Pattern avoidance and quasisymmetric functions

Bruce Sagan
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027
sagan@math.msu.edu
www.math.msu.edu/~sagan

September 23, 2014
Patterns and quasisymmetric functions

Main result

Questions
Outline

Patterns and quasisymmetric functions

Main result

Questions
Let \mathcal{S}_n be the symmetric group on $[n] = \{1, \ldots, n\}$.

Say $\sigma \in \mathcal{S}_n$ avoids $\pi \in \mathcal{S}_k$ if no subsequence of σ is order isomorphic to π.

Ex. $\sigma = 3125476$ avoids $\pi = 321$ since σ has no decreasing subsequence of length 3.

If Π is a set of permutations then let $\mathcal{S}_n(\Pi) = \{\sigma \in \mathcal{S}_n : \sigma$ avoids every $\pi \in \Pi\}$.

If $\sigma = a_1 \ldots a_n \in \mathcal{S}_n$ then let $\text{Des} \sigma = \{i \in [n-1] : a_i > a_{i+1}\}$, $\text{des} \sigma = |\text{Des} \sigma|$, $\text{maj} \sigma = \sum_{i \in \text{Des} \sigma} i$.

Dokos, Dwyer, Johnson, Selsor, and S studied the polynomials $M_n(\Pi; q, t) = \sum_{\sigma \in \mathcal{S}_n(\Pi)} q^{\text{maj} \sigma} t^{\text{des} \sigma}$ for all $\Pi \subseteq \mathcal{S}_3$.

Alex Woo asked what would happen if you looked at analogous quasisymmetric functions.
Let \mathfrak{S}_n be the symmetric group on $[n] = \{1, \ldots, n\}$. Say $\sigma \in \mathfrak{S}_n$ avoids $\pi \in \mathfrak{S}_k$ if no subsequence of σ is order isomorphic to π.

Ex. $\sigma = 3125476$ avoids $\pi = 321$ since σ has no decreasing subsequence of length 3.

If Π is a set of permutations then let $\mathfrak{S}_n(\Pi) = \{\sigma \in \mathfrak{S}_n : \sigma \text{ avoids every } \pi \in \Pi\}$.

If $\sigma = a_1 \ldots a_n \in \mathfrak{S}_n$ then let $\text{Des } \sigma = \{i \in [n-1] : a_i > a_{i+1}\}$, $\text{des } \sigma = |\text{Des } \sigma|$, $\text{maj } \sigma = \sum_{i \in \text{Des } \sigma} i$.

Dokos, Dwyer, Johnson, Selsor, and S studied the polynomials $M_n(\Pi; q, t) = \sum_{\sigma \in \mathfrak{S}_n(\Pi)} q^{\text{maj } \sigma} t^{\text{des } \sigma}$ for all $\Pi \subseteq \mathfrak{S}_3$.

Alex Woo asked what would happen if you looked at analogous quasisymmetric functions.
Let \mathcal{S}_n be the symmetric group on $[n] = \{1, \ldots, n\}$. Say $\sigma \in \mathcal{S}_n$ avoids $\pi \in \mathcal{S}_k$ if no subsequence of σ is order isomorphic to π.

Ex. $\sigma = 3125476$ avoids $\pi = 321$ since σ has no decreasing subsequence of length 3.
Let S_n be the symmetric group on $[n] = \{1, \ldots, n\}$. Say $\sigma \in S_n$ avoids $\pi \in S_k$ if no subsequence of σ is order isomorphic to π.

Ex. $\sigma = 3125476$ avoids $\pi = 321$ since σ has no decreasing subsequence of length 3.

If Π is a set of permutations then let

$$S_n(\Pi) = \{ \sigma \in S_n : \sigma \text{ avoids every } \pi \in \Pi \}.$$
Let S_n be the symmetric group on $[n] = \{1, \ldots, n\}$. Say $\sigma \in S_n$ avoids $\pi \in S_k$ if no subsequence of σ is order isomorphic to π.

Ex. $\sigma = 3125476$ avoids $\pi = 321$ since σ has no decreasing subsequence of length 3.

If Π is a set of permutations then let

$$S_n(\Pi) = \{\sigma \in S_n : \sigma \text{ avoids every } \pi \in \Pi\}.$$

If $\sigma = a_1 \ldots a_n \in S_n$ then let

$$\text{Des } \sigma = \{i \in [n - 1] : a_i > a_{i+1}\},$$

$$\text{des } \sigma = |\text{Des } \sigma|,$$

$$\text{maj } \sigma = \sum_{i \in \text{Des } \sigma} i.$$
Let \mathcal{S}_n be the symmetric group on $[n] = \{1, \ldots, n\}$. Say $\sigma \in \mathcal{S}_n$ avoids $\pi \in \mathcal{S}_k$ if no subsequence of σ is order isomorphic to π.

