w \in \boldsymbol{P}^*} c_w w : c_w \in \mathbb{Z} \text{ for all } w \right\}.$$

If $f \in \mathbb{Z}\langle\langle P \rangle\rangle$ has no constant term, i.e., $c_{\epsilon} = 0$, then define

$$f^* = \epsilon + f + f^2 + f^3 + \cdots = (\epsilon - f)^{-1}.$$

Then *f* is *rational* if it can be constructed from finitely many elements of *P* using the algebra and star operations. A *language* is any $\mathcal{L} \subseteq P^*$. It has an associated generating function $f_{\mathcal{L}} = \sum_{w \in \mathcal{L}} w$.

$$\mathbb{Z}\langle\langle \boldsymbol{P} \rangle\rangle = \left\{ f = \sum_{w \in \boldsymbol{P}^*} c_w w : c_w \in \mathbb{Z} \text{ for all } w \right\}.$$

If $f \in \mathbb{Z}\langle\langle P \rangle\rangle$ has no constant term, i.e., $c_{\epsilon} = 0$, then define

$$f^* = \epsilon + f + f^2 + f^3 + \cdots = (\epsilon - f)^{-1}.$$

Then *f* is *rational* if it can be constructed from finitely many elements of *P* using the algebra and star operations. A *language* is any $\mathcal{L} \subseteq P^*$. It has an associated generating function $f_{\mathcal{L}} = \sum_{w \in \mathcal{L}} w$. The language \mathcal{L} is *regular* if *P* is finite and $f_{\mathcal{L}}$ is rational.

$$\mathbb{Z}\langle\langle \boldsymbol{P} \rangle\rangle = \left\{ f = \sum_{w \in \boldsymbol{P}^*} c_w w : c_w \in \mathbb{Z} \text{ for all } w \right\}.$$

If $f \in \mathbb{Z}\langle\langle P \rangle\rangle$ has no constant term, i.e., $c_{\epsilon} = 0$, then define

$$f^* = \epsilon + f + f^2 + f^3 + \cdots = (\epsilon - f)^{-1}.$$

Then f is *rational* if it can be constructed from finitely many elements of P using the algebra and star operations.

A *language* is any $\mathcal{L} \subseteq P^*$. It has an associated generating function $f_{\mathcal{L}} = \sum_{w \in \mathcal{L}} w$. The language \mathcal{L} is *regular* if P is finite and $f_{\mathcal{L}}$ is rational.

Associated with $u \in P^*$ is

$$\mathcal{F}(u) = \{w : w \ge u\}$$
 and $F(u) = \sum_{w \ge u} w.$

$$\mathbb{Z}\langle\langle \boldsymbol{P} \rangle\rangle = \left\{ f = \sum_{w \in \boldsymbol{P}^*} c_w w : c_w \in \mathbb{Z} \text{ for all } w \right\}.$$

If $f \in \mathbb{Z}\langle\langle P \rangle\rangle$ has no constant term, i.e., $c_{\epsilon} = 0$, then define

$$f^* = \epsilon + f + f^2 + f^3 + \cdots = (\epsilon - f)^{-1}.$$

Then f is *rational* if it can be constructed from finitely many elements of P using the algebra and star operations.

A *language* is any $\mathcal{L} \subseteq P^*$. It has an associated generating function $f_{\mathcal{L}} = \sum_{w \in \mathcal{L}} w$. The language \mathcal{L} is *regular* if P is finite and $f_{\mathcal{L}}$ is rational.

Associated with $u \in P^*$ is

$$\mathcal{F}(u) = \{w : w \ge u\}$$
 and $F(u) = \sum_{w \ge u} w.$

Theorem

If P is a finite poset and $u \in P^*$ then F(u) is rational.

Outline

<ロ>

1. the elements of V are called *states* and |V| is finite,

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 1. the elements of V are called states and |V| is finite,
- 2. there is an *initial state* α and a set Ω of *final states*,

(日) (日) (日) (日) (日) (日) (日)

- 1. the elements of V are called states and |V| is finite,
- 2. there is an *initial state* α and a set Ω of *final states*,
- 3. each arc of \vec{E} is labeled with an element of *P*.

- 1. the elements of V are called *states* and |V| is finite,
- 2. there is an *initial state* α and a set Ω of *final states*,
- 3. each arc of \vec{E} is labeled with an element of *P*.

Given a (directed) path in Δ starting at α we construct a word in P^* by concatenating the elements on the arcs along the path in the order in which they are encountered.

(日) (日) (日) (日) (日) (日) (日)

- 1. the elements of V are called *states* and |V| is finite,
- 2. there is an *initial state* α and a set Ω of *final states*,
- 3. each arc of \vec{E} is labeled with an element of *P*.

Given a (directed) path in Δ starting at α we construct a word in P^* by concatenating the elements on the arcs along the path in the order in which they are encountered. The *language* accepted by Δ , $\mathcal{L}(\Delta)$, is the set of all such words which are associated with a path ending in a final state.

・ロト・日本・日本・日本・日本

- 1. the elements of V are called *states* and |V| is finite,
- 2. there is an *initial state* α and a set Ω of *final states*,
- 3. each arc of \vec{E} is labeled with an element of *P*.

