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For more information on this topic, see

B. Sagan, Why the characteristic polynomial factors, Bull. Amer.
Math. Soc. 36 (1999), 113–134.

Let P be a graded poset and let x ∈ P. Then all saturated 0̂–x
chains have the same length called the rank of x and denoted
rk x . Note that

rk P = rk 1̂.

Example. In our four running example posets:

1. i ∈ Cn: rk i = i .

2. S ∈ Bn: rk S = |S|.
3. d ∈ Dn: rk d =

∑
i mi where d =

∏
i pmi

i .

4. π = B1/ . . . /Bk ∈ Πn: rk π = n − k .
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Let P be a graded poset and let t be a variable.

The
characteristic polynomial of P is the generating function

q(P) = q(P; t) =
∑
x∈P

µ(x)t rk 1̂−rk x .

Note that we use the corank, rk 1̂− rk x , as the exponent on t
rather than the rank so as to make q(P; t) monic: the largest
power of t is when x = 0̂ and µ(0̂) = 1.

Example.

q(C3) = t3 − t2 + 0 + 0

= t2(t − 1)

C3=

s0

s1

s2

s3

1

−1

0

0

1 · t3

−1 · t2

0 · t

0 · 1

In general, q(Cn; t) = tn−1(t − 1) (easy to verify).
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q(B3) = t3 − 3t2 + 3t − 1
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In general q(Bn; t) = (t − 1)n (use the Binomial Theorem).
Example.

q(D18) = t3 − 2t2 + t
= t(t − 1)2
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1 · t3

−1 · t2 −1 · t2

1 · t 0 · t

0 · 1

In general q(Dn; t) =
∏

i tmi−1(t − 1) where n =
∏

i pmi
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In general q(Πn; t) = (t − 1)(t − 2) · · · (t − n + 1). Not clear!

We would like to have a technique which would

1. prove the formula for q(Πn; t),

2. explain why these q(P; t) factor over Z≥0.

We will use a technique based on graph theory. Two other
techniques (one using the theory of hyperplane arrangements
and one using properties of posets) are given in the paper.
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Let G be a graph with vertices V and edges E .

Given a set C,
called the color set , a coloring of G is a function κ : V → C. A
coloring is proper if for each edge uv ∈ E we have κ(u) 6= κ(v).

Example. If G =

q
q q

q







J
JJ

and C = {1, 2} then

q q
q
q

J
JJ







2

2

1
2

is a proper coloring of G while q q
q
q

J
JJ







1

2

1
2

is not.

Let t ∈ Z≥0. The chromatic polynomial of G is

p(G) = p(G; t) = # of proper κ : V → {1, . . . , t}.

Example. If G = q q
q
q

J
JJ





u

t

v

t − 1

w

t − 1

x

t − 1

then

p(G; t) = # of ways to color u, then v , then w , then x

=

t(t − 1)(t − 1)(t − 1) = t(t − 1)3

In general of any tree T with |E | = n: p(G; t) = t(t − 1)n.
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Let KV be the complete graph having all possible edges
between elements of V .

If |V | = n then we also write Kn for KV .

Example. If G = K4 =

r r

r r
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�
�
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@
@

u

t

v

t − 1

w

t − 2

x

t − 3

then

p(K4; t) = # of ways to color u, then v , then w , then x

=

t(t − 1)(t − 2)(t − 3)

In general p(Kn; t) = t(t − 1) · · · (t − n + 1).

We need to explain

1. why does p(G; t) always seem to be a polynomial in t?

2. why do p(T ; t) where T is a tree and p(Kn; t) seem to be
related to q(Bn; t) and q(Πn; t), respectively?
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In general, if T is a tree with n edges then L(T ) ∼= Bn.
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Lemma
For any graph G

(a) Hκ is a bond for any κ.

(b) κ is proper iff E(Hκ) = ∅ iff Hκ = 0̂L(G).