Ex. $\sigma = 3125476$ avoids $\pi = 321$ since σ has no decreasing subsequence of length 3.

If Π is a set of permutations then let

$$\mathcal{S}_n(\Pi) = \{\sigma \in \mathcal{S}_n : \sigma \text{ avoids every } \pi \in \Pi\}.$$

If $\sigma = a_1 \ldots a_n \in \mathcal{S}_n$ then let

$$\text{Des } \sigma = \{i \in [n - 1] : a_i > a_{i+1}\},$$

$$\text{des } \sigma = |\text{Des } \sigma|,$$

$$\text{maj } \sigma = \sum_{i \in \text{Des } \sigma} i.$$

Dokos, Dwyer, Johnson, Selsor, and S studied the polynomials

$$M_n(\Pi; q, t) = \sum_{\sigma \in \mathcal{S}_n(\Pi)} q^{\text{maj } \sigma} t^{\text{des } \sigma}$$

for all $\Pi \subseteq \mathcal{S}_3$.
Let \mathcal{S}_n be the symmetric group on $[n] = \{1, \ldots, n\}$. Say $\sigma \in \mathcal{S}_n$ avoids $\pi \in \mathcal{S}_k$ if no subsequence of σ is order isomorphic to π.

Ex. $\sigma = 3125476$ avoids $\pi = 321$ since σ has no decreasing subsequence of length 3.

If Π is a set of permutations then let

$$\mathcal{S}_n(\Pi) = \{ \sigma \in \mathcal{S}_n : \sigma \text{ avoids every } \pi \in \Pi \}.$$

If $\sigma = a_1 \ldots a_n \in \mathcal{S}_n$ then let

$$\text{Des } \sigma = \{ i \in [n - 1] : a_i > a_{i+1} \},$$

$$\text{des } \sigma = | \text{Des } \sigma |,$$

$$\text{maj } \sigma = \sum_{i \in \text{Des } \sigma} i.$$

Dokos, Dwyer, Johnson, Selsor, and S studied the polynomials

$$M_n(\Pi; q, t) = \sum_{\sigma \in \mathcal{S}_n(\Pi)} q^{\text{maj } \sigma} t^{\text{des } \sigma}$$

for all $\Pi \subseteq \mathcal{S}_3$. Alex Woo asked what would happen if you looked at analogous quasisymmetric functions.
Let \(x = \{x_1, x_2, \ldots \} \).
Let $x = \{x_1, x_2, \ldots \}$. The *symmetric functions*, Sym_n, are $f(x) \in \mathbb{C}[[x]]$ which are invariant under permutation of variables and homogeneous of degree n.

Bases for Sym$_n$ are indexed by *integer partitions* $\lambda = (\lambda_1, \ldots, \lambda_k) \vdash n$.

Ex. $M(2,1) = x_2^2 + x_1x_2^2 + \cdots + x_1x_2x_3 + x_2x_3 + \cdots$.

Quasisymmetric functions, QSym_n, are invariant under order preserving variable substitution and homogeneous of degree n. Compositions $\alpha = (\alpha_1, \ldots, \alpha_k) |\alpha| = n$ index bases for QSym_n.

Ex. $M(1,2) = x_1x_2^2 + x_1x_2^3 + \cdots + x_1x_2x_3 + x_2x_3 + \cdots$.

Equivalently, bases for QSym_n are indexed by sets $S \subseteq \mathbb{[n-1]}$.

The corresponding *fundamental quasisymmetric function* is $F_S = \sum x_{i_1}x_{i_2}^2\cdots x_{i_n}$ summed over $i_1 \leq i_2 \leq \cdots \leq i_n$ with $i_j < i_j + 1$ iff $j \in S$.

Ex. $n = 3$: $F_\{1\} = x_1x_2^2 + x_1x_2^3 + \cdots + x_1x_2x_3 + x_2x_3 + \cdots$.

Given a set of permutations Π, define $Q_n(\Pi) = Q_n(\Pi; x) = \sum_{\sigma \in S_n(\Pi)} F_{\text{Des} \sigma}$.

