Möbius Functions of Posets II: Möbius Inversion

Bruce Sagan Department of Mathematics Michigan State University East Lansing, MI 48824-1027 sagan@math.msu.edu www.math.msu.edu/~sagan

June 26, 2007

The Incidence Algebra

The Möbius Function

The Möbius Inversion Theorem

Outline

The Incidence Algebra

The Möbius Function

The Möbius Inversion Theorem

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

The *incidence algebra* of a finite poset *P* is the set $I(P) = \{ \alpha : P \times P \to \mathbb{R} \mid \alpha(x, y) = 0 \text{ if } x \leq y \},\$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへぐ

$$I(P) = \{ \alpha : P \times P \to \mathbb{R} \mid \alpha(x, y) = 0 \text{ if } x \not\leq y \},\$$

together with the operations:

1. (addition) $(\alpha + \beta)(\mathbf{x}, \mathbf{y}) = \alpha(\mathbf{x}, \mathbf{y}) + \beta(\mathbf{x}, \mathbf{y}),$

$$I(P) = \{ \alpha : P \times P \to \mathbb{R} \mid \alpha(x, y) = 0 \text{ if } x \not\leq y \},\$$

together with the operations:

- 1. (addition) $(\alpha + \beta)(\mathbf{x}, \mathbf{y}) = \alpha(\mathbf{x}, \mathbf{y}) + \beta(\mathbf{x}, \mathbf{y}),$
- 2. (scalar multiplication) $(k\alpha)(x, y) = k \cdot \alpha(x, y)$ for $k \in \mathbb{R}$,

$$I(P) = \{ \alpha : P \times P \to \mathbb{R} \mid \alpha(x, y) = 0 \text{ if } x \not\leq y \},\$$

together with the operations:

- 1. (addition) $(\alpha + \beta)(\mathbf{x}, \mathbf{y}) = \alpha(\mathbf{x}, \mathbf{y}) + \beta(\mathbf{x}, \mathbf{y}),$
- 2. (scalar multiplication) $(k\alpha)(x, y) = k \cdot \alpha(x, y)$ for $k \in \mathbb{R}$,

(ロ) (同) (三) (三) (三) (○) (○)

3. (convolution) $(\alpha * \beta)(x, y) = \sum_{z} \alpha(x, z)\beta(z, y)$.

$$I(P) = \{ \alpha : P \times P \to \mathbb{R} \mid \alpha(x, y) = 0 \text{ if } x \leq y \},\$$

together with the operations:

- 1. (addition) $(\alpha + \beta)(\mathbf{x}, \mathbf{y}) = \alpha(\mathbf{x}, \mathbf{y}) + \beta(\mathbf{x}, \mathbf{y}),$
- 2. (scalar multiplication) $(k\alpha)(x, y) = k \cdot \alpha(x, y)$ for $k \in \mathbb{R}$,
- 3. (convolution) $(\alpha * \beta)(x, y) = \sum_{z} \alpha(x, z)\beta(z, y)$.

Example. I(P) has Kronecker's delta: $\delta(x, y) = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{if } x \neq y. \end{cases}$

(日) (日) (日) (日) (日) (日) (日)

$$I(P) = \{ \alpha : P \times P \to \mathbb{R} \mid \alpha(x, y) = 0 \text{ if } x \not\leq y \},\$$

together with the operations:

- 1. (addition) $(\alpha + \beta)(\mathbf{x}, \mathbf{y}) = \alpha(\mathbf{x}, \mathbf{y}) + \beta(\mathbf{x}, \mathbf{y}),$
- 2. (scalar multiplication) $(k\alpha)(x, y) = k \cdot \alpha(x, y)$ for $k \in \mathbb{R}$,
- 3. (convolution) $(\alpha * \beta)(x, y) = \sum_{z} \alpha(x, z)\beta(z, y)$.