Proof of (a). Hκ is spanning by definition. Now suppose
u ∼Hκ

v and uv ∈ E(G). Since u ∼Hκ
v there is a u–v walk W

in Hκ. So κ(u) = κ(v) since every pair of adjacent vertices of
W have the same color. Thus uv ∈ E(Hκ) as desired.
Proof of (b). κ is proper iff κ(u) 6= κ(v) for all uv ∈ E(G) iff
E(Hκ) = ∅ iff Hκ = 0̂L(G).



Given a coloring κ : V → {1, . . . , t} of G, the kernel of κ is the
spanning subgraph Hκ ⊆ G where

uv ∈ E(Hκ) if and only if uv ∈ E(G) and κ(u) = κ(v).

Example. If κ =

q q
J

JJ






J

JJq q






J

JJ





q q
1

1

2

1

1

1

then Hκ =

q q
J

JJq q





q q
Lemma
For any graph G

(a) Hκ is a bond for any κ.

(b) κ is proper iff E(Hκ) = ∅ iff Hκ = 0̂L(G).

Proof of (a). Hκ is spanning by definition. Now suppose
u ∼Hκ

v and uv ∈ E(G). Since u ∼Hκ
v there is a u–v walk W

in Hκ. So κ(u) = κ(v) since every pair of adjacent vertices of
W have the same color. Thus uv ∈ E(Hκ) as desired.
Proof of (b). κ is proper iff κ(u) 6= κ(v) for all uv ∈ E(G) iff
E(Hκ) = ∅ iff Hκ = 0̂L(G).



Given a coloring κ : V → {1, . . . , t} of G, the kernel of κ is the
spanning subgraph Hκ ⊆ G where

uv ∈ E(Hκ) if and only if uv ∈ E(G) and κ(u) = κ(v).

Example. If κ =

q q
J

JJ






J

JJq q






J

JJ





q q
1

1

2

1

1

1 then Hκ =

q q
J

JJq q





q q

Lemma
For any graph G

(a) Hκ is a bond for any κ.

(b) κ is proper iff E(Hκ) = ∅ iff Hκ = 0̂L(G).

Proof of (a). Hκ is spanning by definition. Now suppose
u ∼Hκ

v and uv ∈ E(G). Since u ∼Hκ
v there is a u–v walk W

in Hκ. So κ(u) = κ(v) since every pair of adjacent vertices of
W have the same color. Thus uv ∈ E(Hκ) as desired.
Proof of (b). κ is proper iff κ(u) 6= κ(v) for all uv ∈ E(G) iff
E(Hκ) = ∅ iff Hκ = 0̂L(G).



Given a coloring κ : V → {1, . . . , t} of G, the kernel of κ is the
spanning subgraph Hκ ⊆ G where

uv ∈ E(Hκ) if and only if uv ∈ E(G) and κ(u) = κ(v).

Example. If κ =

q q
J

JJ






J

JJq q






J

JJ





q q
1

1

2

1

1

1 then Hκ =

q q
J

JJq q





q q
Lemma
For any graph G

(a) Hκ is a bond for any κ.

(b) κ is proper iff E(Hκ) = ∅ iff Hκ = 0̂L(G).

Proof of (a). Hκ is spanning by definition. Now suppose
u ∼Hκ

v and uv ∈ E(G). Since u ∼Hκ
v there is a u–v walk W

in Hκ. So κ(u) = κ(v) since every pair of adjacent vertices of
W have the same color. Thus uv ∈ E(Hκ) as desired.
Proof of (b). κ is proper iff κ(u) 6= κ(v) for all uv ∈ E(G) iff
E(Hκ) = ∅ iff Hκ = 0̂L(G).



Given a coloring κ : V → {1, . . . , t} of G, the kernel of κ is the
spanning subgraph Hκ ⊆ G where

uv ∈ E(Hκ) if and only if uv ∈ E(G) and κ(u) = κ(v).

Example. If κ =

q q
J

JJ






J

JJq q






J

JJ





q q
1

1

2

1

1

1 then Hκ =

q q
J

JJq q





q q
Lemma
For any graph G

(a) Hκ is a bond for any κ.