When is $Q_n(\Pi)$ symmetric?
Let \(x = \{ x_1, x_2, \ldots \} \). The \textit{symmetric functions}, \(\text{Sym}_n \), are \(f(x) \in \mathbb{C}[[x]] \) which are invariant under permutation of variables and homogeneous of degree \(n \). Bases for \(\text{Sym}_n \) are indexed by integer partitions \(\lambda = (\lambda_1, \ldots, \lambda_k) \vdash n \).
Let $\mathbf{x} = \{x_1, x_2, \ldots \}$. The **symmetric functions**, Sym_n, are $f(\mathbf{x}) \in \mathbb{C}[[\mathbf{x}]]$ which are invariant under permutation of variables and homogeneous of degree n. Bases for Sym_n are indexed by integer partitions $\lambda = (\lambda_1, \ldots, \lambda_k) \vdash n$.

Ex. $m_{(2,1)} = x_1^2 x_2 + x_1 x_2^2 + x_1^2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + \ldots$
Let $x = \{x_1, x_2, \ldots\}$. The **symmetric functions**, Sym_n, are $f(x) \in \mathbb{C}[[x]]$ which are invariant under permutation of variables and homogeneous of degree n. Bases for Sym_n are indexed by integer partitions $\lambda = (\lambda_1, \ldots, \lambda_k) \vdash n$.

Ex. $m_{(2,1)} = x_1^2 x_2 + x_1 x_2^2 + x_1^2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + \ldots$

Quasisymmetric functions, QSym_n, are invariant under order preserving variable substitution and homogeneous of degree n.

Definition: A **symmetric function** $f(x) \in \mathbb{C}[[x]]$ is a function that is invariant under permutation of variables, i.e., $f(x_1, x_2, \ldots) = f(x_{\sigma(1)}, x_{\sigma(2)}, \ldots)$ for any permutation σ. A symmetric function is homogeneous of degree n if it can be written as a sum of monomials each of degree n.

Example: Let $x = \{x_1, x_2\}$. Then $m_{(2,1)} = x_1^2 x_2 + x_1 x_2^2 + x_1^2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + \ldots$ is a symmetric function of degree n.

Quasisymmetric functions are a generalization of symmetric functions, where the order of variables is preserved subject to a given set of relations. They are defined as functions that are invariant under order-preserving variable substitution. A quasisymmetric function is homogeneous of degree n if it can be written as a sum of monomials each of degree n and respects the order of variables.

Example: Let $x = \{x_1, x_2\}$. Then $Q_{(2,1)} = x_1^2 x_2 + x_1 x_2^2 + x_1^2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + \ldots$ is a quasisymmetric function of degree n. The quasisymmetric functions are often used in combinatorics and algebraic combinatorics due to their close connection with other mathematical structures such as Young tableaux and Schur functions.
Let $\mathbf{x} = \{x_1, x_2, \ldots \}$. The **symmetric functions**, Sym_n, are $f(\mathbf{x}) \in \mathbb{C}[[\mathbf{x}]]$ which are invariant under permutation of variables and homogeneous of degree n. Bases for Sym_n are indexed by integer partitions $\lambda = (\lambda_1, \ldots, \lambda_k) \vdash n$.

Ex. $m_{(2,1)} = x_1^2 x_2 + x_1 x_2^2 + x_1^2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + \ldots$

Quasisymmetric functions, QSym_n, are invariant under order preserving variable substitution and homogeneous of degree n. Compositions $\alpha = (\alpha_1, \ldots, \alpha_k) \vdash n$ index bases for QSym_n.
Let \(x = \{x_1, x_2, \ldots \} \). The \textit{symmetric functions}, \(\text{Sym}_n \), are \(f(x) \in \mathbb{C}[[x]] \) which are invariant under permutation of variables and homogeneous of degree \(n \). Bases for \(\text{Sym}_n \) are indexed by integer partitions \(\lambda = (\lambda_1, \ldots, \lambda_k) \vdash n \).

\textbf{Ex.} \(m_{(2,1)} = x_2^2 x_1 + x_1 x_2^2 + x_1^2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + \ldots \)

\textit{Quasisymmetric functions}, \(\text{QSym}_n \), are invariant under order preserving variable substitution and homogeneous of degree \(n \). Compositions \(\alpha = (\alpha_1, \ldots, \alpha_k) \models n \) index bases for \(\text{QSym}_n \).

\textbf{Ex.} \(M_{(1,2)} = x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + \ldots \)
Let $x = \{x_1, x_2, \ldots \}$. The **symmetric functions**, Sym_n, are $f(x) \in \mathbb{C}[[x]]$ which are invariant under permutation of variables and homogeneous of degree n. Bases for Sym_n are indexed by integer partitions $\lambda = (\lambda_1, \ldots, \lambda_k) \vdash n$.

