Probabilistic Proofs of Hooklength Formulas

Bruce Sagan
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027
sagan@math.msu.edu
www.math.msu.edu/~sagan

October 26, 2009
Let T be a rooted tree with n distinguishable vertices. We also use T for its vertex set.
Let T be a rooted tree with n distinguishable vertices. We also use T for its vertex set. An *increasing labeling* of T is a bijection $L : T \rightarrow \{1, 2, \ldots, n\}$ such that if vertex v has a child w then $L(v) < L(w)$. Let

$$f^T = \text{number of increasing labelings of } T.$$
Let T be a rooted tree with n distinguishable vertices. We also use T for its vertex set. An *increasing labeling* of T is a bijection $L : T \rightarrow \{1, 2, \ldots, n\}$ such that if vertex v has a child w then $L(v) < L(w)$. Let

$$f^T = \text{number of increasing labelings of } T.$$
Let T be a rooted tree with n distinguishable vertices. We also use T for its vertex set. An *increasing labeling* of T is a bijection $L : T \rightarrow \{1, 2, \ldots, n\}$ such that if vertex v has a child w then $L(v) < L(w)$. Let

$$f^T = \text{number of increasing labelings of } T.$$

Ex.

Let $L : \begin{array}{c}
\text{Ex.} \\
T = \begin{array}{c}
\text{3} \\
\text{4}
\end{array} \\
\begin{array}{c}
\text{1} \\
\text{2} \\
\text{2} \\
\text{4}
\end{array} \\
\begin{array}{c}
\text{1} \\
\text{3} \\
\text{3} \\
\text{4}
\end{array} \\
\begin{array}{c}
\text{1} \\
\text{1} \\
\text{2} \\
\text{3}
\end{array} \\
\begin{array}{c}
\text{4} \\
\text{4} \\
\text{1} \\
\text{4}
\end{array}
\end{array}$$

$$f^T = 3.$$
Let T be a rooted tree with n distinguishable vertices. We also use T for its vertex set. An *increasing labeling* of T is a bijection $L : T \rightarrow \{1, 2, \ldots, n\}$ such that if vertex v has a child w then $L(v) < L(w)$. Let

$$f^T = \text{number of increasing labelings of } T.$$

![Example of an increasing labeling]

The *hooklength* of a vertex v is

$$h_v = \text{number of descendents of } v \text{ (including } v).$$
Let T be a rooted tree with n distinguishable vertices. We also use T for its vertex set. An increasing labeling of T is a bijection $L : T \rightarrow \{1, 2, \ldots, n\}$ such that if vertex v has a child w then $L(v) < L(w)$. Let

$$f^T = \text{number of increasing labelings of } T.$$

Ex. $T = L: 3 \quad 1 \quad 2 \quad 2 \quad 1 \quad 4 \quad f^T = 3$

$h_v: 2 \quad 1$

The hooklength of a vertex v is

$$h_v = \text{number of descendents of } v \text{ (including } v).$$
Let T be a rooted tree with n distinguishable vertices. We also use T for its vertex set. An *increasing labeling* of T is a bijection $L: T \rightarrow \{1, 2, \ldots, n\}$ such that if vertex v has a child w then $L(v) < L(w)$. Let

$$f^T = \text{number of increasing labelings of } T.$$

Ex.

$T =
\begin{array}{c}
 \bullet \\
 \bullet \\
 \bullet \\
 \bullet \\
 \bullet \\
\end{array}$

$L:
\begin{array}{c}
 3 \\
 2 \\
 2 \\
 1 \\
 1 \\
\end{array}$

$f^T = 3$

$h_v:
\begin{array}{c}
 2 \\
 1 \\
 1 \\
\end{array}$

The *hooklength* of a vertex v is

$$h_v = \text{number of descendents of } v \text{ (including } v).$$

Theorem (Hooklength Formula)

If T has n vertices, then

$$f^T = \frac{n!}{\prod_{v \in T} h_v}.$$
Let T be a rooted tree with n distinguishable vertices. We also use T for its vertex set. An *increasing labeling* of T is a bijection $L : T \to \{1, 2, \ldots, n\}$ such that if vertex v has a child w then $L(v) < L(w)$. Let

$$f^T = \text{number of increasing labelings of } T.$$

Ex.

\[
\begin{align*}
T &= \begin{array}{c}
\text{1} \\
\text{3} & \text{4} \\
\end{array} & L : \begin{array}{c}
\text{3} & \text{1} \\
\text{2} & \text{2} \\
\end{array} & f^T = 3 \\

h_v : \begin{array}{c}
\text{2} & \text{4} \\
\text{1} & \text{1} \\
\end{array} & f^T = \frac{4!}{4 \cdot 2 \cdot 1^2} = 3.
\end{align*}
\]

The *hooklength* of a vertex v is

$$h_v = \text{number of descendents of } v \text{ (including } v).$$

Theorem (Hooklength Formula)

If T has n vertices, then

$$f^T = \frac{n!}{\prod_{v \in T} h_v}.$$
History.