Given a (directed) path in Δ starting at α we construct a word in P^* by concatenating the elements on the arcs along the path in the order in which they are encountered. The *language* accepted by Δ , $\mathcal{L}(\Delta)$, is the set of all such words which are associated with a path ending in a final state.

Theorem Suppose |P| is finite. Then a language $\mathcal{L} \subseteq P^*$ is regular iff $\mathcal{L} = \mathcal{L}(\Delta)$ for some NFA Δ .

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

A NFA $\Delta(u)$ for $\mathcal{F}(u)$, $u \in P^*$. The states of $\Delta(u)$ are labeled $0, 1, \ldots, k = |u|$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

The states of $\Delta(u)$ are labeled $0, 1, \ldots, k = |u|$. The initial state is $\alpha = 0$ and the final state is $\omega = k$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

The states of $\Delta(u)$ are labeled $0, 1, \ldots, k = |u|$. The initial state is $\alpha = 0$ and the final state is $\omega = k$. There are loops at 0 and *k* for every $a \in P$.

The states of $\Delta(u)$ are labeled $0, 1, \ldots, k = |u|$. The initial state is $\alpha = 0$ and the final state is $\omega = k$. There are loops at 0 and k for every $a \in P$. The only other arcs are from state i - 1 to state $i, 1 \le i \le k$, and are labeled by the $a \in P$ such that $a \ge u_i$.

The states of $\Delta(u)$ are labeled $0, 1, \ldots, k = |u|$. The initial state is $\alpha = 0$ and the final state is $\omega = k$. There are loops at 0 and k for every $a \in P$. The only other arcs are from state i - 1 to state $i, 1 \le i \le k$, and are labeled by the $a \in P$ such that $a \ge u_i$. It is easy to check that this NFA accepts $\mathcal{F}(u)$.

The states of $\Delta(u)$ are labeled $0, 1, \ldots, k = |u|$. The initial state is $\alpha = 0$ and the final state is $\omega = k$. There are loops at 0 and k for every $a \in P$. The only other arcs are from state i - 1 to state $i, 1 \le i \le k$, and are labeled by the $a \in P$ such that $a \ge u_i$. It is easy to check that this NFA accepts $\mathcal{F}(u)$.

(ロ) (同) (三) (三) (三) (○) (○)

Example. Consider $P = \mathbb{P}$ and u = 745.

The states of $\Delta(u)$ are labeled $0, 1, \ldots, k = |u|$. The initial state is $\alpha = 0$ and the final state is $\omega = k$. There are loops at 0 and k for every $a \in P$. The only other arcs are from state i - 1 to state $i, 1 \le i \le k$, and are labeled by the $a \in P$ such that $a \ge u_i$. It is easy to check that this NFA accepts $\mathcal{F}(u)$.

Example. Consider $P = \mathbb{P}$ and u = 745. A set of labeled arcs from one node to another will be displayed as a single arc labeled with the set of all such labels.

(ロ) (同) (三) (三) (三) (○) (○)

The states of $\Delta(u)$ are labeled $0, 1, \ldots, k = |u|$. The initial state is $\alpha = 0$ and the final state is $\omega = k$. There are loops at 0 and k for every $a \in P$. The only other arcs are from state i - 1 to state $i, 1 \le i \le k$, and are labeled by the $a \in P$ such that $a \ge u_i$. It is easy to check that this NFA accepts $\mathcal{F}(u)$.

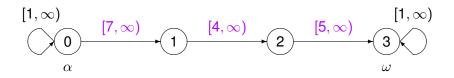
Example. Consider $P = \mathbb{P}$ and u = 745. A set of labeled arcs from one node to another will be displayed as a single arc labeled with the set of all such labels. Let

(日) (日) (日) (日) (日) (日) (日)

 $[m,\infty)=\{n\in\mathbb{Z} : n\geq m\}.$

The states of $\Delta(u)$ are labeled $0, 1, \ldots, k = |u|$. The initial state is $\alpha = 0$ and the final state is $\omega = k$. There are loops at 0 and k for every $a \in P$. The only other arcs are from state i - 1 to state $i, 1 \le i \le k$, and are labeled by the $a \in P$ such that $a \ge u_i$. It is easy to check that this NFA accepts $\mathcal{F}(u)$.

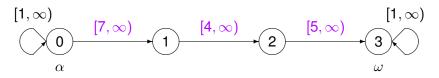
Example. Consider $P = \mathbb{P}$ and u = 745. A set of labeled arcs from one node to another will be displayed as a single arc labeled with the set of all such labels. Let $[m, \infty) = \{n \in \mathbb{Z} : n > m\}.$



(日) (日) (日) (日) (日) (日) (日)

The states of $\Delta(u)$ are labeled $0, 1, \ldots, k = |u|$. The initial state is $\alpha = 0$ and the final state is $\omega = k$. There are loops at 0 and k for every $a \in P$. The only other arcs are from state i - 1 to state $i, 1 \le i \le k$, and are labeled by the $a \in P$ such that $a \ge u_i$. It is easy to check that this NFA accepts $\mathcal{F}(u)$.