Ex. $m_{(2,1)} = x_1^2 x_2 + x_1 x_2^2 + x_1^2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + \ldots$

Quasisymmetric functions, QSym_n, are invariant under order preserving variable substitution and homogeneous of degree n. Compositions $\alpha = (\alpha_1, \ldots, \alpha_k) \vdash n$ index bases for QSym_n.

Ex. $M_{(1,2)} = x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + \ldots$

Equivalently, bases for QSym_n are indexed by sets $S \subseteq [n-1]$.

Let $x = \{x_1, x_2, \ldots \}$. The \textit{symmetric functions}, Sym_n, are $f(x) \in \mathbb{C}[[x]]$ which are invariant under permutation of variables and homogeneous of degree n. Bases for Sym_n are indexed by integer partitions $\lambda = (\lambda_1, \ldots, \lambda_k) \vdash n$.

Ex. $m_{(2,1)} = x_1^2 x_2 + x_1 x_2^2 + x_1^2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + \ldots$

\textit{Quasisymmetric functions}, QSym_n, are invariant under order preserving variable substitution and homogeneous of degree n. Compositions $\alpha = (\alpha_1, \ldots, \alpha_k) \vdash n$ index bases for QSym_n.

Ex. $M_{(1,2)} = x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + \ldots$

Equivalently, bases for QSym_n are indexed by sets $S \subseteq [n - 1]$. The corresponding \textit{fundamental quasisymmetric function} is

$$F_S = \sum x_{i_1} x_{i_2} \ldots x_{i_n}$$

summed over $i_1 \leq i_2 \leq \cdots \leq i_n$ with $i_j < i_{j+1}$ iff $j \in S$.
Let $x = \{x_1, x_2, \ldots \}$. The **symmetric functions**, Sym_n, are $f(x) \in \mathbb{C}[[x]]$ which are invariant under permutation of variables and homogeneous of degree n. Bases for Sym_n are indexed by integer partitions $\lambda = (\lambda_1, \ldots, \lambda_k) \vdash n$.

Ex. $m_{(2,1)} = x_1^2x_2 + x_1x_2^2 + x_1^2x_3 + x_1x_3^2 + x_2^2x_3 + x_2x_3^2 + \ldots$

Quasisymmetric functions, QSym_n, are invariant under order preserving variable substitution and homogeneous of degree n. Compositions $\alpha = (\alpha_1, \ldots, \alpha_k) \vdash n$ index bases for QSym_n.

Ex. $M_{(1,2)} = x_1x_2^2 + x_1x_3^2 + x_2x_3^2 + \ldots$

Equivalently, bases for QSym_n are indexed by sets $S \subseteq [n-1]$. The corresponding **fundamental quasisymmetric function** is

$$F_S = \sum x_{i_1}x_{i_2}\ldots x_{i_n}$$

summed over $i_1 \leq i_2 \leq \cdots \leq i_n$ with $i_j < i_{j+1}$ iff $j \in S$.

Ex. $n = 3$: $F_{\{1\}} = x_1x_2^2 + x_1x_3^2 + \cdots + x_1x_2x_3 + x_1x_2x_4 + \cdots$
Let $x = \{x_1, x_2, \ldots \}$. The **symmetric functions**, Sym_n, are $f(x) \in \mathbb{C}[\lbrack x \rbrack]$ which are invariant under permutation of variables and homogeneous of degree n. Bases for Sym_n are indexed by integer partitions $\lambda = (\lambda_1, \ldots, \lambda_k) \vdash n$.

Ex. $m_{(2,1)} = x_1^2 x_2 + x_1 x_2^2 + x_2^2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + \ldots$

Quasisymmetric functions, QSym_n, are invariant under order preserving variable substitution and homogeneous of degree n. Compositions $\alpha = (\alpha_1, \ldots, \alpha_k) \vdash n$ index bases for QSym_n.

Ex. $M_{(1,2)} = x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + \ldots$

Equivalently, bases for QSym_n are indexed by sets $S \subseteq [n - 1]$.

The corresponding **fundamental quasisymmetric function** is

$$F_S = \sum x_{i_1} x_{i_2} \ldots x_{i_n}$$

summed over $i_1 \leq i_2 \leq \cdots \leq i_n$ with $i_j < i_{j+1}$ iff $j \in S$.

