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Let P be a set and consider the corresponding free monoid

P∗ = {w = w1w2 . . .wk : k ≥ 0 and wi ∈ P for all i}.

Let ε be the empty word and let |w | denote the length of w .
Word w ′ is a factor of w if there are words u, v with w = uw ′v .

Example. w’=322 is a factor of w = 13213221.

Factor order is the partial order on P∗ where w ′ ≤ w iff w ′ is a
factor of w . Björner found the Möbius function of factor order.

Now let (P,≤P) be a poset. Generalized factor order on P∗ is:
u ≤ w if there is a factor w ′ of w with |u| = |w ′| and

u1 ≤P w ′1, . . . , uk ≤P w ′k where k = |u|.

Example. If P is the positive integers then in P∗ we have
324 ≤ 216541.

Note that generalized factor order becomes factor order if P is
an antichain. If P = P then factor order is an order on
compositions.
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Consider the algebra of formal power series with integer
coefficients and the elements of P as noncommuting variables:

Z〈〈P〉〉 =

{
f =

∑
w∈P∗

cww : cw ∈ Z for all w

}
.

If f ∈ Z〈〈P〉〉 has no constant term, i.e., cε = 0, then define

f ∗ = ε+ f + f 2 + f 3 + · · · = (ε− f )−1.

Then f is rational if it can be constructed from finitely many
elements of P using the algebra and star operations.
A language is any L ⊆ P∗. It has an associated generating
function fL =

∑
w∈Lw . The language L is regular if P is finite

and fL is rational.
Associated with u ∈ P∗ is

F(u) = {w : w ≥ u} and F (u) =
∑
w≥u

w .

Theorem
If P is a finite poset and u ∈ P∗ then F (u) is rational.
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A nondeterministic finite automaton (NFA) over P is a digraph
∆ with vertices V and arcs ~E such that

1. the elements of V are called states and |V | is finite,

2. there is an initial state α and a set Ω of final states,
3. each arc of ~E is labeled with an element of P.

Given a (directed) path in ∆ starting at α we construct a word in
P∗ by concatenating the elements on the arcs along the path in
the order in which they are encountered. The language
accepted by ∆, L(∆), is the set of all such words which are
associated with a path ending in a final state.

Theorem
Suppose |P| is finite. Then a language L ⊆ P∗ is regular iff
L = L(∆) for some NFA ∆.
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A NFA ∆(u) for F(u), u ∈ P∗.

The states of ∆(u) are labeled 0,1, . . . , k = |u|. The initial state
is α = 0 and the final state is ω = k . There are loops at 0 and k
for every a ∈ P. The only other arcs are from state i − 1 to state
i , 1 ≤ i ≤ k , and are labeled by the a ∈ P such that a ≥ ui . It is
easy to check that this NFA accepts F(u).

Example. Consider P = P and u = 745. A set of labeled arcs
from one node to another will be displayed as a single arc
labeled with the set of all such labels. Let
[m,∞) = {n ∈ Z : n ≥ m}.

����@
[1,∞)

α
����

0 -
[7,∞) ����

1 -
[4,∞) ����

2 -
[5,∞) ����

3

ω

��@I
�

[1,∞)

So 745 ≤ 968864 corresponding to the NFA path

0906081826343.
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If P = P and u ∈ P∗ then one can define the following
generating function which is a specialization of F (u):

F (u; t , x) =
∑
w≥u

t |u|x
P

i wi .

Even though P is not finite, one can use NFAs and the transfer
matrix method to prove the following.

Theorem
For all u ∈ P∗ we have F (u; t , x) is rational.
Call words u, v Wilf equivalent , u ∼ v , if F (u; t , x) = F (v ; t , x).
If u = u1u2 . . . uk then let

ur = uk . . . u2u1 and u+ = (u1 + 1)(u2 + 1) . . . (uk + 1).