Example. Consider $P = \mathbb{P}$ and u = 745. A set of labeled arcs from one node to another will be displayed as a single arc labeled with the set of all such labels. Let $[m, \infty) = \{n \in \mathbb{Z} : n > m\}.$



(日) (日) (日) (日) (日) (日) (日)

So $745 \le 968864$ corresponding to the NFA path $0^{\frac{9}{2}}0^{\frac{6}{2}}0^{\frac{8}{2}}1^{\frac{8}{2}}2^{\frac{6}{2}}3^{\frac{4}{2}}3$.

Outline

<ロ>

$$F(u; t, x) = \sum_{w \ge u} t^{|u|} x^{\sum_i w_i}.$$

$$F(u; t, x) = \sum_{w \ge u} t^{|u|} x^{\sum_i w_i}.$$

Even though \mathbb{P} is not finite, one can use NFAs and the transfer matrix method to prove the following.

(ロ) (同) (三) (三) (三) (○) (○)

Theorem

For all $u \in \mathbb{P}^*$ we have F(u; t, x) is rational.

$$F(u; t, x) = \sum_{w \ge u} t^{|u|} x^{\sum_i w_i}.$$

Even though \mathbb{P} is not finite, one can use NFAs and the transfer matrix method to prove the following.

Theorem For all $u \in \mathbb{P}^*$ we have F(u; t, x) is rational. Call words u, v Wilf equivalent, $u \sim v$, if F(u; t, x) = F(v; t, x).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$F(u; t, x) = \sum_{w \ge u} t^{|u|} x^{\sum_i w_i}.$$

Even though \mathbb{P} is not finite, one can use NFAs and the transfer matrix method to prove the following.

Theorem For all $u \in \mathbb{P}^*$ we have F(u; t, x) is rational. Call words u, v Wilf equivalent, $u \sim v$, if F(u; t, x) = F(v; t, x). If $u = u_1 u_2 \dots u_k$ then let

 $u^r = u_k \dots u_2 u_1$ and $u^+ = (u_1 + 1)(u_2 + 1) \dots (u_k + 1).$

$$F(u; t, x) = \sum_{w \ge u} t^{|u|} x^{\sum_i w_i}.$$

Even though \mathbb{P} is not finite, one can use NFAs and the transfer matrix method to prove the following.

Theorem For all $u \in \mathbb{P}^*$ we have F(u; t, x) is rational. Call words u, v Wilf equivalent, $u \sim v$, if F(u; t, x) = F(v; t, x). If $u = u_1 u_2 \dots u_k$ then let

 $u^r = u_k \dots u_2 u_1$ and $u^+ = (u_1 + 1)(u_2 + 1) \dots (u_k + 1).$

(日) (日) (日) (日) (日) (日) (日)

Theorem We have the following Wilf equivalences. (a) $u \sim u^r$,

$$F(u; t, x) = \sum_{w \ge u} t^{|u|} x^{\sum_i w_i}.$$

Even though \mathbb{P} is not finite, one can use NFAs and the transfer matrix method to prove the following.

Theorem For all $u \in \mathbb{P}^*$ we have F(u; t, x) is rational. Call words u, v Wilf equivalent, $u \sim v$, if F(u; t, x) = F(v; t, x). If $u = u_1 u_2 \dots u_k$ then let

 $u^r = u_k \dots u_2 u_1$ and $u^+ = (u_1 + 1)(u_2 + 1) \dots (u_k + 1).$

Theorem We have the following Wilf equivalences. (a) $u \sim u^r$, (b) if $u \sim v$ then $u^+ \sim v^+$.

$$F(u; t, x) = \sum_{w \ge u} t^{|u|} x^{\sum_i w_i}.$$

Even though \mathbb{P} is not finite, one can use NFAs and the transfer matrix method to prove the following.

Theorem For all $u \in \mathbb{P}^*$ we have F(u; t, x) is rational. Call words u, v Wilf equivalent, $u \sim v$, if F(u; t, x) = F(v; t, x). If $u = u_1 u_2 \dots u_k$ then let

 $u^r = u_k \dots u_2 u_1$ and $u^+ = (u_1 + 1)(u_2 + 1) \dots (u_k + 1).$

(日)(1)<

Theorem We have the following Wilf equivalences. (a) $u \sim u^r$, (b) if $u \sim v$ then $u^+ \sim v^+$. (c) if $u \sim v$ then $1u \sim 1v$,

- (a) $u \sim u^r$,
- (b) if $u \sim v$ then $u^+ \sim v^+$.
- (c) if $u \sim v$ then $1u \sim 1v$,

- (a) $u \sim u^r$,
- (b) if $u \sim v$ then $u^+ \sim v^+$.
- (c) if $u \sim v$ then $1u \sim 1v$,

Example. Find the Wilf equivalences for permutations of $n \leq 3$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- (a) $u \sim u^r$,
- (b) if $u \sim v$ then $u^+ \sim v^+$.
- (c) if $u \sim v$ then $1u \sim 1v$,

Example. Find the Wilf equivalences for permutations of $n \le 3$. n = 2: 12 ~ 21 by (a).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- (a) $u \sim u^r$,
- (b) if $u \sim v$ then $u^+ \sim v^+$.
- (c) if $u \sim v$ then $1u \sim 1v$,

Example. Find the Wilf equivalences for permutations of $n \le 3$. n = 2: 12 ~ 21 by (a).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

n= 3: 12 \sim 21 \implies 23 \sim 32 by (b)

- (a) $u \sim u^r$,
- (b) if $u \sim v$ then $u^+ \sim v^+$.
- (c) if $u \sim v$ then $1u \sim 1v$,

Example. Find the Wilf equivalences for permutations of $n \le 3$. n = 2: 12 ~ 21 by (a).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

n= 3: 12 \sim 21 \implies 23 \sim 32 by (b) \implies 123 \sim 132 by (c).