Ex. $n = 3$: $F_{\{1\}} = x_1 x_2^2 + x_1 x_3^2 + \cdots + x_1 x_2 x_3 + x_1 x_2 x_4 + \cdots$

Given a set of permutations Π, define

$$Q_n(\Pi) = Q_n(\Pi; x) = \sum_{\sigma \in \mathfrak{S}_n(\Pi)} F_{\text{Des} \sigma}.$$
Let \(x = \{ x_1, x_2, \ldots \} \). The \textit{symmetric functions}, \(\text{Sym}_n \), are \(f(x) \in \mathbb{C}[[x]] \) which are invariant under permutation of variables and homogeneous of degree \(n \). Bases for \(\text{Sym}_n \) are indexed by integer partitions \(\lambda = (\lambda_1, \ldots, \lambda_k) \vdash n \).

\textbf{Ex.} \(m_{(2,1)} = x_1^2 x_2 + x_1 x_2^2 + x_2^2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + \ldots \)

\textit{Quasisymmetric functions}, \(\text{QSym}_n \), are invariant under order preserving variable substitution and homogeneous of degree \(n \). Compositions \(\alpha = (\alpha_1, \ldots, \alpha_k) \vdash n \) index bases for \(\text{QSym}_n \).

\textbf{Ex.} \(M_{(1,2)} = x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + \ldots \)

Equivalently, bases for \(\text{QSym}_n \) are indexed by sets \(S \subseteq [n-1] \).

The corresponding \textit{fundamental quasisymmetric function} is

\[F_S = \sum x_{i_1} x_{i_2} \ldots x_{i_n} \]

summed over \(i_1 \leq i_2 \leq \cdots \leq i_n \) with \(i_j < i_{j+1} \) iff \(j \in S \).

\textbf{Ex.} \(n = 3 \): \(F_{\{1\}} = x_1 x_2^2 + x_1 x_3^2 + \cdots + x_1 x_2 x_3 + x_1 x_2 x_4 + \cdots \)

Given a set of permutations \(\Pi \), define

\[Q_n(\Pi) = Q_n(\Pi; x) = \sum_{\sigma \in \mathfrak{S}_n(\Pi)} F_{\text{Des } \sigma} \]

When is \(Q_n(\Pi) \) symmetric?
All tableaux will be in English notation.
All tableaux will be in English notation. Given a partition λ, let

$$\text{SYT}(\lambda) = \{ T : T \text{ is a standard Young tableau of shape } \lambda \} ,$$

and

$$\text{SSYT}(\lambda) = \{ T : T \text{ is a semistandard Young tableau of shape } \lambda \} .$$

The Schur function associated to λ is

$$s_{\lambda} = \sum_{T \in \text{SSYT}(\lambda)} \prod_{(i,j) \in \lambda} x_{T_{ij}} ,$$

where T_{ij} denotes the entry in the ith row and jth column of T.

Tableau $T \in \text{SYT}(\lambda)$ has descent set $\text{Des}_T = \{ i : i + 1 \text{ is in a lower row than } i \}$.

Theorem (Gessel, 1984)

For any $\lambda \vdash n$

$$s_{\lambda} = \sum_{T \in \text{SYT}(\lambda)} F_{\text{Des}_T} .$$

Example:

<table>
<thead>
<tr>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

$s_{(3,2)} = F_{\{3\}} + F_{\{2,4\}} + F_{\{2\}} + F_{\{1,4\}} + F_{\{1,3\}}$.
All tableaux will be in English notation. Given a partition \(\lambda \), let

\[
\begin{align*}
\text{SYT}(\lambda) & = \{ T : T \text{ is a standard Young tableau of shape } \lambda \}, \\
\text{SSYT}(\lambda) & = \{ T : T \text{ is a semistandard Young tableau of shape } \lambda \}.
\end{align*}
\]
All tableaux will be in English notation. Given a partition λ, let

\[
\text{SYT}(\lambda) = \{ T : T \text{ is a standard Young tableau of shape } \lambda \},
\]
\[
\text{SSYT}(\lambda) = \{ T : T \text{ is a semistandard Young tableau of shape } \lambda \}.
\]

The **Schur function** associated to λ is

\[
s_\lambda = \sum_{T \in \text{SSYT}(\lambda)} \prod_{(i,j) \in \lambda} x_{T_{i,j}}.
\]
All tableaux will be in English notation. Given a partition λ, let

$$\text{SYT}(\lambda) = \{ T : T \text{ is a standard Young tableau of shape } \lambda \},$$

$$\text{SSYT}(\lambda) = \{ T : T \text{ is a semistandard Young tableau of shape } \lambda \}.$$

The *Schur function* associated to λ is

$$s_\lambda = \sum_{T \in \text{SSYT}(\lambda)} \prod_{(i,j) \in \lambda} x_{T_{i,j}}.$$

