Distance Regular Graphs and Unimodality

John S. Caughman, IV and Bruce E. Sagan Department of Mathematics Michigan State University East Lansing, MI 48824-1027

- 1. Distance regular graphs
- 2. Association schemes
- 3. Terwilliger algebras

Distance Regular Graphs

Let $\Gamma=(X,R)$ be a graph with vertices X and edges R (relations). Let ∂ be Γ 's distance function and define the *sphere of radius* i *about* $x \in X$ to be

$$\Gamma_i(x) = \{ y \in X : \partial(x, y) = i \}.$$

 Γ is a distance regular graph or drg if, given x,y with $\partial(x,y)=h$, the cardinality

$$p_{ij}^h := |\Gamma_i(x) \cap \Gamma_j(y)|$$

depends only on i,j and h and not on the particular x,y chosen. Thus the valencey

$$k_i := |\Gamma_i(x)| = p_{ii}^0$$

does not depend on x. (So Γ is regular of degree $k:=k_1$.)

A sequence of real numbers is unimodal if for some index m

$$a_0 \le a_1 \le \ldots \le a_m \ge a_{m+1} \ge \ldots$$

Theorem 1 Let Γ be a drg of diameter D. Then the sequence

$$k_0, k_1, \ldots, k_D$$

is unimodal. ■

For example, the D-cube is a drg with $k_i = {D \choose i}$ and

$$\binom{D}{0} \le \binom{D}{1} \le \dots \le \binom{D}{|D/2|} \ge \dots \ge \binom{D}{D}.$$

The ith distance matrix, A_i , has rows and columns indexed by X and

$$(A_i)_{xy} = \begin{cases} 1 & \text{if } \partial(x,y) = i, \\ 0 & \text{else.} \end{cases}$$

So $A := A_1$ is the usual adjacency matrix.

Let J be the $|X| \times |X|$ matrix of all 1's. Then the matrices A_0, \ldots, A_D are non-zero 0,1-matrices satisfying

- 1. $A_0 = I$,
- 2. $\sum_i A_i = J$,
- 3. $A_i^t = A_i$ for $0 \le i \le D$,
- 4. $A_i A_j = \sum_h p_{ij}^h A_h$ for $0 \le i, j \le D$,
- 5. A_i is a polynomial of degree i in A for $0 \le i \le D$.

Association Schemes

An association scheme is $Y=(X,\{A_0,\ldots,A_D\})$ such that the A_i are nonzero 0,1-matrices whose rows and columns are indexed by X such that

(1)
$$A_0 = I$$
,

$$(2) \sum_{i} A_i = J,$$

(3)
$$A_i^t = A_i$$
 for all i ,

(4)
$$A_i A_j = \sum_h p_{ij}^h A_h$$
 for scalars p_{ij}^h .

Association scheme Y is P-polynomial if there is an indexing of the A_i such that

 A_i is a polynomial of degree i in A for $0 \le i \le D$.

Theorem 2 Y is P-polynomial if and only if it arises from a drg. \blacksquare

The Bose-Mesner algebra of Y is the vector space

$$M = \operatorname{span}\{A_0, \dots, A_D\}.$$

Note that M is an algebra by (4) and that the set $\{A_0, \ldots, A_D\}$ is independent and so a basis by (2).

(3) and (4) show that the A_i are symmetric and commute and so simultaneously diagonalisable. Let E_1, \ldots, E_D be the orthogonal projections onto the common eigenspaces. They're a basis for M and

(1')
$$E_0 = \frac{1}{|X|} J$$
,

(2')
$$\sum_i E_i = I$$
,

(3')
$$E_i^t = E_i$$
 for all i ,

(4') $E_i \circ E_j = \sum_h q_{ij}^h E_h$ for scalars q_{ij}^h where \circ is *Schur product* (entry-wise).

Note that $A_i \circ A_j = \delta_{ij}A_i$ and $E_iE_j = \delta_{ij}E_i$.

Y is Q-polynomial if for some indexing of the E_i we have E_i is a Schur polynomial of degree i in E_1 , $\forall i$. The multiplicities of Y are $m_i := \operatorname{rk} E_i$.

Conjecture 3 (Bannai and Ito) If Y is a Q-polynomial scheme then the sequence

$$m_0, m_1, \ldots, m_D$$

is unimodal.

Theorem 4 (C & J) If Y is a Q-polynomial scheme which is also dual-thin then

$$m_i \leq m_{i+1}$$
 and $m_i \leq m_{D-i}$ for $i < D/2$.

Terwilliger Algebras

Element $x \in X$ has *ith dual idempotent* the diagonal matrix $E_i^* = E_i^*(x)$ such that

$$(E_i^*)_{yy} = (A_i)_{xy}$$
 for $y \in X$.

(1*) E_0^* has 1 in the xx position and 0 elsewhere,

$$(2^*) \sum_i E_i^* = I$$

(3*)
$$(E_i^*)^t = E_i^*$$
 for all i ,

(4*)
$$E_i^* E_j^* = E_i^* \circ E_j^* = \delta_{ij} E_i^*$$
.

Note also that $rk E_i^* = k_i$.

The Terwilliger algebra, T(x) is the one generated by the E_i and E_j^* . It is a finite dimensional, semisimple \mathbb{C} -algebra, not commutative in general. Let W be an irreducible T(x)-module in the decomposition of the standard module for T(x). Then

$$W = \bigoplus_i E_i W$$
.

Call W dual thin if for all i:

$$\dim(E_iW) \leq 1.$$

Finally Y is *dual thin* if every such T(x)-module is dual thin for all $x \in X$.