Example. I(P) has Kronecker's delta: $\delta(x, y) = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{if } x \neq y. \end{cases}$

(日) (日) (日) (日) (日) (日) (日)

Proposition For all $\alpha \in I(P)$: $\alpha * \delta = \delta * \alpha = \alpha$.

$$I(P) = \{ \alpha : P \times P \to \mathbb{R} \mid \alpha(x, y) = 0 \text{ if } x \not\leq y \},\$$

together with the operations:

- 1. (addition) $(\alpha + \beta)(\mathbf{x}, \mathbf{y}) = \alpha(\mathbf{x}, \mathbf{y}) + \beta(\mathbf{x}, \mathbf{y}),$
- 2. (scalar multiplication) $(k\alpha)(x, y) = k \cdot \alpha(x, y)$ for $k \in \mathbb{R}$,
- 3. (convolution) $(\alpha * \beta)(x, y) = \sum_{z} \alpha(x, z)\beta(z, y)$.

Example. I(P) has Kronecker's delta: $\delta(x, y) = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{if } x \neq y. \end{cases}$

(日) (日) (日) (日) (日) (日) (日)

Proposition For all $\alpha \in I(P)$: $\alpha * \delta = \delta * \alpha = \alpha$. Proof of $\alpha * \delta = \alpha$.

$$I(P) = \{ \alpha : P \times P \to \mathbb{R} \mid \alpha(x, y) = 0 \text{ if } x \not\leq y \},\$$

together with the operations:

- 1. (addition) $(\alpha + \beta)(\mathbf{x}, \mathbf{y}) = \alpha(\mathbf{x}, \mathbf{y}) + \beta(\mathbf{x}, \mathbf{y}),$
- 2. (scalar multiplication) $(k\alpha)(x, y) = k \cdot \alpha(x, y)$ for $k \in \mathbb{R}$,
- 3. (convolution) $(\alpha * \beta)(x, y) = \sum_{z} \alpha(x, z)\beta(z, y)$.

Example. I(P) has Kronecker's delta: $\delta(x, y) = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{if } x \neq y. \end{cases}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proposition For all $\alpha \in I(P)$: $\alpha * \delta = \delta * \alpha = \alpha$. Proof of $\alpha * \delta = \alpha$. For any $x, y \in P$: $(\alpha * \delta)(x, y) = \sum \alpha(x, z)\delta(z, y)$

$$\delta(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{z}} \alpha(\mathbf{x}, \mathbf{z}) \delta(\mathbf{z}, \mathbf{y})$$

$$I(P) = \{ \alpha : P \times P \to \mathbb{R} \mid \alpha(x, y) = 0 \text{ if } x \not\leq y \},\$$

together with the operations:

- 1. (addition) $(\alpha + \beta)(\mathbf{x}, \mathbf{y}) = \alpha(\mathbf{x}, \mathbf{y}) + \beta(\mathbf{x}, \mathbf{y}),$
- 2. (scalar multiplication) $(k\alpha)(x, y) = k \cdot \alpha(x, y)$ for $k \in \mathbb{R}$,
- 3. (convolution) $(\alpha * \beta)(x, y) = \sum_{z} \alpha(x, z)\beta(z, y)$.

Example. I(P) has Kronecker's delta: $\delta(x, y) = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{if } x \neq y. \end{cases}$

(日) (日) (日) (日) (日) (日) (日)

Proposition For all $\alpha \in I(P)$: $\alpha * \delta = \delta * \alpha = \alpha$. Proof of $\alpha * \delta = \alpha$. For any $x, y \in P$: $(\alpha * \delta)(x, y) = \sum_{x} \alpha(x, z)\delta(z, y) = \alpha(x, y)\delta(y, y)$

$$I(P) = \{ \alpha : P \times P \to \mathbb{R} \mid \alpha(x, y) = 0 \text{ if } x \not\leq y \},\$$

together with the operations:

- 1. (addition) $(\alpha + \beta)(\mathbf{x}, \mathbf{y}) = \alpha(\mathbf{x}, \mathbf{y}) + \beta(\mathbf{x}, \mathbf{y}),$
- 2. (scalar multiplication) $(k\alpha)(x, y) = k \cdot \alpha(x, y)$ for $k \in \mathbb{R}$,
- 3. (convolution) $(\alpha * \beta)(x, y) = \sum_{z} \alpha(x, z)\beta(z, y)$.

Example. I(P) has Kronecker's delta: $\delta(x, y) = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{if } x \neq y. \end{cases}$

Proposition For all $\alpha \in I(P)$: $\alpha * \delta = \delta * \alpha = \alpha$. Proof of $\alpha * \delta = \alpha$. For any $x, y \in P$: $(\alpha * \delta)(x, y) = \sum \alpha(x, z)\delta(z, y) = \alpha(x, y)\delta(y, y) = \alpha(x, y)$.