Tableau $T \in \text{SYT}(T)$ has *descent set*

$$\text{Des } T = \{ i : i + 1 \text{ is in a lower row than } i \}.$$
All tableaux will be in English notation. Given a partition λ, let

\[\text{SYT}(\lambda) = \{ T : T \text{ is a standard Young tableau of shape } \lambda \} , \]
\[\text{SSYT}(\lambda) = \{ T : T \text{ is a semistandard Young tableau of shape } \lambda \} . \]

The \textit{Schur function} associated to λ is

\[s_\lambda = \sum_{T \in \text{SSYT}(\lambda)} \prod_{(i,j) \in \lambda} x_{T_{i,j}} . \]

Tableau $T \in \text{SYT}(\lambda)$ has \textit{descent set}

\[\text{Des } T = \{ i : i + 1 \text{ is in a lower row than } i \} . \]

\textbf{Theorem (Gessel, 1984)}

\textit{For any } $\lambda \vdash n$

\[s_\lambda = \sum_{T \in \text{SYT}(\lambda)} F_{\text{Des } T} . \]
All tableaux will be in English notation. Given a partition λ, let

$\text{SYT}(\lambda) = \{ T : T \text{ is a standard Young tableau of shape } \lambda \}$,

$\text{SSYT}(\lambda) = \{ T : T \text{ is a semistandard Young tableau of shape } \lambda \}$.

The *Schur function* associated to λ is

$$s_\lambda = \sum_{T \in \text{SSYT}(\lambda)} \prod_{(i,j) \in \lambda} x_{T_{i,j}}.$$

Tableau $T \in \text{SYT}(\lambda)$ has *descent set*

$$\text{Des } T = \{ i : i + 1 \text{ is in a lower row than } i \}.$$

Theorem (Gessel, 1984)

For any $\lambda \vdash n$

$$s_\lambda = \sum_{T \in \text{SYT}(\lambda)} F_{\text{Des } T}.$$

Ex. $T :$

\[
\begin{array}{ccc}
\text{1} & \text{2} & \text{3} \\
\text{4} & \text{5} & \\
\end{array}
\quad
\begin{array}{cccc}
\text{1} & \text{2} & \text{4} & \text{5} \\
\text{3} & \text{4} & \text{5} & \\
\text{1} & \text{3} & \text{4} & \\
\end{array}
\quad
\begin{array}{cccc}
\text{1} & \text{3} & \text{5} & \\
\text{2} & \text{5} & \\
\text{2} & \text{5} & \\
\end{array}
\]
All tableaux will be in English notation. Given a partition λ, let

$$\text{SYT}(\lambda) = \{ T : T \text{ is a standard Young tableau of shape } \lambda \}$$

$$\text{SSYT}(\lambda) = \{ T : T \text{ is a semistandard Young tableau of shape } \lambda \}$$.

The *Schur function* associated to λ is

$$s_\lambda = \sum_{T \in \text{SSYT}(\lambda)} \prod_{(i,j) \in \lambda} x_{T_{i,j}}.$$

Tableau $T \in \text{SYT}(\lambda)$ has *descent set*

$$\text{Des } T = \{ i : i + 1 \text{ is in a lower row than } i \}.$$

Theorem (Gessel, 1984)

For any $\lambda \vdash n$

$$s_\lambda = \sum_{T \in \text{SYT}(\lambda)} F_{\text{Des } T}.$$

Ex. T:

<table>
<thead>
<tr>
<th>1 2 3</th>
<th>1 2 4</th>
<th>1 2 5</th>
<th>1 3 4</th>
<th>1 3 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 5</td>
<td>4 3</td>
<td>5 3</td>
<td>5 2</td>
<td>5 2</td>
</tr>
</tbody>
</table>

$$s_{(3,2)} = F_{\{3\}} + F_{\{2,4\}} + F_{\{2\}} + F_{\{1,4\}} + F_{\{1,3\}}.$$
Outline

Patterns and quasisymmetric functions

Main result

Questions
Call \(f(x) \in \text{Sym}_n \) \textit{Schur nonnegative} if \(f(x) = \sum_{\lambda} c_{\lambda} s_{\lambda} \) with \(c_{\lambda} \geq 0 \) for all \(\lambda \).
Call $f(x) \in \text{Sym}_n$ \textit{Schur nonnegative} if $f(x) = \sum_{\lambda} c_{\lambda} s_{\lambda}$ with $c_{\lambda} \geq 0$ for all λ.

Theorem (S.)