(a) $u \sim u^r$,

(b) if $u \sim v$ then $u^+ \sim v^+$.

(c) if $u \sim v$ then $1u \sim 1v$,

Example. Find the Wilf equivalences for permutations of $n \le 3$. n = 2: 12 ~ 21 by (a).

n = 3: $12 \sim 21 \implies 23 \sim 32$ by (b) $\implies 123 \sim 132$ by (c). So by (a) again: $123 \sim 132 \sim 321 \sim 231$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

(a) $u \sim u^r$,

(b) if $u \sim v$ then $u^+ \sim v^+$.

(c) if $u \sim v$ then $1u \sim 1v$,

Example. Find the Wilf equivalences for permutations of $n \le 3$. n = 2: 12 ~ 21 by (a).

n = 3: $12 \sim 21 \implies 23 \sim 32$ by (b) $\implies 123 \sim 132$ by (c). So by (a) again: $123 \sim 132 \sim 321 \sim 231$. Also $213 \sim 312$ by (a).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

(a) $u \sim u^r$,

- (b) if $u \sim v$ then $u^+ \sim v^+$.
- (c) if $u \sim v$ then $1u \sim 1v$,

Example. Find the Wilf equivalences for permutations of $n \le 3$. n = 2: 12 ~ 21 by (a).

n = 3: $12 \sim 21 \implies 23 \sim 32$ by (b) $\implies 123 \sim 132$ by (c). So by (a) again: $123 \sim 132 \sim 321 \sim 231$. Also $213 \sim 312$ by (a). There are no more Wilf equivalences since

$$F(123; t, x) = \frac{t^3 x^6 (1 - x + tx)}{(1 - x)^3 (1 - x - tx + tx^3 - t^2 x^4)}$$

while

$$F(213; t, x) = \frac{t^3 x^6 (1 - x + tx)(1 + tx^3)}{(1 - x)^2 (1 - x + t^2 x^4)(1 - x - tx + tx^3 - t^2 x^4)}.$$

Outline

<ロ>

In generalized factor order $F(u) = \sum_{w \ge u} w = \sum_{w \in P^*} \zeta(u, w) w$ where ζ is the zeta function of P^* .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

 $\mathcal{M}(u) = \{ w \in P^* : \mu(u, w) \neq 0 \}.$

$$\mathcal{M}(u) = \{ w \in P^* : \mu(u, w) \neq 0 \}.$$

In ordinary factor order, the *dominant outer factor* of w, o(w), is the longest word other than w which is both a prefix and a suffix of w.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

$$\mathcal{M}(u) = \{ w \in P^* : \mu(u, w) \neq 0 \}.$$

In ordinary factor order, the *dominant outer factor* of w, o(w), is the longest word other than w which is both a prefix and a suffix of w. The *dominant inner factor* of $w = w_1 w_2 \dots w_k$ is $i(w) = w_2 \dots w_{k-1}$.

・ロト・日本・日本・日本・日本

$$\mathcal{M}(u) = \{ w \in P^* : \mu(u, w) \neq 0 \}.$$

In ordinary factor order, the *dominant outer factor* of w, o(w), is the longest word other than w which is both a prefix and a suffix of w. The *dominant inner factor* of $w = w_1 w_2 \dots w_k$ is $i(w) = w_2 \dots w_{k-1}$. A word is *flat* if all its elements are equal.

・ロト・日本・日本・日本・日本

$$\mathcal{M}(\boldsymbol{u}) = \{ \boldsymbol{w} \in \boldsymbol{P}^* : \mu(\boldsymbol{u}, \boldsymbol{w}) \neq \boldsymbol{0} \}.$$

In ordinary factor order, the *dominant outer factor* of w, o(w), is the longest word other than w which is both a prefix and a suffix of w. The *dominant inner factor* of $w = w_1w_2...w_k$ is $i(w) = w_2...w_{k-1}$. A word is *flat* if all its elements are equal. **Example.** w = abbaabb has o(w) = abb and i(w) = bbaab.

・ロト・日本・日本・日本・日本

$$\mathcal{M}(u) = \{ w \in P^* : \mu(u, w) \neq 0 \}.$$

In ordinary factor order, the *dominant outer factor* of w, o(w), is the longest word other than w which is both a prefix and a suffix of w. The *dominant inner factor* of $w = w_1 w_2 \dots w_k$ is $i(w) = w_2 \dots w_{k-1}$. A word is *flat* if all its elements are equal. **Example.** w = abbaabb has o(w) = abb and i(w) = bbaab. Theorem (Björner)