(b) κ is proper iff E(Hκ) = ∅ iff Hκ = 0̂L(G).

Proof of (a). Hκ is spanning by definition. Now suppose
u ∼Hκ

v and uv ∈ E(G). Since u ∼Hκ
v there is a u–v walk W

in Hκ. So κ(u) = κ(v) since every pair of adjacent vertices of
W have the same color. Thus uv ∈ E(Hκ) as desired.
Proof of (b). κ is proper iff κ(u) 6= κ(v) for all uv ∈ E(G) iff
E(Hκ) = ∅ iff Hκ = 0̂L(G).



Given a coloring κ : V → {1, . . . , t} of G, the kernel of κ is the
spanning subgraph Hκ ⊆ G where

uv ∈ E(Hκ) if and only if uv ∈ E(G) and κ(u) = κ(v).

Example. If κ =

q q
J

JJ






J

JJq q






J

JJ





q q
1

1

2

1

1

1 then Hκ =

q q
J

JJq q





q q
Lemma
For any graph G

(a) Hκ is a bond for any κ.

(b) κ is proper iff E(Hκ) = ∅ iff Hκ = 0̂L(G).

Proof of (a).

Hκ is spanning by definition. Now suppose
u ∼Hκ

v and uv ∈ E(G). Since u ∼Hκ
v there is a u–v walk W

in Hκ. So κ(u) = κ(v) since every pair of adjacent vertices of
W have the same color. Thus uv ∈ E(Hκ) as desired.
Proof of (b). κ is proper iff κ(u) 6= κ(v) for all uv ∈ E(G) iff
E(Hκ) = ∅ iff Hκ = 0̂L(G).



Given a coloring κ : V → {1, . . . , t} of G, the kernel of κ is the
spanning subgraph Hκ ⊆ G where

uv ∈ E(Hκ) if and only if uv ∈ E(G) and κ(u) = κ(v).

Example. If κ =

q q
J

JJ






J

JJq q






J

JJ





q q
1

1

2

1

1

1 then Hκ =

q q
J

JJq q





q q
Lemma
For any graph G

(a) Hκ is a bond for any κ.

(b) κ is proper iff E(Hκ) = ∅ iff Hκ = 0̂L(G).

Proof of (a). Hκ is spanning by definition.

Now suppose
u ∼Hκ

v and uv ∈ E(G). Since u ∼Hκ
v there is a u–v walk W

in Hκ. So κ(u) = κ(v) since every pair of adjacent vertices of
W have the same color. Thus uv ∈ E(Hκ) as desired.
Proof of (b). κ is proper iff κ(u) 6= κ(v) for all uv ∈ E(G) iff
E(Hκ) = ∅ iff Hκ = 0̂L(G).



Given a coloring κ : V → {1, . . . , t} of G, the kernel of κ is the
spanning subgraph Hκ ⊆ G where

uv ∈ E(Hκ) if and only if uv ∈ E(G) and κ(u) = κ(v).

Example. If κ =

q q
J

JJ






J

JJq q






J

JJ





q q
1

1

2

1

1

1 then Hκ =

q q
J

JJq q





q q
Lemma
For any graph G

(a) Hκ is a bond for any κ.

(b) κ is proper iff E(Hκ) = ∅ iff Hκ = 0̂L(G).

Proof of (a). Hκ is spanning by definition. Now suppose
u ∼Hκ

v and uv ∈ E(G).

Since u ∼Hκ
v there is a u–v walk W

in Hκ. So κ(u) = κ(v) since every pair of adjacent vertices of
W have the same color. Thus uv ∈ E(Hκ) as desired.
Proof of (b). κ is proper iff κ(u) 6= κ(v) for all uv ∈ E(G) iff
E(Hκ) = ∅ iff Hκ = 0̂L(G).



Given a coloring κ : V → {1, . . . , t} of G, the kernel of κ is the
spanning subgraph Hκ ⊆ G where

uv ∈ E(Hκ) if and only if uv ∈ E(G) and κ(u) = κ(v).