\textit{Suppose $\{123, 321\} \not\subseteq \Pi \subseteq S_3$.}
Call $f(x) \in \text{Sym}_n$ **Schur nonnegative** if $f(x) = \sum_{\lambda} c_{\lambda} s_{\lambda}$ with $c_{\lambda} \geq 0$ for all λ.

Theorem (S.)

Suppose $\{123, 321\} \not\subseteq \Pi \subseteq S_3$. TFAE

1. $Q_n(\Pi)$ *is symmetric for all* n.

In all cases, λ runs over partitions of n, $f_{\lambda} = |\text{SYT}(\lambda)|$, and $c(\lambda)$ and $r(\lambda)$ are the number of columns and rows of λ.

Call $f(x) \in \text{Sym}_n$ **Schur nonnegative** if $f(x) = \sum_{\lambda} c_{\lambda} s_{\lambda}$ with $c_{\lambda} \geq 0$ for all λ.

Theorem (S.)

Suppose $\{123, 321\} \not\subseteq \Pi \subseteq S_3$. TFAE

1. $Q_n(\Pi)$ is symmetric for all n.
2. $Q_n(\Pi)$ is Schur nonnegative for all n.

In all cases, λ runs over partitions of n, $f_{\lambda} = |\text{SYT}(\lambda)|$, and $c(\lambda)$ and $r(\lambda)$ are the number of columns and rows of λ.
Call \(f(x) \in \text{Sym}_n \) **Schur nonnegative** if \(f(x) = \sum_{\lambda} c_{\lambda} s_{\lambda} \) with \(c_{\lambda} \geq 0 \) for all \(\lambda \).

Theorem (S.)

Suppose \(\{123, 321\} \not\subseteq \Pi \subseteq \mathfrak{S}_3 \). TFAE

1. \(Q_n(\Pi) \) is symmetric for all \(n \).
2. \(Q_n(\Pi) \) is Schur nonnegative for all \(n \).
3. \(\Pi \) is an entry in the following table.

<table>
<thead>
<tr>
<th>(\Pi)</th>
<th>(Q_n(\Pi))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(\sum_{\lambda} f^\lambda s_{\lambda})</td>
</tr>
<tr>
<td>({123})</td>
<td>(\sum_{c(\lambda) \leq 2} f^\lambda s_{\lambda})</td>
</tr>
<tr>
<td>({321})</td>
<td>(\sum_{r(\lambda) \leq 2} f^\lambda s_{\lambda})</td>
</tr>
<tr>
<td>({132, 213}; {132, 213}; {132, 312}; {132, 312})</td>
<td>(\sum_{\lambda \text{ a hook}} s_{\lambda})</td>
</tr>
<tr>
<td>({123, 132, 312}; {123, 213, 231}; {123, 231, 312})</td>
<td>(s_{1n} + s_{2,1n-2})</td>
</tr>
<tr>
<td>({132, 213, 321}; {132, 312, 321}; {213, 231, 321})</td>
<td>(s_n + s_{n-1,1})</td>
</tr>
<tr>
<td>({132, 213, 231, 312})</td>
<td>(s_n + s_{1n}).</td>
</tr>
</tbody>
</table>

In all cases, \(\lambda \) runs over partitions of \(n \), \(f^\lambda = |\text{SYT}(\lambda)| \), and \(c(\lambda) \) and \(r(\lambda) \) are the number of columns and rows of \(\lambda \).
Proposition

We have

\[Q_n(132, 213) = \sum_{\lambda \text{ a hook}} s_\lambda. \]

Proof (Sketch).

A permutation \(\sigma \in S_n \) is skew layered if it is of the form

\[\sigma = m, m+1, \ldots, n, l, l+1, \ldots, m-1, \ldots, 2, k-1, \ldots, 1. \]

\[S_n(132, 213) = \{ \sigma \in S_n : \sigma \text{ is skew layered} \}. \]

\[\therefore \] \[Q_n(132, 213) = \sum_{S \subseteq [n-1]} F_S. \]

By Gessel's Theorem, if \(a+b = n \), \(s_a, 1 s_b = \sum_{S \subseteq [n-1], |S| = b} F_S. \)

Combining the two previous equations completes the proof.
Proposition

We have

\[Q_n(132, 213) = \sum_{\lambda \text{ a hook}} s_\lambda. \]

Proof (Sketch).

A permutation \(\sigma \in S_n \) is *skew layered* if it is of the form

\[\sigma = m, m + 1, \ldots, n, l, l + 1, \ldots, m - 1, \ldots, 1, 2, \ldots, k - 1. \]
Proposition

We have

\[Q_n(132, 213) = \sum_{\lambda \text{ a hook}} s_\lambda. \]

Proof (Sketch).