In ordinary factor order, if $u \le w$ then $\mu(u, w)$ equals

$$\mathcal{M}(u) = \{ w \in P^* : \mu(u, w) \neq 0 \}.$$

In ordinary factor order, the *dominant outer factor* of w, o(w), is the longest word other than w which is both a prefix and a suffix of w. The *dominant inner factor* of $w = w_1 w_2 \dots w_k$ is $i(w) = w_2 \dots w_{k-1}$. A word is *flat* if all its elements are equal. **Example.** w = abbaabb has o(w) = abb and i(w) = bbaab. Theorem (Björner) In ordinary factor order, if $u \le w$ then $\mu(u, w)$ equals $(1) \mu(u, o(w))$ if |w| - |u| > 2 and $u \le o(w) \le i(w)$,

$$\mathcal{M}(u) = \{ w \in P^* : \mu(u, w) \neq 0 \}.$$

In ordinary factor order, the *dominant outer factor* of w, o(w), is the longest word other than w which is both a prefix and a suffix of w. The *dominant inner factor* of $w = w_1 w_2 \dots w_k$ is $i(w) = w_2 \dots w_{k-1}$. A word is *flat* if all its elements are equal. **Example.** w = abbaabb has o(w) = abb and i(w) = bbaab. Theorem (Björner) In ordinary factor order, if $u \le w$ then $\mu(u, w)$ equals $(1) \mu(u, o(w))$ if |w| - |u| > 2 and $u \le o(w) \le i(w)$, (2) 1 if |w| - |u| = 2, w not flat, and $u \in \{i(w), o(w)\}$,

$$\mathcal{M}(u) = \{ w \in P^* : \mu(u, w) \neq 0 \}.$$

In ordinary factor order, the *dominant outer factor* of w, o(w), is the longest word other than w which is both a prefix and a suffix of w. The *dominant inner factor* of $w = w_1 w_2 \dots w_k$ is $i(w) = w_2 \dots w_{k-1}$. A word is *flat* if all its elements are equal. **Example.** w = abbaabb has o(w) = abb and i(w) = bbaab. Theorem (Björner)

In ordinary factor order, if $u \le w$ then $\mu(u, w)$ equals

 $\begin{array}{ll} (1) \ \mu(u, o(w)) & \ \ if \ |w| - |u| > 2 \ and \ u \le o(w) \le i(w), \\ (2) \ 1 & \ \ if \ |w| - |u| = 2, \ w \ not \ flat, \ and \ u \in \{i(w), o(w)\}, \\ (3) \ (-1)^{|w| - |u|} & \ \ if \ |w| - |u| < 2, \end{array}$

$$\mathcal{M}(u) = \{ w \in P^* : \mu(u, w) \neq 0 \}.$$

In ordinary factor order, the *dominant outer factor* of w, o(w), is the longest word other than w which is both a prefix and a suffix of w. The *dominant inner factor* of $w = w_1 w_2 \dots w_k$ is $i(w) = w_2 \dots w_{k-1}$. A word is *flat* if all its elements are equal. **Example.** w = abbaabb has o(w) = abb and i(w) = bbaab. Theorem (Björner)

In ordinary factor order, if $u \leq w$ then $\mu(u, w)$ equals

 $\begin{array}{ll} (1) \ \mu(u, o(w)) & \mbox{if } |w| - |u| > 2 \ \mbox{and } u \le o(w) \not\le i(w), \\ (2) \ 1 & \mbox{if } |w| - |u| = 2, \ w \ \mbox{not flat, and } u \in \{i(w), o(w)\}, \\ (3) \ (-1)^{|w| - |u|} & \mbox{if } |w| - |u| < 2, \\ (4) \ 0 & \mbox{otherwise.} \end{array}$

$$\mathcal{M}(u) = \{ w \in P^* : \mu(u, w) \neq 0 \}.$$

In ordinary factor order, the *dominant outer factor* of w, o(w), is the longest word other than w which is both a prefix and a suffix of w. The *dominant inner factor* of $w = w_1 w_2 \dots w_k$ is $i(w) = w_2 \dots w_{k-1}$. A word is *flat* if all its elements are equal. **Example.** w = abbaabb has o(w) = abb and i(w) = bbaab. Theorem (Björner)

In ordinary factor order, if $u \le w$ then $\mu(u, w)$ equals

 $\begin{array}{ll} (1) \ \mu(u, o(w)) & \mbox{if } |w| - |u| > 2 \ \mbox{and } u \le o(w) \not\le i(w), \\ (2) \ 1 & \mbox{if } |w| - |u| = 2, \ w \ \mbox{not flat, and } u \in \{i(w), o(w)\}, \\ (3) \ (-1)^{|w| - |u|} & \mbox{if } |w| - |u| < 2, \\ (4) \ 0 & \mbox{otherwise.} \end{array}$

Example. μ (*b*, *abbaabb*)

$$\mathcal{M}(u) = \{ w \in P^* : \mu(u, w) \neq 0 \}.$$

In ordinary factor order, the *dominant outer factor* of w, o(w), is the longest word other than w which is both a prefix and a suffix of w. The *dominant inner factor* of $w = w_1 w_2 \dots w_k$ is $i(w) = w_2 \dots w_{k-1}$. A word is *flat* if all its elements are equal. **Example.** w = abbaabb has o(w) = abb and i(w) = bbaab. Theorem (Björner)