1. There are also hooklength formulas for
 1.1 ordinary Young tableaux (Frame-Robinson-Thrall),
History.

1. There are also hooklength formulas for
 1.1 ordinary Young tableaux (Frame-Robinson-Thrall),
 1.2 shifted Young tableaux (Knuth), and
History.

1. There are also hooklength formulas for
 1.1 ordinary Young tableaux (Frame-Robinson-Thrall),
 1.2 shifted Young tableaux (Knuth), and
 1.3 d-complete posets (Proctor).
History.

1. There are also hooklength formulas for
 1.1 ordinary Young tableaux (Frame-Robinson-Thrall),
 1.2 shifted Young tableaux (Knuth), and
 1.3 d-complete posets (Proctor).

2. Probabilistic proofs of these formulas were given by
 2.1 Greene-Nijenhuis-Wilf (ordinary tableaux),
History.

1. There are also hooklength formulas for
 1.1 ordinary Young tableaux (Frame-Robinson-Thrall),
 1.2 shifted Young tableaux (Knuth), and
 1.3 d-complete posets (Proctor).

2. Probabilistic proofs of these formulas were given by
 2.1 Greene-Nijenhuis-Wilf (ordinary tableaux),
 2.2 S (shifted tableaux),
History.

1. There are also hooklength formulas for
 1.1 ordinary Young tableaux (Frame-Robinson-Thrall),
 1.2 shifted Young tableaux (Knuth), and
 1.3 d-complete posets (Proctor).

2. Probabilistic proofs of these formulas were given by
 2.1 Greene-Nijenhuis-Wilf (ordinary tableaux),
 2.2 S (shifted tableaux),
 2.3 S-Yeh (trees),
History.

1. There are also hooklength formulas for
 1.1 ordinary Young tableaux (Frame-Robinson-Thrall),
 1.2 shifted Young tableaux (Knuth), and
 1.3 \(d\)-complete posets (Proctor).

2. Probabilistic proofs of these formulas were given by
 2.1 Greene-Nijenhuis-Wilf (ordinary tableaux),
 2.2 S (shifted tableaux),
 2.3 S-Yeh (trees),
 2.4 Okamura (\(d\)-complete).
Let

\[B(n) = \text{ set of binary trees, } T, \text{ on } n \text{ vertices.} \]
Let

\[B(n) = \text{set of binary trees, } T, \text{ on } n \text{ vertices.} \]

Let

\[\mathcal{L}(n) = \text{set of all increasing labelings, } L, \text{ of trees in } B(n). \]
Let
\[B(n) = \text{set of binary trees, } T, \text{ on } n \text{ vertices}. \]

Let
\[\mathcal{L}(n) = \text{set of all increasing labelings, } L, \text{ of trees in } B(n). \]

Ex.
\[B(3) : \]
\[\begin{array}{c}
\text{Ex.}\n\mathcal{L}(3) : \\
\end{array} \]
Let

\[\mathcal{B}(n) = \text{set of binary trees, } T, \text{ on } n \text{ vertices.} \]

Let

\[\mathcal{L}(n) = \text{set of all increasing labelings, } L, \text{ of trees in } \mathcal{B}(n). \]

Ex.

\[\mathcal{B}(3) : \]

\[\mathcal{L}(3) : \]

Theorem (Han, 2008)

For any \(n \geq 0 \),

\[\sum_{T \in \mathcal{B}(n)} \prod_{v \in T} h_v^2 h_v - 1 = \frac{1}{n!}. \]

Notes.