A permutation \(\sigma \in \mathfrak{S}_n \) is **skew layered** if it is of the form

\[\sigma = m, m+1, \ldots, n, l, l+1, \ldots, m-1, \ldots, 1, 2, \ldots, k-1. \]

\[\mathfrak{S}_n(132, 213) = \{ \sigma \in \mathfrak{S}_n : \sigma \text{ is skew layered} \}. \]
Proposition

We have

\[Q_n(132, 213) = \sum_{\lambda \text{ a hook}} s_{\lambda}. \]

Proof (Sketch).

A permutation \(\sigma \in \mathfrak{S}_n \) is \textit{skew layered} if it is of the form

\[\sigma = m, m + 1, \ldots, n, l, l + 1, \ldots, m - 1, \ldots, 1, 2, \ldots, k - 1. \]

\[\mathfrak{S}_n(132, 213) = \{ \sigma \in \mathfrak{S}_n : \sigma \text{ is skew layered} \}. \]

\[\therefore \quad Q_n(132, 213) = \sum_{S \subseteq [n-1]} F_S. \]
Proposition

We have

\[Q_n(132, 213) = \sum_{\lambda \text{ a hook}} s_{\lambda}. \]

Proof (Sketch).

A permutation \(\sigma \in S_n \) is \textit{skew layered} if it is of the form

\[\sigma = m, m+1, \ldots, n, l, l+1, \ldots, m-1, \ldots, 1, 2, \ldots, k-1. \]

\[S_n(132, 213) = \{ \sigma \in S_n : \sigma \text{ is skew layered} \}. \]

\[\therefore Q_n(132, 213) = \sum_{S \subseteq [n-1]} F_S. \]

By Gessel’s Theorem, if \(a + b = n \),

\[s_{a,1b} = \sum_{S \subseteq [n-1], |S|=b} F_S. \]
Proposition

We have

\[Q_n(132, 213) = \sum_{\lambda \text{ a hook}} s_\lambda. \]

Proof (Sketch).

A permutation \(\sigma \in \mathcal{S}_n \) is *skew layered* if it is of the form

\[\sigma = m, m + 1, \ldots, n, l, l + 1, \ldots, m - 1, \ldots, 1, 2, \ldots, k - 1. \]

\[\mathcal{S}_n(132, 213) = \{ \sigma \in \mathcal{S}_n : \sigma \text{ is skew layered} \}. \]

\[\therefore Q_n(132, 213) = \sum_{S \subseteq [n-1]} F_S. \]

By Gessel’s Theorem, if \(a + b = n \),

\[s_{a,1}^b = \sum_{S \subseteq [n-1], |S| = b} F_S. \]

Combining the two previous equations completes the proof.
Outline

Patterns and quasisymmetric functions

Main result

Questions
1. Can one give a nice characterization of the Π which yield symmetric $Q_n(\Pi)$?
1. Can one give a nice characterization of the Π which yield symmetric $Q_n(\Pi)$?
2. Why are all the symmetric $Q_n(\Pi)$ in the main theorem also Schur nonnegative?
1. Can one give a nice characterization of the Π which yield symmetric $Q_n(\Pi)$?

2. Why are all the symmetric $Q_n(\Pi)$ in the main theorem also Schur nonnegative?

3. In particular, for these Π is there a natural way to associate an \mathfrak{S}_n module whose image under the characteristic map (of its character) is $Q_n(\Pi)$?
1. Can one give a nice characterization of the Π which yield symmetric $Q_n(\Pi)$?

2. Why are all the symmetric $Q_n(\Pi)$ in the main theorem also Schur nonnegative?

3. In particular, for these Π is there a natural way to associate an \mathcal{S}_n module whose image under the characteristic map (of its character) is $Q_n(\Pi)$? For example, if $\Pi = \emptyset$ then $\mathcal{S}_n(\Pi) = \mathcal{S}_n$ which is a module for the regular representation.
1. Can one give a nice characterization of the Π which yield symmetric $Q_n(\Pi)$?

2. Why are all the symmetric $Q_n(\Pi)$ in the main theorem also Schur nonnegative?

3. In particular, for these Π is there a natural way to associate an \mathfrak{S}_n module whose image under the characteristic map (of its character) is $Q_n(\Pi)$? For example, if $\Pi = \emptyset$ then $\mathfrak{S}_n(\Pi) = \mathfrak{S}_n$ which is a module for the regular representation. Applying the characteristic map gives

$$\sum_{\lambda \vdash n} f^\lambda s_\lambda = Q_n(\Pi).$$
THANKS FOR LISTENING!