Example. If κ =

q q
J

JJ






J

JJq q






J

JJ





q q
1

1

2

1

1

1 then Hκ =

q q
J

JJq q





q q
Lemma
For any graph G

(a) Hκ is a bond for any κ.

(b) κ is proper iff E(Hκ) = ∅ iff Hκ = 0̂L(G).

Proof of (a). Hκ is spanning by definition. Now suppose
u ∼Hκ

v and uv ∈ E(G). Since u ∼Hκ
v there is a u–v walk W

in Hκ.

So κ(u) = κ(v) since every pair of adjacent vertices of
W have the same color. Thus uv ∈ E(Hκ) as desired.
Proof of (b). κ is proper iff κ(u) 6= κ(v) for all uv ∈ E(G) iff
E(Hκ) = ∅ iff Hκ = 0̂L(G).



Given a coloring κ : V → {1, . . . , t} of G, the kernel of κ is the
spanning subgraph Hκ ⊆ G where

uv ∈ E(Hκ) if and only if uv ∈ E(G) and κ(u) = κ(v).

Example. If κ =

q q
J

JJ






J

JJq q






J

JJ





q q
1

1

2

1

1

1 then Hκ =

q q
J

JJq q





q q
Lemma
For any graph G

(a) Hκ is a bond for any κ.

(b) κ is proper iff E(Hκ) = ∅ iff Hκ = 0̂L(G).

Proof of (a). Hκ is spanning by definition. Now suppose
u ∼Hκ

v and uv ∈ E(G). Since u ∼Hκ
v there is a u–v walk W

in Hκ. So κ(u) = κ(v) since every pair of adjacent vertices of
W have the same color.

Thus uv ∈ E(Hκ) as desired.
Proof of (b). κ is proper iff κ(u) 6= κ(v) for all uv ∈ E(G) iff
E(Hκ) = ∅ iff Hκ = 0̂L(G).



Given a coloring κ : V → {1, . . . , t} of G, the kernel of κ is the
spanning subgraph Hκ ⊆ G where

uv ∈ E(Hκ) if and only if uv ∈ E(G) and κ(u) = κ(v).

Example. If κ =

q q
J

JJ






J

JJq q






J

JJ





q q
1

1

2

1

1

1 then Hκ =

q q
J

JJq q





q q
Lemma
For any graph G

(a) Hκ is a bond for any κ.

(b) κ is proper iff E(Hκ) = ∅ iff Hκ = 0̂L(G).

Proof of (a). Hκ is spanning by definition. Now suppose
u ∼Hκ

v and uv ∈ E(G). Since u ∼Hκ
v there is a u–v walk W

in Hκ. So κ(u) = κ(v) since every pair of adjacent vertices of
W have the same color. Thus uv ∈ E(Hκ) as desired.

Proof of (b). κ is proper iff κ(u) 6= κ(v) for all uv ∈ E(G) iff
E(Hκ) = ∅ iff Hκ = 0̂L(G).



Given a coloring κ : V → {1, . . . , t} of G, the kernel of κ is the
spanning subgraph Hκ ⊆ G where

uv ∈ E(Hκ) if and only if uv ∈ E(G) and κ(u) = κ(v).

Example. If κ =

q q
J

JJ






J

JJq q






J

JJ





q q
1

1

2

1

1

1 then Hκ =

q q
J

JJq q





q q
Lemma
For any graph G

(a) Hκ is a bond for any κ.

(b) κ is proper iff E(Hκ) = ∅ iff Hκ = 0̂L(G).

Proof of (a). Hκ is spanning by definition. Now suppose
u ∼Hκ

v and uv ∈ E(G). Since u ∼Hκ
v there is a u–v walk W

in Hκ. So κ(u) = κ(v) since every pair of adjacent vertices of
W have the same color. Thus uv ∈ E(Hκ) as desired.
Proof of (b). κ is proper iff κ(u) 6= κ(v) for all uv ∈ E(G)

iff
E(Hκ) = ∅ iff Hκ = 0̂L(G).