1. The hooklengths appear as exponents.
2. Han's proof is algebraic. Our proof is probabilistic.
Let
\[B(n) = \text{set of binary trees, } T, \text{ on } n \text{ vertices.} \]

Let
\[\mathcal{L}(n) = \text{set of all increasing labelings, } L, \text{ of trees in } B(n). \]

Ex.
\[B(3) : \]
\[\mathcal{L}(3) : \]

Theorem (Han, 2008)
For any \(n \geq 0 \),
\[\sum_{T \in B(n)} \prod_{v \in T} \frac{1}{h_v 2^{h_v - 1}} = \frac{1}{n!}. \]
Let
\[B(n) = \text{set of binary trees, } T, \text{ on } n \text{ vertices.} \]

Let
\[L(n) = \text{set of all increasing labelings, } L, \text{ of trees in } B(n). \]

Ex.
\[B(3) : \]
\[L(3) : \]

Theorem (Han, 2008)
For any \(n \geq 0 \),
\[\sum_{T \in B(n)} \prod_{v \in T} \frac{1}{h_v 2^{h_v-1}} = \frac{1}{n!}. \]

Notes.
1. The hooklengths appear as exponents.
Let

\[B(n) = \text{ set of binary trees, } T, \text{ on } n \text{ vertices.} \]

Let

\[\mathcal{L}(n) = \text{ set of all increasing labelings, } L, \text{ of trees in } B(n). \]

Ex.

\[B(3) : \]

\[\mathcal{L}(3) : \]

Theorem (Han, 2008)

For any \(n \geq 0 \),

\[\sum_{T \in B(n)} \prod_{v \in T} \frac{1}{h_v 2^{h_v-1}} = \frac{1}{n!}. \]

Notes.

1. The hooklengths appear as exponents.
2. Han’s proof is algebraic. Our proof is probabilistic.
Outline
Theorem (Han, 2008)

For any \(n \geq 0 \),

\[
\sum_{T \in B(n)} \prod_{v \in T} \frac{1}{h_v 2^{h_v - 1}} = \frac{1}{n!}.
\]
Theorem (Han, 2008)

For any $n \geq 0$,

$$\sum_{T \in B(n)} \prod_{v \in T} \frac{1}{h_v 2^{h_v-1}} = \frac{1}{n!}.$$

Proof Multiplying the above equation by $n!$ and using the Hooklength Formula, it suffices to show

$$\sum_{T \in B(n)} f^T \prod_{v \in T} \frac{1}{2^{h_v-1}} = 1.$$

Theorem (Han, 2008)

For any \(n \geq 0 \),

\[
\sum_{T \in B(n)} \prod_{v \in T} \frac{1}{h_v 2^{h_v - 1}} = \frac{1}{n!}.
\]

Proof Multiplying the above equation by \(n! \) and using the Hooklength Formula, it suffices to show

\[
\sum_{T \in B(n)} f^T \prod_{v \in T} \frac{1}{2^{h_v - 1}} = 1.
\]

So it suffices to find an algorithm generating each \(L \in \mathcal{L}(n) \) such that

(I) \(\text{prob } L = \prod_{v \in T} 1/2^{h_v - 1} \) if \(L \) labels \(T \), and
Theorem (Han, 2008)

For any $n \geq 0$,

$$
\sum_{T \in B(n)} \prod_{v \in T} \frac{1}{h_v 2^{h_v - 1}} = \frac{1}{n!}.
$$

Proof Multiplying the above equation by $n!$ and using the Hooklength Formula, it suffices to show

$$
\sum_{T \in B(n)} f^T \prod_{v \in T} \frac{1}{2^{h_v - 1}} = 1.
$$

So it suffices to find an algorithm generating each $L \in \mathcal{L}(n)$ such that

(1) $\text{prob } L = \prod_{v \in T} 1/2^{h_v - 1}$ if L labels T, and
(2) $\sum_{L \in \mathcal{L}(n)} \text{prob } L = 1$.

(I) \(\text{prob } L = \prod_{v \in T} 1/2^{h_v - 1} \) if \(L \) labels \(T \), and

(II) \(\sum_{L \in \mathcal{L}(n)} \text{prob } L = 1. \)
(I) \(\text{prob } L = \prod_{v \in T} 1/2^{h_v-1} \) if \(L \) labels \(T \), and
(II) \(\sum_{L \in \mathcal{L}(n)} \text{prob } L = 1. \)

For \(w \in T \), consider the \textit{depth} of \(w \):

\[
d_w = \text{length of the unique root-to-}w\text{ path.}
\]
(I) \(\text{prob } L = \prod_{v \in T} 1/2^{h_v - 1} \) if \(L \) labels \(T \), and
(II) \(\sum_{L \in \mathcal{L}(n)} \text{prob } L = 1. \)