In ordinary factor order, if $u \le w$ then $\mu(u, w)$ equals

(1) $\mu(u, o(w))$ if |w| - |u| > 2 and $u \le o(w) \le i(w)$, (2) 1 if |w| - |u| = 2, w not flat, and $u \in \{i(w), o(w)\}$, (3) $(-1)^{|w|-|u|}$ if |w| - |u| < 2, (4) 0 otherwise. **Example.** $\mu(b, abbaabb) \stackrel{(1)}{=} \mu(b, abb)$

$$\mathcal{M}(u) = \{ w \in P^* : \mu(u, w) \neq 0 \}.$$

In ordinary factor order, the *dominant outer factor* of w, o(w), is the longest word other than w which is both a prefix and a suffix of w. The *dominant inner factor* of $w = w_1 w_2 \dots w_k$ is $i(w) = w_2 \dots w_{k-1}$. A word is *flat* if all its elements are equal. **Example.** w = abbaabb has o(w) = abb and i(w) = bbaab. Theorem (Björner)

In ordinary factor order, if $u \leq w$ then $\mu(u, w)$ equals

(1) $\mu(u, o(w))$ if |w| - |u| > 2 and $u \le o(w) \le i(w)$, (2) 1 if |w| - |u| = 2, w not flat, and $u \in \{i(w), o(w)\}$, (3) $(-1)^{|w|-|u|}$ if |w| - |u| < 2, (4) 0 otherwise. Example. $\mu(b, abbaabb) \stackrel{(1)}{=} \mu(b, abb) \stackrel{(2)}{=} 1$. Lemma (Pumping Lemma) Let \mathcal{L} be a regular language.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Let \mathcal{L} be a regular language. Then there is a constant $n \ge 1$ such that any $z \in \mathcal{L}$ can be written as z = uvw satisfying

1. $|uv| \le n \text{ and } |v| \ge 1$,

Let \mathcal{L} be a regular language. Then there is a constant $n \ge 1$ such that any $z \in \mathcal{L}$ can be written as z = uvw satisfying

1. $|uv| \le n \text{ and } |v| \ge 1$,

2. $uv^i w \in \mathcal{L}$ for all $i \ge 1$.

Let \mathcal{L} be a regular language. Then there is a constant $n \ge 1$ such that any $z \in \mathcal{L}$ can be written as z = uvw satisfying

- 1. $|uv| \le n \text{ and } |v| \ge 1$,
- **2.** $uv^i w \in \mathcal{L}$ for all $i \geq 1$.

Theorem

In ordinary factor order with $P = \{a, b\}$, $\mathcal{M}(a)$ is not regular.

Let \mathcal{L} be a regular language. Then there is a constant $n \ge 1$ such that any $z \in \mathcal{L}$ can be written as z = uvw satisfying

- 1. $|uv| \le n \text{ and } |v| \ge 1$,
- 2. $uv^i w \in \mathcal{L}$ for all $i \ge 1$.

Theorem

In ordinary factor order with $P = \{a, b\}$, $\mathcal{M}(a)$ is not regular.

Proof By contradiction: let *n* be the Pumping Lemma constant.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Let \mathcal{L} be a regular language. Then there is a constant $n \ge 1$ such that any $z \in \mathcal{L}$ can be written as z = uvw satisfying

1. $|uv| \le n \text{ and } |v| \ge 1$,

2. $uv^i w \in \mathcal{L}$ for all $i \ge 1$.

Theorem

In ordinary factor order with $P = \{a, b\}$, $\mathcal{M}(a)$ is not regular.

Proof By contradiction: let *n* be the Pumping Lemma constant. Choose $z = ab^n ab^n a$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Let \mathcal{L} be a regular language. Then there is a constant $n \ge 1$ such that any $z \in \mathcal{L}$ can be written as z = uvw satisfying

1. $|uv| \le n \text{ and } |v| \ge 1$,

2. $uv^i w \in \mathcal{L}$ for all $i \ge 1$.

Theorem

In ordinary factor order with $P = \{a, b\}$, $\mathcal{M}(a)$ is not regular.

Proof By contradiction: let *n* be the Pumping Lemma constant. Choose $z = ab^n ab^n a$. Then $z \in \mathcal{M}(a)$:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Let \mathcal{L} be a regular language. Then there is a constant $n \ge 1$ such that any $z \in \mathcal{L}$ can be written as z = uvw satisfying

1. $|uv| \le n \text{ and } |v| \ge 1$,

2. $uv^i w \in \mathcal{L}$ for all $i \ge 1$.

Theorem

In ordinary factor order with $P = \{a, b\}$, $\mathcal{M}(a)$ is not regular.

Proof By contradiction: let *n* be the Pumping Lemma constant. Choose $z = ab^n ab^n a$. Then $z \in \mathcal{M}(a)$: $o(z) = ab^n a$ and $i(z) = b^n ab^n$ giving $a \le o(z) \le i(z)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Let \mathcal{L} be a regular language. Then there is a constant $n \ge 1$ such that any $z \in \mathcal{L}$ can be written as z = uvw satisfying

1. $|uv| \le n \text{ and } |v| \ge 1$,

2. $uv^i w \in \mathcal{L}$ for all $i \ge 1$.

Theorem

In ordinary factor order with $P = \{a, b\}$, $\mathcal{M}(a)$ is not regular.