Given a coloring κ : V → {1, . . . , t} of G, the kernel of κ is the
spanning subgraph Hκ ⊆ G where

uv ∈ E(Hκ) if and only if uv ∈ E(G) and κ(u) = κ(v).

Example. If κ =

q q
J

JJ






J

JJq q






J

JJ





q q
1

1

2

1

1

1 then Hκ =

q q
J

JJq q





q q
Lemma
For any graph G

(a) Hκ is a bond for any κ.

(b) κ is proper iff E(Hκ) = ∅ iff Hκ = 0̂L(G).

Proof of (a). Hκ is spanning by definition. Now suppose
u ∼Hκ

v and uv ∈ E(G). Since u ∼Hκ
v there is a u–v walk W

in Hκ. So κ(u) = κ(v) since every pair of adjacent vertices of
W have the same color. Thus uv ∈ E(Hκ) as desired.
Proof of (b). κ is proper iff κ(u) 6= κ(v) for all uv ∈ E(G) iff
E(Hκ) = ∅

iff Hκ = 0̂L(G).



Given a coloring κ : V → {1, . . . , t} of G, the kernel of κ is the
spanning subgraph Hκ ⊆ G where

uv ∈ E(Hκ) if and only if uv ∈ E(G) and κ(u) = κ(v).

Example. If κ =

q q
J

JJ






J

JJq q






J

JJ





q q
1

1

2

1

1

1 then Hκ =

q q
J

JJq q





q q
Lemma
For any graph G

(a) Hκ is a bond for any κ.

(b) κ is proper iff E(Hκ) = ∅ iff Hκ = 0̂L(G).

Proof of (a). Hκ is spanning by definition. Now suppose
u ∼Hκ

v and uv ∈ E(G). Since u ∼Hκ
v there is a u–v walk W

in Hκ. So κ(u) = κ(v) since every pair of adjacent vertices of
W have the same color. Thus uv ∈ E(Hκ) as desired.
Proof of (b). κ is proper iff κ(u) 6= κ(v) for all uv ∈ E(G) iff
E(Hκ) = ∅ iff Hκ = 0̂L(G).



Theorem (Rota, 1964)
Let G be a graph with |V | = n.

(a) L(G) is a graded lattice with rk H = n − k(H).

(b) p(G; t) = tk(G)q(L(G); t).

Proof of (b). Define f , g : L(G) → Z by
1. f (H) = # of κ : V (G) → {1, . . . , t} with Hκ ⊇ H,
2. g(H) = # of κ : V (G) → {1, . . . , t} with Hκ = H,

Since Hκ is always a bond, f (H) =
∑

H′⊇H g(H ′). By the MIT

g(0̂) =
∑

H′⊇0̂ µ(H ′)f (H ′). (1)

But g(0̂) counts κ with Hκ = 0̂ so, by the lemma, g(0̂) = p(G; t).
Also, given H ′ then Hκ ⊇ H ′ iff κ is constant on the components
of H ′. So f (H ′) = tk(H′). Thus (1) becomes

p(G; t) =
∑

H′∈L(G) µ(H ′)tk(H′). (2)

By (a), k(H ′) + rk H ′ = n = k(G) + rk G. Plugging into (2) gives

p(G; t) =
∑

H′∈L(G)

µ(H ′)tk(G)+rk G−rk H′
= tk(G)q(L(G); t)
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Rota: p(G; t) = tk(G)q(L(G); t).

Corollary

1. q(Bn; t) = (t − 1)n.

2. q(Πn; t) = (t − 1)(t − 2) · · · (t − n + 1).

Proof. For Bn we have L(T ) ∼= Bn for any tree T with n edges.
So by Rota’s Theorem

q(Bn; t) = t−k(T )p(T ; t)

= t−1 · t(t − 1)n

= (t − 1)n.

For Πn we have L(Kn) ∼= Πn. So by Rota’s Theorem

q(Πn; t) = t−k(Kn)p(Kn; t)

= t−1 · t(t − 1) · · · (t − n + 1)

= (t − 1) · · · (t − n + 1).
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