For \(w \in T \), consider the **depth** of \(w \):

\[
d_w = \text{length of the unique root-to-} w \text{ path.}
\]

Algorithm. (a) Let \(L \) consist of a root labeled 1.
\(\textbf{Algorithm.} \) (a) Let \(L \) consist of a root labeled 1.
(b) While \(|L| < n \), pick a leaf \(w \) to be added to \(L \) with label \(|L| + 1 \) and \(\text{prob } w = 1/2^{d_w} \).
(I) $\text{prob } L = \prod_{v \in T} 1/2^{h_v} - 1$ if L labels T, and
(II) $\sum_{L \in \mathcal{L}(n)} \text{prob } L = 1$.

For $w \in T$, consider the depth of w:

$$d_w = \text{length of the unique root-to-}w\text{ path}.$$

Algorithm. (a) Let L consist of a root labeled 1.
(b) While $|L| < n$, pick a leaf w to be added to L with label $|L| + 1$ and $\text{prob } w = 1/2^{d_w}$.
(c) Output L.
(I) \(\text{prob } L = \prod_{v \in T} 1/2^{h_v - 1} \) if \(L \) labels \(T \), and
(II) \(\sum_{L \in \mathcal{L}(n)} \text{prob } L = 1 \).

For \(w \in T \), consider the depth of \(w \):

\[
d_w = \text{length of the unique root-to-}w\text{-path.}
\]

Algorithm.
(a) Let \(L \) consist of a root labeled 1.
(b) While \(|L| < n \), pick a leaf \(w \) to be added to \(L \) with label \(|L| + 1 \) and \(\text{prob } w = 1/2^{d_w} \).
(c) Output \(L \).

Ex. \(n = 3 \)
(I) \(\text{prob} \ L = \prod_{v \in T} 1/2^{h_v - 1} \) if \(L \) labels \(T \), and
(II) \(\sum_{L \in \mathcal{L}(n)} \text{prob} \ L = 1. \)

For \(w \in T \), consider the \textit{depth} of \(w \):

\[
d_w = \text{length of the unique root-to-}w\text{-path.}
\]

Algorithm. (a) Let \(L \) consist of a root labeled 1.
(b) While \(|L| < n \), pick a leaf \(w \) to be added to \(L \) with label \(|L| + 1 \) and \(\text{prob} \ w = 1/2^{d_w} \).
(c) Output \(L \).

Ex. \(n = 3 \)

\[
L: \quad \bullet \quad 1
\]
(I) \(\text{prob } L = \prod_{v \in T} 1/2^{h_v - 1} \) if \(L \) labels \(T \), and

(II) \(\sum_{L \in \mathcal{L}(n)} \text{prob } L = 1. \)

For \(w \in T \), consider the **depth** of \(w \):

\[
d_w = \text{length of the unique root-to-}w\text{ path.}
\]

Algorithm. (a) Let \(L \) consist of a root labeled 1.
(b) While \(|L| < n \), pick a leaf \(w \) to be added to \(L \) with label \(|L| + 1 \) and \(\text{prob } w = 1/2^{d_w} \).
(c) Output \(L \).

Ex. \(n = 3 \)

\[
L : \quad 1
\]

\[\text{prob } L = 1\]
(I) \(\text{prob } L = \prod_{v \in T} 1/2^{h_v-1} \) if \(L \) labels \(T \), and

(II) \(\sum_{L \in \mathcal{L}(n)} \text{prob } L = 1. \)

For \(w \in T \), consider the \textit{depth} of \(w \):

\[d_w = \text{length of the unique root-to-}w \text{ path.} \]

\textbf{Algorithm.} (a) Let \(L \) consist of a root labeled 1.
(b) While \(|L| < n \), pick a leaf \(w \) to be added to \(L \) with label \(|L| + 1 \) and \(\text{prob } w = 1/2^{d_w}. \)
(c) Output \(L \).

\textbf{Ex.} \(n = 3 \)

\[
L : \quad \begin{array}{c}
1 \\
\frac{1}{2} \quad \frac{1}{2}
\end{array}
\]

\(\text{prob } L = 1 \)
(I) \(\text{prob } L = \prod_{v \in T} 1/2^{h_v - 1} \) if \(L \) labels \(T \), and
(II) \(\sum_{L \in \mathcal{L}(n)} \text{prob } L = 1 \).