Theorem
We have the following Wilf equivalences.
(a) u ∼ ur ,
(b) if u ∼ v then u+ ∼ v+.
(c) if u ∼ v then 1u ∼ 1v,
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Theorem
We have the following Wilf equivalences.
(a) u ∼ ur ,
(b) if u ∼ v then u+ ∼ v+.
(c) if u ∼ v then 1u ∼ 1v,

Example. Find the Wilf equivalences for permutations of n ≤ 3.

n = 2: 12 ∼ 21 by (a).

n = 3: 12 ∼ 21 =⇒ 23 ∼ 32 by (b) =⇒ 123 ∼ 132 by (c). So
by (a) again: 123 ∼ 132 ∼ 321 ∼ 231.
Also 213 ∼ 312 by (a).
There are no more Wilf equivalences since

F (123; t , x) =
t3x6(1− x + tx)

(1− x)3(1− x − tx + tx3 − t2x4)

while

F (213; t , x) =
t3x6(1− x + tx)(1 + tx3)

(1− x)2(1− x + t2x4)(1− x − tx + tx3 − t2x4)
.
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In generalized factor order F (u) =
∑

w≥u w =
∑

w∈P∗ ζ(u,w)w
where ζ is the zeta function of P∗.

If P∗ is locally finite we can
also consider the language associated with the Möbius function

M(u) = {w ∈ P∗ : µ(u,w) 6= 0}.

In ordinary factor order, the dominant outer factor of w , o(w), is
the longest word other than w which is both a prefix and a
suffix of w . The dominant inner factor of w = w1w2 . . .wk is
i(w) = w2 . . .wk−1. A word is flat if all its elements are equal.
Example. w = abbaabb has o(w) = abb and i(w) = bbaab.

Theorem (Björner)
In ordinary factor order, if u ≤ w then µ(u,w) equals

(1) µ(u,o(w)) if |w | − |u| > 2 and u ≤ o(w) 6≤ i(w),
(2) 1 if |w | − |u| = 2, w not flat, and u ∈ {i(w),o(w)},
(3) (−1)|w |−|u| if |w | − |u| < 2,
(4) 0 otherwise.

Example. µ(b,abbaabb)
(1)
= µ(b,abb)

(2)
= 1.
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the longest word other than w which is both a prefix and a
suffix of w . The dominant inner factor of w = w1w2 . . .wk is
i(w) = w2 . . .wk−1. A word is flat if all its elements are equal.
Example. w = abbaabb has o(w) = abb and i(w) = bbaab.

Theorem (Björner)
In ordinary factor order, if u ≤ w then µ(u,w) equals

(1) µ(u,o(w)) if |w | − |u| > 2 and u ≤ o(w) 6≤ i(w),
(2) 1 if |w | − |u| = 2, w not flat, and u ∈ {i(w),o(w)},
(3) (−1)|w |−|u| if |w | − |u| < 2,
(4) 0 otherwise.

Example. µ(b,abbaabb)
(1)
= µ(b,abb)

(2)
= 1.
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Lemma (Pumping Lemma)
Let L be a regular language.

Then there is a constant n ≥ 1
such that any z ∈ L can be written as z = uvw satisfying

1. |uv | ≤ n and |v | ≥ 1,
2. uv iw ∈ L for all i ≥ 1.

Theorem
In ordinary factor order with P = {a,b},M(a) is not regular.
Proof By contradiction: let n be the Pumping Lemma constant.
Choose z = abnabna. Then z ∈M(a): o(z) = abna and
i(z) = bnabn giving a ≤ o(z) 6≤ i(z). So

µ(a,abnabna) = µ(a,abna) = µ(a,a) = 1.

Now pick any prefix uv of z as in the Pumping Lemma.
Suppose u 6= ε (u = ε is similar). So v = bj for some j with
1 ≤ j < n. Let i = 2 with corresponding
z ′ = uv2w = abn+jabna. But o(z ′) = a and i(z ′) = bn+jabn.
Thus a ≤ o(z ′) ≤ i(z ′). This implies that µ(a, z ′) = 0 and hence
z ′ 6∈ M(a), which is a contradiction.
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Outline



1. In all examples that have been computed, if u ∼ v then v is
a rearrangement of u. Is this always true?

2. We have seen thatM(a) is not regular. Is it context free?
3. What is µ(u,w) in generalized factor order?
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