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Two sequences of distinct integers π = a1a2 . . . ak and
σ = b1b2 . . . bk are order isomorphic if, for all i and j ,

ai < aj ⇐⇒ bi < bj .

Ex. The sequences π = 132 and σ = 485 are order isomorphic.
Let Sn be the symmetric group of all permutations of {1, . . . ,n}
and let S = ∪n≥0Sn. If π, σ ∈ S then σ contains π as a pattern
if there is a subsequence σ′ of σ order isomorphic to π.
Ex. σ = 42183756 contains π = 132 because of σ′ = 485.
We say σ avoids π if σ does not contain π and let

Avn(π) = {σ ∈ Sn : σ avoids π}.

Ex. If π ∈ Sk then Avk (π) = Sk − {π}.
Say that π and π′ are Wilf equivalent, π ≡ π′, if for all n ≥ 0

# Avn(π) = # Avn(π′).

Theorem
For any π ∈ S3 we have # Avn(π) = Cn, the nth Catalan
number.
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The diagram of π = a1 . . . an is (1,a1), . . . , (n,an) ∈ Z2.

Ex.

132 =

R90(132) = = 231

The dihedral group D4 of symmetries of the square acts on Sn:

D4 = {R0,R90,R180,R270, r0, r1, r−1, r∞}

where Rθ is rotation counter-clockwise through θ degrees and
rm is reflection in a line of slope m.

Note that for any ρ ∈ D4:

σ contains π ⇐⇒ ρ(σ) contains ρ(π),

∴ σ avoids π ⇐⇒ ρ(σ) avoids ρ(π),

∴ ρ(π) ≡ π.

These Wilf equivalences are called trivial.
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A permutation statistic is st : S→ {0,1,2, . . .}.

The inversion
number of π = a1 . . . an is

invπ = #{(i , j) : i < j and ai > aj}.

Ex. If π = 24135 then invπ = #{(1,3), (2,3), (2,4)} = 3.

Theorem (Rodrigues)∑
σ∈Sn

qinvσ = 1(1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1)
def
= [n]q!.

Given π ∈ S we have a corresponding inversion polynomial

In(π; q) =
∑

σ∈Avn(π)

qinvσ.

Call π and π′ inv-Wilf equivalent, π
inv≡ π′, if In(π; q) = In(π′; q)

for all n ≥ 0. Note that this implies π ≡ π′ since

# Avn(π) = In(π; 1) = In(π′; 1) = #Avn(π′).
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Note that (i , j) is an inversion of π iff the line connecting the
corresponding points in the diagram of π has negative slope.

Proposition (DDJSS)
Let π ∈ S and ρ ∈ D4. Then

inv ρ(π) = invπ ⇐⇒ ρ ∈ {R0,R180, r1, r−1}.

So for ρ ∈ {R0,R180, r1, r−1} we have

ρ(π)
inv≡ π.

The inv-Wilf equivalences in this proposition are call trivial.

Let [π]inv denote the inv-Wilf equivalence class of π.
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Theorem (DDJSS)
The inv-Wilf equivalence classes for π ∈ S3 are

[123]inv = {123},
[321]inv = {321},
[132]inv = {132,213},
[231]inv = {231,312}.

Proof. The two equivalences follow from the proposition:

213 = R180(132) and 312 = R180(231).

To see that there are no others, note that for π ∈ Sk

Ik (π; q) =
∑

σ∈Sk−{π}

qinvσ = [k ]q!− qinvπ.

So if π, π′ ∈ Sk with π
inv≡ π′ then invπ = invπ′. Finally, check

that any 2 classes above have differing inversion numbers.

Conjecture
All inv-Wilf equivalences are trivial.
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The major index of π = a1 . . . an is

majπ =
∑

ai>ai+1

i .

Ex. If π = 253614 then majπ = 2 + 4 = 6.

Theorem (MacMahon)∑
σ∈Sn

qmajσ = [n]q!.

Given π ∈ S we have a corresponding major index polynomial

Mn(π; q) =
∑

σ∈Avn(π)

qmajσ.

Call π, π′ maj-Wilf equivalent, π
maj
≡ π′, if Mn(π; q) = Mn(π′; q) for

all n ≥ 0. Let [π]maj denote the maj-Wilf equivalence class of π.

Note: No ρ ∈ D4 preserves the major index.
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Theorem (DDJSS)
The maj-Wilf equivalence classes for π ∈ S3 are

[123]maj = {123},
[321]maj = {321},
[132]maj = {132,231},
[213]maj = {213,312}.

If π = a1 . . . an and σ1, . . . , σn ∈ S then the inflation of π by the
σi is the permutation π[σ1, . . . , σn] whose diagram is obtained
from that of π by replacing the i th dot with a copy of σi for all i .
Ex.

132 = 132[σ1, σ2, σ3] =

σ1

σ2

σ3

Conjecture
For all m,n ≥ 0 we have: 132[ιm,1, δn]

maj
≡ 231[ιm,1, δn],

where ιm = 12 . . .m and δn = n(n − 1) . . . 1.



Theorem (DDJSS)
The maj-Wilf equivalence classes for π ∈ S3 are

[123]maj = {123},
[321]maj = {321},
[132]maj = {132,231},
[213]maj = {213,312}.

If π = a1 . . . an and σ1, . . . , σn ∈ S then the inflation of π by the
σi is the permutation π[σ1, . . . , σn] whose diagram is obtained
from that of π by replacing the i th dot with a copy of σi for all i .

Ex.