For \(w \in T \), consider the \textit{depth} of \(w \):

\[d_w = \text{length of the unique root-to-}w \text{ path}. \]

\textbf{Algorithm.} (a) Let \(L \) consist of a root labeled 1.
(b) While \(|L| < n \), pick a leaf \(w \) to be added to \(L \) with label \(|L| + 1 \) and \(\text{prob } w = 1/2^{d_w} \).
(c) Output \(L \).

\textbf{Ex.} \(n = 3 \)

\(L : \)

\[\begin{align*}
\frac{1}{2} & \quad \frac{1}{2} \\
2 & \quad 1
\end{align*} \]

\(\text{prob } L = 1 \)
(I) \(\text{prob} \, L = \prod_{v \in T} 1/2^{h_v-1} \) if \(L \) labels \(T \), and

(II) \(\sum_{L \in \mathcal{L}(n)} \text{prob} \, L = 1 \).

For \(w \in T \), consider the **depth** of \(w \):

\[
d_w = \text{length of the unique root-to-}w \text{ path}.
\]

Algorithm.

(a) Let \(L \) consist of a root labeled 1.

(b) While \(|L| < n \), pick a leaf \(w \) to be added to \(L \) with label \(|L| + 1 \) and \(\text{prob} \, w = 1/2^{d_w} \).

(c) Output \(L \).

Ex. \(n = 3 \)

\[
L:\quad \begin{array}{c}
1 \\
\circ \quad \circ \quad \circ \\
\frac{1}{2} \quad \frac{1}{2} \quad 2
\end{array}
\]

\[
\text{prob} \, L = 1 \quad \cdot \quad \frac{1}{2}
\]
(I) \(\text{prob} \ L = \prod_{v \in T} 1/2^{h_v-1} \) if \(L \) labels \(T \), and

(II) \(\sum_{L \in \mathcal{L}(n)} \text{prob} \ L = 1 \).

For \(w \in T \), consider the \textit{depth} of \(w \):

\[
d_w = \text{length of the unique root-to-}w \text{ path}.
\]

Algorithm. (a) Let \(L \) consist of a root labeled 1.
(b) While \(|L| < n \), pick a leaf \(w \) to be added to \(L \) with label \(|L| + 1 \) and \(\text{prob} \ w = 1/2^{d_w} \).
(c) Output \(L \).

Ex. \(n = 3 \)

\[
\text{prob} \ L = 1 \cdot \frac{1}{2} \cdot \frac{1}{2} = \prod_{v \in T} 1/2^{h_v-1}.
\]
(I) $\text{prob} \ L = \prod_{v \in T} 1/2^{h_v - 1}$ if L labels T, and

(II) $\sum_{L \in \mathcal{L}(n)} \text{prob} \ L = 1$.

For $w \in T$, consider the depth of w:

$$d_w = \text{length of the unique root-to-w path}.$$

Algorithm. (a) Let L consist of a root labeled 1.
(b) While $|L| < n$, pick a leaf w to be added to L with label $|L| + 1$ and $\text{prob} \ w = 1/2^{d_w}$.
(c) Output L.

Ex. $n = 3$

L:

:\begin{align*}
1 & \quad \frac{1}{2} \quad \frac{1}{2} \\
\frac{1}{2} & \quad \frac{1}{2} \quad 2 \\
\frac{1}{2^2} & \quad \frac{1}{2^2} \\
& \quad 2 \quad 3
\end{align*}:

$\text{prob} \ L = 1 \cdot \frac{1}{2}$
(I) \(\text{prob } L = \prod_{v \in T} 1/2^{h_v - 1} \) if \(L \) labels \(T \), and

(II) \(\sum_{L \in \mathcal{L}(n)} \text{prob } L = 1 \).

For \(w \in T \), consider the depth of \(w \):

\[
d_w = \text{length of the unique root-to-} w \text{ path}.\]

Algorithm. (a) Let \(L \) consist of a root labeled 1.
(b) While \(|L| < n \), pick a leaf \(w \) to be added to \(L \) with label \(|L| + 1 \) and \(\text{prob } w = 1/2^{d_w} \).
(c) Output \(L \).