(日) (日) (日) (日) (日) (日) (日)

$$I(P) = \{ \alpha : P \times P \to \mathbb{R} \mid \alpha(x, y) = 0 \text{ if } x \not\leq y \},\$$

together with the operations:

- 1. (addition) $(\alpha + \beta)(\mathbf{x}, \mathbf{y}) = \alpha(\mathbf{x}, \mathbf{y}) + \beta(\mathbf{x}, \mathbf{y}),$
- 2. (scalar multiplication) $(k\alpha)(x, y) = k \cdot \alpha(x, y)$ for $k \in \mathbb{R}$,
- 3. (convolution) $(\alpha * \beta)(x, y) = \sum_{z} \alpha(x, z)\beta(z, y)$.

Example. I(P) has Kronecker's delta: $\delta(x, y) = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{if } x \neq y. \end{cases}$

Proposition

For all $\alpha \in I(P)$: $\alpha * \delta = \delta * \alpha = \alpha$.

Proof of $\alpha * \delta = \alpha$. For any $x, y \in P$:

$$(\alpha * \delta)(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{z}} \alpha(\mathbf{x}, \mathbf{z}) \delta(\mathbf{z}, \mathbf{y}) = \alpha(\mathbf{x}, \mathbf{y}) \delta(\mathbf{y}, \mathbf{y}) = \alpha(\mathbf{x}, \mathbf{y}). \quad \Box$$

Note. We have

$$(\alpha * \beta)(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{z} \in [\mathbf{x}, \mathbf{y}]} \alpha(\mathbf{x}, \mathbf{z}) \beta(\mathbf{z}, \mathbf{y})$$

・ロト・西ト・西ト・西ト・日・

$$I(P) = \{ \alpha : P \times P \to \mathbb{R} \mid \alpha(x, y) = 0 \text{ if } x \not\leq y \},\$$

together with the operations:

- 1. (addition) $(\alpha + \beta)(\mathbf{x}, \mathbf{y}) = \alpha(\mathbf{x}, \mathbf{y}) + \beta(\mathbf{x}, \mathbf{y}),$
- 2. (scalar multiplication) $(k\alpha)(x, y) = k \cdot \alpha(x, y)$ for $k \in \mathbb{R}$,
- 3. (convolution) $(\alpha * \beta)(x, y) = \sum_{z} \alpha(x, z) \beta(z, y)$.

Example. I(P) has Kronecker's delta: $\delta(x, y) = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{if } x \neq y. \end{cases}$

Proposition

For all $\alpha \in I(P)$: $\alpha * \delta = \delta * \alpha = \alpha$.

Proof of $\alpha * \delta = \alpha$. For any $x, y \in P$:

$$(\alpha * \delta)(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{z}} \alpha(\mathbf{x}, \mathbf{z}) \delta(\mathbf{z}, \mathbf{y}) = \alpha(\mathbf{x}, \mathbf{y}) \delta(\mathbf{y}, \mathbf{y}) = \alpha(\mathbf{x}, \mathbf{y}). \quad \Box$$

Note. We have

$$(\alpha * \beta)(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{z} \in [\mathbf{x}, \mathbf{y}]} \alpha(\mathbf{x}, \mathbf{z}) \beta(\mathbf{z}, \mathbf{y})$$

since $\alpha(x, z) \neq 0$ implies $x \leq z$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

$$I(P) = \{ \alpha : P \times P \to \mathbb{R} \mid \alpha(x, y) = 0 \text{ if } x \not\leq y \},\$$

together with the operations:

- 1. (addition) $(\alpha + \beta)(\mathbf{x}, \mathbf{y}) = \alpha(\mathbf{x}, \mathbf{y}) + \beta(\mathbf{x}, \mathbf{y}),$
- 2. (scalar multiplication) $(k\alpha)(x, y) = k \cdot \alpha(x, y)$ for $k \in \mathbb{R}$,
- 3. (convolution) $(\alpha * \beta)(x, y) = \sum_{z} \alpha(x, z) \beta(z, y)$.