Proof By contradiction: let *n* be the Pumping Lemma constant. Choose $z = ab^n ab^n a$. Then $z \in \mathcal{M}(a)$: $o(z) = ab^n a$ and $i(z) = b^n ab^n$ giving $a \le o(z) \le i(z)$. So

(日) (日) (日) (日) (日) (日) (日)

 $\mu(a, ab^n ab^n a) = \mu(a, ab^n a)$

Let \mathcal{L} be a regular language. Then there is a constant $n \ge 1$ such that any $z \in \mathcal{L}$ can be written as z = uvw satisfying

1. $|uv| \le n \text{ and } |v| \ge 1$,

2. $uv^i w \in \mathcal{L}$ for all $i \ge 1$.

Theorem

In ordinary factor order with $P = \{a, b\}$, $\mathcal{M}(a)$ is not regular.

Proof By contradiction: let *n* be the Pumping Lemma constant. Choose $z = ab^n ab^n a$. Then $z \in \mathcal{M}(a)$: $o(z) = ab^n a$ and $i(z) = b^n ab^n$ giving $a \le o(z) \le i(z)$. So

(日) (日) (日) (日) (日) (日) (日)

 $\mu(a, ab^n ab^n a) = \mu(a, ab^n a) = \mu(a, a)$

Let \mathcal{L} be a regular language. Then there is a constant $n \ge 1$ such that any $z \in \mathcal{L}$ can be written as z = uvw satisfying

1. $|uv| \le n \text{ and } |v| \ge 1$,

2. $uv^i w \in \mathcal{L}$ for all $i \ge 1$.

Theorem

In ordinary factor order with $P = \{a, b\}$, $\mathcal{M}(a)$ is not regular.

Proof By contradiction: let *n* be the Pumping Lemma constant. Choose $z = ab^n ab^n a$. Then $z \in \mathcal{M}(a)$: $o(z) = ab^n a$ and $i(z) = b^n ab^n$ giving $a \le o(z) \le i(z)$. So

 $\mu(a, ab^n ab^n a) = \mu(a, ab^n a) = \mu(a, a) = 1.$

(日) (日) (日) (日) (日) (日) (日)

Let \mathcal{L} be a regular language. Then there is a constant $n \ge 1$ such that any $z \in \mathcal{L}$ can be written as z = uvw satisfying

1. $|uv| \le n \text{ and } |v| \ge 1$,

2. $uv^i w \in \mathcal{L}$ for all $i \ge 1$.

Theorem

In ordinary factor order with $P = \{a, b\}$, $\mathcal{M}(a)$ is not regular.

Proof By contradiction: let *n* be the Pumping Lemma constant. Choose $z = ab^n ab^n a$. Then $z \in \mathcal{M}(a)$: $o(z) = ab^n a$ and $i(z) = b^n ab^n$ giving $a \le o(z) \le i(z)$. So

$$\mu(a, ab^n ab^n a) = \mu(a, ab^n a) = \mu(a, a) = 1.$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Now pick any prefix *uv* of *z* as in the Pumping Lemma.

Let \mathcal{L} be a regular language. Then there is a constant $n \ge 1$ such that any $z \in \mathcal{L}$ can be written as z = uvw satisfying

1. $|uv| \le n \text{ and } |v| \ge 1$,

2. $uv^i w \in \mathcal{L}$ for all $i \ge 1$.

Theorem

In ordinary factor order with $P = \{a, b\}$, $\mathcal{M}(a)$ is not regular.

Proof By contradiction: let *n* be the Pumping Lemma constant. Choose $z = ab^n ab^n a$. Then $z \in \mathcal{M}(a)$: $o(z) = ab^n a$ and $i(z) = b^n ab^n$ giving $a \le o(z) \le i(z)$. So

 $\mu(a, ab^n ab^n a) = \mu(a, ab^n a) = \mu(a, a) = 1.$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Now pick any prefix uv of z as in the Pumping Lemma. Suppose $u \neq \epsilon$ ($u = \epsilon$ is similar).

Let \mathcal{L} be a regular language. Then there is a constant $n \ge 1$ such that any $z \in \mathcal{L}$ can be written as z = uvw satisfying

1. $|uv| \le n \text{ and } |v| \ge 1$,

2. $uv^i w \in \mathcal{L}$ for all $i \ge 1$.

Theorem

In ordinary factor order with $P = \{a, b\}$, $\mathcal{M}(a)$ is not regular.

Proof By contradiction: let *n* be the Pumping Lemma constant. Choose $z = ab^n ab^n a$. Then $z \in \mathcal{M}(a)$: $o(z) = ab^n a$ and $i(z) = b^n ab^n$ giving $a \le o(z) \le i(z)$. So

 $\mu(a, ab^n ab^n a) = \mu(a, ab^n a) = \mu(a, a) = 1.$

Now pick any prefix uv of z as in the Pumping Lemma. Suppose $u \neq \epsilon$ ($u = \epsilon$ is similar). So $v = b^{j}$ for some j with $1 \leq j < n$.

Let \mathcal{L} be a regular language. Then there is a constant $n \ge 1$ such that any $z \in \mathcal{L}$ can be written as z = uvw satisfying

1. $|uv| \le n \text{ and } |v| \ge 1$,

2. $uv^i w \in \mathcal{L}$ for all $i \ge 1$.