Ex. \(n = 3 \)

\[
L: \quad \begin{array}{c}
1 \quad 1 \\
\frac{1}{2} \quad \frac{1}{2}
\end{array}
\]

\[
\text{prob } L = 1 \quad . \quad \frac{1}{2} \quad . \quad \frac{1}{2^2}
\]
(I) \[\text{prob } L = \prod_{v \in T} 1/2^{h_v - 1} \] if \(L \) labels \(T \), and

(II) \[\sum_{L \in \mathcal{L}(n)} \text{prob } L = 1. \]

For \(w \in T \), consider the **depth** of \(w \):

\[d_w = \text{length of the unique root-to-}w \text{ path.} \]

Algorithm. (a) Let \(L \) consist of a root labeled 1.
(b) While \(|L| < n \), pick a leaf \(w \) to be added to \(L \) with label \(|L| + 1 \) and \(\text{prob } w = 1/2^{d_w} \).
(c) Output \(L \).

Ex. \(n = 3 \)

\[\begin{align*}
L: & \quad \begin{array}{c}
\begin{array}{c}
1 \quad \frac{1}{2} \quad \frac{1}{2}
\end{array}
\end{array} \\
& \quad \begin{array}{c}
\begin{array}{c}
2 \quad \frac{1}{2^2} \quad \frac{1}{2^2}
\end{array}
\end{array} \\
& \quad \begin{array}{c}
\begin{array}{c}
3 \quad \frac{1}{2} \quad \frac{1}{2^2}
\end{array}
\end{array}
\end{align*} \]

\[h_v = \begin{array}{c}
\begin{array}{c}
3 \quad 2 \quad 1
\end{array}
\end{array} \]

\[\text{prob } L = 1 \]

\[\frac{1}{2} \quad \frac{1}{2^2} \]
(I) $\text{prob } L = \prod_{v \in T} 1/2^{h_v-1}$ if L labels T, and

(II) $\sum_{L \in \mathcal{L}(n)} \text{prob } L = 1$.

For $w \in T$, consider the \textit{depth} of w:

$$d_w = \text{length of the unique root-to-}w\text{ path.}$$

\textbf{Algorithm.} (a) Let L consist of a root labeled 1.
(b) While $|L| < n$, pick a leaf w to be added to L with label $|L| + 1$ and $\text{prob } w = 1/2^{d_w}$.
(c) Output L.

\textbf{Ex.} $n = 3$

\begin{align*}
L: \\
1 \quad \frac{1}{2} \quad \frac{1}{2} \\
\frac{1}{2^2} \quad 2 \quad \frac{1}{2^2} \\
\frac{1}{2^2} \quad \frac{1}{2^2} \quad \frac{1}{2^2} \\
\frac{1}{2^2} \quad 3 \quad 1 \\
\frac{1}{2^2} = \prod_{v \in T} \frac{1}{2^{h_v-1}}.
\end{align*}
(I) $\text{prob } L = \prod_{v \in T} 1/2^{h_v - 1}$ if L labels T.

(I) \(\text{prob } L = \prod_{v \in T} 1/2^{h_v - 1} \) if \(L \) labels \(T \).

Proof
Let \(w \) be the node labeled \(n \) in \(L \) and let \(L' = L - w \).
(I) \(\text{prob} \ L = \prod_{v \in T} 1/2^{h_v-1} \) if \(L \) labels \(T \).

Proof Let \(w \) be the node labeled \(n \) in \(L \) and let \(L' = L - w \).

The hooklengths in \(L \) and \(L' \) are related by

\[
h_v = \begin{cases}
 h'_v + 1 & \text{if } v \text{ is on the unique root-to-}w \text{-path } P, \\
 h'_v & \text{else.}
\end{cases}
\]
(I) \(\text{prob } L = \prod_{v \in T} 1/2^{h_v - 1} \) if \(L \) labels \(T \).

Proof Let \(w \) be the node labeled \(n \) in \(L \) and let \(L' = L - w \).

![Diagram of two labeled trees](image)

The hooklengths in \(L \) and \(L' \) are related by

\[
h_v = \begin{cases}
 h'_v + 1 & \text{if } v \text{ is on the unique root-to-}w \text{ path } P, \\
 h'_v & \text{else.}
\end{cases}
\]

Note that there are \(d_w \) vertices on \(P \cap L' \).
(l) \(\text{prob} \ L = \prod_{v \in T} 1/2^{h_v - 1} \) if \(L \) labels \(T \).

Proof Let \(w \) be the node labeled \(n \) in \(L \) and let \(L' = L - w \).