Example. I(P) has Kronecker's delta: $\delta(x, y) = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{if } x \neq y. \end{cases}$

Proposition

For all $\alpha \in I(P)$: $\alpha * \delta = \delta * \alpha = \alpha$.

Proof of $\alpha * \delta = \alpha$. For any $x, y \in P$:

$$(\alpha * \delta)(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{z}} \alpha(\mathbf{x}, \mathbf{z}) \delta(\mathbf{z}, \mathbf{y}) = \alpha(\mathbf{x}, \mathbf{y}) \delta(\mathbf{y}, \mathbf{y}) = \alpha(\mathbf{x}, \mathbf{y}). \quad \Box$$

Note. We have

$$(\alpha * \beta)(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{z} \in [\mathbf{x}, \mathbf{y}]} \alpha(\mathbf{x}, \mathbf{z}) \beta(\mathbf{z}, \mathbf{y})$$

since $\alpha(x, z) \neq 0$ implies $x \leq z$ and $\beta(z, y) \neq 0$ implies $z \leq y$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

An *algebra* over a field *F* is a set *A* together with operations of sum (+), product (•), and scalar multiplication (·) such that 1. $(A, +, \bullet)$ is a ring,

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- 1. $(A, +, \bullet)$ is a ring,
- 2. $(A, +, \cdot)$ is a vector space over F,

- 1. $(A, +, \bullet)$ is a ring,
- 2. $(A, +, \cdot)$ is a vector space over F,

3. $k \cdot (a \bullet b) = (k \cdot a) \bullet b = a \bullet (k \cdot b)$ for all $k \in F$, $a, b \in A$.

- 1. $(A, +, \bullet)$ is a ring,
- 2. $(A, +, \cdot)$ is a vector space over F,

3.
$$k \cdot (a \bullet b) = (k \cdot a) \bullet b = a \bullet (k \cdot b)$$
 for all $k \in F$, $a, b \in A$.

Example. The matrix algebra over \mathbb{R} is

 $Mat_n(\mathbb{R}) = all n \times n$ matrices with entries in \mathbb{R} .

- 1. $(A, +, \bullet)$ is a ring,
- 2. $(A, +, \cdot)$ is a vector space over F,

3.
$$k \cdot (a \bullet b) = (k \cdot a) \bullet b = a \bullet (k \cdot b)$$
 for all $k \in F$, $a, b \in A$.

Example. The matrix algebra over \mathbb{R} is

 $\operatorname{Mat}_n(\mathbb{R}) = \operatorname{all} n \times n$ matrices with entries in \mathbb{R} .

Example. The Boolean algebra is an algebra over \mathbb{F}_2

- 1. $(A, +, \bullet)$ is a ring,
- 2. $(A, +, \cdot)$ is a vector space over F,

3.
$$k \cdot (a \bullet b) = (k \cdot a) \bullet b = a \bullet (k \cdot b)$$
 for all $k \in F$, $a, b \in A$.

Example. The matrix algebra over \mathbb{R} is

 $Mat_n(\mathbb{R}) = all n \times n$ matrices with entries in \mathbb{R} .

Example. The Boolean algebra is an algebra over \mathbb{F}_2 where, for all $S, T \in B_n$: 1. $S + T = (S \cup T) - (S \cap T)$,

- 1. $(A, +, \bullet)$ is a ring,
- 2. $(A, +, \cdot)$ is a vector space over F,

3.
$$k \cdot (a \bullet b) = (k \cdot a) \bullet b = a \bullet (k \cdot b)$$
 for all $k \in F$, $a, b \in A$.

Example. The matrix algebra over \mathbb{R} is

 $Mat_n(\mathbb{R}) = all n \times n$ matrices with entries in \mathbb{R} .

Example. The Boolean algebra is an algebra over \mathbb{F}_2 where, for all $S, T \in B_n$:

1.
$$S + T = (S \cup T) - (S \cap T),$$

2. $S \bullet T = S \cap T$,

- 1. $(A, +, \bullet)$ is a ring,
- 2. $(A, +, \cdot)$ is a vector space over F,

3.
$$k \cdot (a \bullet b) = (k \cdot a) \bullet b = a \bullet (k \cdot b)$$
 for all $k \in F$, $a, b \in A$.

Example. The matrix algebra over \mathbb{R} is

 $Mat_n(\mathbb{R}) = all n \times n$ matrices with entries in \mathbb{R} .