Theorem

In ordinary factor order with $P = \{a, b\}$, $\mathcal{M}(a)$ is not regular.

Proof By contradiction: let *n* be the Pumping Lemma constant. Choose $z = ab^n ab^n a$. Then $z \in \mathcal{M}(a)$: $o(z) = ab^n a$ and $i(z) = b^n ab^n$ giving $a \le o(z) \le i(z)$. So

$$\mu(a, ab^n ab^n a) = \mu(a, ab^n a) = \mu(a, a) = 1.$$

Now pick any prefix uv of z as in the Pumping Lemma. Suppose $u \neq \epsilon$ ($u = \epsilon$ is similar). So $v = b^{j}$ for some j with $1 \leq j < n$. Let i = 2 with corresponding $z' = uv^{2}w = ab^{n+j}ab^{n}a$.

Let \mathcal{L} be a regular language. Then there is a constant $n \ge 1$ such that any $z \in \mathcal{L}$ can be written as z = uvw satisfying

1. $|uv| \le n \text{ and } |v| \ge 1$,

2. $uv^i w \in \mathcal{L}$ for all $i \ge 1$.

Theorem

In ordinary factor order with $P = \{a, b\}$, $\mathcal{M}(a)$ is not regular.

Proof By contradiction: let *n* be the Pumping Lemma constant. Choose $z = ab^n ab^n a$. Then $z \in \mathcal{M}(a)$: $o(z) = ab^n a$ and $i(z) = b^n ab^n$ giving $a \le o(z) \le i(z)$. So

$$\mu(a, ab^n ab^n a) = \mu(a, ab^n a) = \mu(a, a) = 1.$$

Now pick any prefix uv of z as in the Pumping Lemma. Suppose $u \neq \epsilon$ ($u = \epsilon$ is similar). So $v = b^{j}$ for some j with $1 \leq j < n$. Let i = 2 with corresponding $z' = uv^{2}w = ab^{n+j}ab^{n}a$. But o(z') = a and $i(z') = b^{n+j}ab^{n}$.

Let \mathcal{L} be a regular language. Then there is a constant $n \ge 1$ such that any $z \in \mathcal{L}$ can be written as z = uvw satisfying

1. $|uv| \le n \text{ and } |v| \ge 1$,

2. $uv^i w \in \mathcal{L}$ for all $i \ge 1$.

Theorem

In ordinary factor order with $P = \{a, b\}$, $\mathcal{M}(a)$ is not regular.

Proof By contradiction: let *n* be the Pumping Lemma constant. Choose $z = ab^n ab^n a$. Then $z \in \mathcal{M}(a)$: $o(z) = ab^n a$ and $i(z) = b^n ab^n$ giving $a \le o(z) \le i(z)$. So

$$\mu(a, ab^n ab^n a) = \mu(a, ab^n a) = \mu(a, a) = 1.$$

Now pick any prefix uv of z as in the Pumping Lemma. Suppose $u \neq \epsilon$ ($u = \epsilon$ is similar). So $v = b^{j}$ for some j with $1 \leq j < n$. Let i = 2 with corresponding $z' = uv^{2}w = ab^{n+j}ab^{n}a$. But o(z') = a and $i(z') = b^{n+j}ab^{n}$. Thus $a \leq o(z') \leq i(z')$.

Let \mathcal{L} be a regular language. Then there is a constant $n \ge 1$ such that any $z \in \mathcal{L}$ can be written as z = uvw satisfying

1. $|uv| \le n \text{ and } |v| \ge 1$,

2. $uv^i w \in \mathcal{L}$ for all $i \ge 1$.

Theorem

In ordinary factor order with $P = \{a, b\}$, $\mathcal{M}(a)$ is not regular.

Proof By contradiction: let *n* be the Pumping Lemma constant. Choose $z = ab^n ab^n a$. Then $z \in \mathcal{M}(a)$: $o(z) = ab^n a$ and $i(z) = b^n ab^n$ giving $a \le o(z) \le i(z)$. So

$$\mu(a, ab^n ab^n a) = \mu(a, ab^n a) = \mu(a, a) = 1.$$

Now pick any prefix uv of z as in the Pumping Lemma. Suppose $u \neq \epsilon$ ($u = \epsilon$ is similar). So $v = b^{j}$ for some j with $1 \leq j < n$. Let i = 2 with corresponding $z' = uv^{2}w = ab^{n+j}ab^{n}a$. But o(z') = a and $i(z') = b^{n+j}ab^{n}$. Thus $a \leq o(z') \leq i(z')$. This implies that $\mu(a, z') = 0$ and hence $z' \notin \mathcal{M}(a)$, which is a contradiction.

Outline

<ロ>

1. In all examples that have been computed, if $u \sim v$ then v is a rearrangement of u. Is this always true?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

1. In all examples that have been computed, if $u \sim v$ then v is a rearrangement of u. Is this always true?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

2. We have seen that $\mathcal{M}(a)$ is not regular. Is it context free?

1. In all examples that have been computed, if $u \sim v$ then v is a rearrangement of u. Is this always true?

(ロ) (同) (三) (三) (三) (○) (○)

- 2. We have seen that $\mathcal{M}(a)$ is not regular. Is it context free?
- 3. What is $\mu(u, w)$ in generalized factor order?