The hooklengths in \(L \) and \(L' \) are related by

\[
 h_v = \begin{cases}
 h'_v + 1 & \text{if } v \text{ is on the unique root-to-} w \text{ path } P, \\
 h'_v & \text{else.}
\end{cases}
\]

Note that there are \(d_w \) vertices on \(P \cap L' \). So

\[
 \text{prob} \ L = \text{prob} \ w \cdot \text{prob} \ L'
\]
(l) \text{prob } L = \prod_{v \in T} 1/2^{h_v-1} \text{ if } L \text{ labels } T.

\textbf{Proof} \text{ Let } w \text{ be the node labeled } n \text{ in } L \text{ and let } L' = L - w.

The hooklengths in } L \text{ and } L' \text{ are related by

\[h_v = \begin{cases}
 h'_v + 1 & \text{if } v \text{ is on the unique root-to-} w \text{ path } P, \\
 h'_v & \text{else.}
\end{cases} \]

Note that there are } d_w \text{ vertices on } P \cap L'. \text{ So

\[\text{prob } L = \text{prob } w \cdot \text{prob } L' = \frac{1}{2^{d_w}} \prod_{v \in L'} \frac{1}{2^{h'_v-1}} \]
(I) \(\text{prob } L = \prod_{v \in T} 1/2^{h_v-1} \) if \(L \) labels \(T \).

Proof Let \(w \) be the node labeled \(n \) in \(L \) and let \(L' = L - w \).

The hooklengths in \(L \) and \(L' \) are related by

\[
h_v = \begin{cases}
 h'_v + 1 & \text{if } v \text{ is on the unique root-to-} w \text{ path } P, \\
 h'_v & \text{else.}
\end{cases}
\]

Note that there are \(d_w \) vertices on \(P \cap L' \). So

\[
\text{prob } L = \text{prob } w \cdot \text{prob } L' = \frac{1}{2^{d_w}} \prod_{v \in L'} 2^{h'_v-1} = \prod_{v \in L} 2^{h_v-1}.
\]

\(\square \)
(a) Yang generalized Han’s formula to weighted ordered trees and a similar probabilistic proof works.
(a) Yang generalized Han’s formula to weighted ordered trees and a similar probabilistic proof works. Let

\[\mathcal{O}(n) = \text{set of ordered trees on } n \text{ vertices.} \]
(a) Yang generalized Han’s formula to weighted ordered trees and a similar probabilistic proof works. Let

\[\mathcal{O}(n) = \text{set of ordered trees on } n \text{ vertices.} \]

If \(m \) is a variable and \(c_v \) is the number of children of \(v \) in \(T \), let

\[\text{wt}(T) = \prod_{v \in T} \binom{m}{c_v}. \]
(a) Yang generalized Han’s formula to weighted ordered trees and a similar probabilistic proof works. Let

$$\mathcal{O}(n) = \text{set of ordered trees on } n \text{ vertices.}$$

If \(m \) is a variable and \(c_v \) is the number of children of \(v \) in \(T \), let

$$\text{wt}(T) = \prod_{v \in T} \binom{m}{c_v}. $$

Theorem (Yang, 2008)

For any \(n \)

$$\sum_{T \in \mathcal{O}(n)} \text{wt}(T) \prod_{v \in T} \frac{1}{h_v m^{h_v-1}} = \frac{1}{n!}. \quad \square$$
(a) Yang generalized Han’s formula to weighted ordered trees and a similar probabilistic proof works. Let

\[\mathcal{O}(n) = \text{set of ordered trees on n vertices}. \]

If \(m \) is a variable and \(c_v \) is the number of children of \(v \) in \(T \), let

\[\text{wt}(T) = \prod_{v \in T} \binom{m}{c_v}. \]

Theorem (Yang, 2008)

For any \(n \)

\[
\sum_{T \in \mathcal{O}(n)} \text{wt}(T) \prod_{v \in T} \frac{1}{h_v m^{h_v-1}} = \frac{1}{n!}. \]

Note that if \(m = 2 \) then

\[
\binom{m}{c_v} = \binom{2}{c_v} = \text{# of ways to make the children of } v \text{ binary}. \]
(a) Yang generalized Han’s formula to weighted ordered trees and a similar probabilistic proof works. Let

$$\mathcal{O}(n) = \text{ set of ordered trees on } n \text{ vertices.}$$

If m is a variable and c_v is the number of children of v in T, let

$$\text{wt}(T) = \prod_{v \in T} \binom{m}{c_v}.$$

Theorem (Yang, 2008)