132 = 132[σ1, σ2, σ3] =

σ1

σ2

σ3

Conjecture
For all m,n ≥ 0 we have: 132[ιm,1, δn]

maj
≡ 231[ιm,1, δn],

where ιm = 12 . . .m and δn = n(n − 1) . . . 1.



Theorem (DDJSS)
The maj-Wilf equivalence classes for π ∈ S3 are

[123]maj = {123},
[321]maj = {321},
[132]maj = {132,231},
[213]maj = {213,312}.

If π = a1 . . . an and σ1, . . . , σn ∈ S then the inflation of π by the
σi is the permutation π[σ1, . . . , σn] whose diagram is obtained
from that of π by replacing the i th dot with a copy of σi for all i .
Ex.

132 = 132[σ1, σ2, σ3] =

σ1

σ2

σ3

Conjecture
For all m,n ≥ 0 we have: 132[ιm,1, δn]

maj
≡ 231[ιm,1, δn],

where ιm = 12 . . .m and δn = n(n − 1) . . . 1.



Theorem (DDJSS)
The maj-Wilf equivalence classes for π ∈ S3 are

[123]maj = {123},
[321]maj = {321},
[132]maj = {132,231},
[213]maj = {213,312}.

If π = a1 . . . an and σ1, . . . , σn ∈ S then the inflation of π by the
σi is the permutation π[σ1, . . . , σn] whose diagram is obtained
from that of π by replacing the i th dot with a copy of σi for all i .
Ex.

132 = 132[σ1, σ2, σ3] =

σ1

σ2

σ3

Conjecture
For all m,n ≥ 0 we have: 132[ιm,1, δn]

maj
≡ 231[ιm,1, δn],

where ιm = 12 . . .m and δn = n(n − 1) . . . 1.



Outline

Pattern containment and avoidance

Permutation statistics: inversions

Permutation statistics: major index

q-Catalan numbers

Multiple restrictions

Future work



The nth Catalan number is

Cn =
1

n + 1

(
2n
n

)
.

Since # Avn(π) = Cn for any π ∈ S3, the corresponding In(π; q)
and Mn(π; q) are q-analogues of the Catalan numbers since
setting q = 1 we recover Cn. The polynomials

Cn(q) = In(132; q) = In(213; q)

C̃n(q) = In(231; q) = In(312; q)

were introduced by Carlitz and Riordan and studied by
numerous authors but the others seem to be new. For n ≥ 1,

Cn =
n−1∑
k=0

CkCn−k−1.

Theorem (DDJSS)

For n ≥ 1: In(312; q) =
n−1∑
k=0

qk Ik (312; q)In−k−1(312; q).
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Divisibility properties of Catalan numbers has been a topic of
recent interest: Deutsch & Sagan; Eu, Liu, & Yeh; Kauers,
Krattenthaler & Müller; Konvalinka; Lin; Liu & Yeh; Postnikov &
Sagan; Xin & Xu; Yildiz.

Theorem
We have that Cn is odd if and only if n = 2k − 1 for some k ≥ 0.
For any polynomial f (q) we let

〈qi〉f (q) = the coefficient of qi in f (q).

Theorem (DDJSS)
For all k ≥ 0 we have

〈qi〉I2k−1(321; q) =

{
1 if i = 0,
an even number if i ≥ 1.
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If Π ⊆ S then we let

Avn(Π) = {σ ∈ Sn : σ avoids π for all π ∈ Π}.

Simion & Schmidt classified # Avn(Π) for all Π ⊆ S3 including:

# Avn(132,231) = 2n−1,

# Avn(213,321) = 1 +

(
n
2

)
,

# Avn(231,312,321) = Fn (Fibonacci numbers).

We have classified In(Π; q) and Mn(Π; q) for Π ⊆ S3.

Theorem (DDJSS)
We have

In(132,231; q) = (1 + q)(1 + q2) · · · (1 + qn−1),

Mn(213,321; q) = 1 +
n−1∑
k=1

kqk ,

In(231,312,321; q) =
n∑

k=0

(
n − k

k

)
qk .
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For some polynomials we could not give closed form formulas
and so instead gave recursions or generating functions.

Define

M(Π; q, x) =
∑
n≥0

Mn(Π; q)xn,

and

(x)k = (1− x)(1− qx)(1− q2x) . . . (1− qk−1x).

Theorem (DDJSS)

M(231,321; q, x) =
∑
k≥0

qk2
x2k

(x)k (x)k+1
.

Proof sketch. If σ = a1 . . . an ∈ Avn(231,321) then σ is
determined by its left-right maxima (lrm). The descents are
exactly the lrm not immediately followed by another lrm. So we
construct w(σ) = b1 . . . bn where bi = 1 if ai is an lrm and 0
otherwise. Using Foata’s 2nd fundamental bijection, we map
w(σ) to a 0-1 sequence v(σ) such that inv v(σ) = maj w(σ).
The lattice path associated with v(σ) defines a partition whose
Durfee square decomposition gives the generating function.
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w(σ) to a 0-1 sequence v(σ) such that inv v(σ) = maj w(σ).
The lattice path associated with v(σ) defines a partition whose
Durfee square decomposition gives the generating function.
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1. What happens if one considers permutations in Sn for
n ≥ 3?

2. What happens if one uses other statistics in place of inv
and maj? Elizalde has studied the excedance and number
of fixed points statistics.

3. What happens if one uses generalized pattern avoidance
where copies of a pattern are required to have certain
pairs of elements in the diagram adjacent either
horizontally or vertically?

4. What happens if one looks at pattern avoidance in other
combinatorial structures such as compositions or set
partitions?
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