For any n

$$\sum_{T \in \mathcal{O}(n)} \text{wt}(T) \prod_{v \in T} \frac{1}{h_v m^{h_v - 1}} = \frac{1}{n!}.$$

Note that if $m = 2$ then

$$\binom{m}{c_v} = \binom{2}{c_v} = \text{ # of ways to make the children of } v \text{ binary.}$$

So $\text{wt}(T)$ becomes the number of ways to make T binary and Yang’s result implies Han’s.
(b) One can also generalize Han’s formula and the probabilistic proof by considering \(n \)-vertex subtrees of a given infinite tree.

\[\sum_{T \in B(n)} \prod_{v \in T} \left(2h_v + 1 \right) = \left(\frac{2n + 1}{2} \right)! \]

Note that if \(\hat{T} \) is the completion of \(T \), i.e., \(T \) with all possible leaves added, then

\[f_{\hat{T}} = \left(\frac{2n + 1}{2} \right)! \prod_{v \in T} \left(2h_v + 1 \right) \]

(e) What is the analogue for tableaux of Han’s formulas?
(b) One can also generalize Han’s formula and the probabilistic proof by considering n-vertex subtrees of a given infinite tree.

(c) With Carla Savage, we are considering probabilistic proofs of q-hooklength formulas of Björner and Wachs and q, t-analogues of Novelli and Thibon.

(d) Han also proved the following result.

Theorem (Han, 2008)

$$\sum_{T \in B(n)} \prod_{v \in T} \left(2h_v + 1\right)^2 = \left(2n + 1\right)!.$$
(b) One can also generalize Han’s formula and the probabilistic proof by considering n-vertex subtrees of a given infinite tree.

(c) With Carla Savage, we are considering probabilistic proofs of q-hooklength formulas of Björner and Wachs and q, t-analogues of Novelli and Thibon.

(d) Han also proved the following result.

Theorem (Han, 2008)

For any n,

\[
\sum_{T \in \mathcal{B}(n)} \prod_{v \in T} \frac{1}{(2h_v + 1)2^{2h_v-1}} = \frac{1}{(2n+1)!}.
\]
(b) One can also generalize Han’s formula and the probabilistic proof by considering \(n \)-vertex subtrees of a given infinite tree.

(c) With Carla Savage, we are considering probabilistic proofs of \(q \)-hooklength formulas of Björner and Wachs and \(q, t \)-analogues of Novelli and Thibon.

(d) Han also proved the following result.

Theorem (Han, 2008)

For any \(n \),

\[
\sum_{T \in \mathcal{B}(n)} \prod_{v \in T} \frac{1}{(2h_v + 1)2^{2h_v-1}} = \frac{1}{(2n+1)!}.
\]

Is there a probabilistic proof?
(b) One can also generalize Han’s formula and the probabilistic proof by considering \(n \)-vertex subtrees of a given infinite tree.

(c) With Carla Savage, we are considering probabilistic proofs of \(q \)-hooklength formulas of Björner and Wachs and \(q, t \)-analogues of Novelli and Thibon.

(d) Han also proved the following result.

Theorem (Han, 2008)

For any \(n \),

\[
\sum_{T \in \mathcal{B}(n)} \prod_{v \in T} \frac{1}{(2h_v + 1)2^{2h_v-1}} = \frac{1}{(2n+1)!}.
\]

Is there a probabilistic proof? Note that if \(\hat{T} \) is the completion of \(T \), i.e., \(T \) with all possible leaves added, then

\[
f_{\hat{T}} = \frac{(2n + 1)!}{\prod_{v \in T} (2h_v + 1)}.
\]
(b) One can also generalize Han’s formula and the probabilistic proof by considering \(n \)-vertex subtrees of a given infinite tree.

(c) With Carla Savage, we are considering probabilistic proofs of \(q \)-hooklength formulas of Björner and Wachs and \(q, t \)-analogues of Novelli and Thibon.

(d) Han also proved the following result.

Theorem (Han, 2008)

For any \(n \),

\[
\sum_{T \in B(n)} \prod_{v \in T} \frac{1}{(2h_v + 1)2^{h_v-1}} = \frac{1}{(2n + 1)!}.
\]

Is there a probabilistic proof? Note that if \(\hat{T} \) is the completion of \(T \), i.e., \(T \) with all possible leaves added, then

\[
f(\hat{T}) = \frac{(2n + 1)!}{\prod_{v \in T}(2h_v + 1)}.
\]

(e) What is the analogue for tableaux of Han’s formulas?