Example. The Boolean algebra is an algebra over \mathbb{F}_2 where, for all $S, T \in B_n$:

- 1. $S + T = (S \cup T) (S \cap T)$,
- 2. $S \bullet T = S \cap T$,
- 3. $0 \cdot S = \emptyset$ and $1 \cdot S = S$.

- 1. $(A, +, \bullet)$ is a ring,
- 2. $(A, +, \cdot)$ is a vector space over F,

3.
$$k \cdot (a \bullet b) = (k \cdot a) \bullet b = a \bullet (k \cdot b)$$
 for all $k \in F$, $a, b \in A$.

Example. The matrix algebra over \mathbb{R} is

 $Mat_n(\mathbb{R}) = all n \times n$ matrices with entries in \mathbb{R} .

Example. The Boolean algebra is an algebra over \mathbb{F}_2 where, for all $S, T \in B_n$:

- 1. $S + T = (S \cup T) (S \cap T)$,
- 2. $S \bullet T = S \cap T$,
- 3. $0 \cdot S = \emptyset$ and $1 \cdot S = S$.

Example. The incidence algebra I(P) is an algebra with convolution as the product.

- 1. $(A, +, \bullet)$ is a ring,
- 2. $(A, +, \cdot)$ is a vector space over F,

3.
$$k \cdot (a \bullet b) = (k \cdot a) \bullet b = a \bullet (k \cdot b)$$
 for all $k \in F$, $a, b \in A$.

Example. The matrix algebra over \mathbb{R} is

 $\operatorname{Mat}_n(\mathbb{R}) = \operatorname{all} n \times n$ matrices with entries in \mathbb{R} .

Example. The Boolean algebra is an algebra over \mathbb{F}_2 where, for all $S, T \in B_n$:

- 1. $S + T = (S \cup T) (S \cap T)$,
- 2. $S \bullet T = S \cap T$,
- 3. $0 \cdot S = \emptyset$ and $1 \cdot S = S$.

Example. The incidence algebra I(P) is an algebra with convolution as the product.

Note. Often · and • are suppressed since context makes it clear which multiplication is meant.

Let $L : x_1, ..., x_n$ be a list of the elements of *P*. An $L \times L$ matrix has rows and columns indexed by *L*.

 $M(P) = \{M \in \operatorname{Mat}_n(\mathbb{R}) \mid M \text{ is } L \times L \text{ and } M_{x,y} = 0 \text{ if } x \not\leq y.\}$

(ロ)、

 $M(P) = \{M \in \operatorname{Mat}_n(\mathbb{R}) \mid M \text{ is } L \times L \text{ and } M_{x,y} = 0 \text{ if } x \leq y.\}$ Note that M(P) is a subalgebra of $\operatorname{Mat}_n(\mathbb{R})$.

 $M(P) = \{M \in \operatorname{Mat}_n(\mathbb{R}) \mid M \text{ is } L \times L \text{ and } M_{x,y} = 0 \text{ if } x \not\leq y.\}$ Note that M(P) is a subalgebra of $\operatorname{Mat}_n(\mathbb{R})$. **Example.** For B_2 , let $L : \emptyset$, $\{1\}$, $\{2\}$, $\{1,2\}$.

 $M(P) = \{M \in \operatorname{Mat}_n(\mathbb{R}) \mid M \text{ is } L \times L \text{ and } M_{x,y} = 0 \text{ if } x \leq y.\}$ Note that M(P) is a subalgebra of $\operatorname{Mat}_n(\mathbb{R})$. **Example.** For B_2 , let $L : \emptyset$, $\{1\}$, $\{2\}$, $\{1,2\}$. Then a typical element of $M(B_2)$ is

$$M = \begin{cases} \emptyset \\ \{1\} \\ \{2\} \\ \{1,2\} \end{cases} \begin{bmatrix} \emptyset \\ \{1,2\} \end{bmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $M(P) = \{M \in \operatorname{Mat}_n(\mathbb{R}) \mid M \text{ is } L \times L \text{ and } M_{x,y} = 0 \text{ if } x \not\leq y.\}$ Note that M(P) is a subalgebra of $\operatorname{Mat}_n(\mathbb{R})$. **Example.** For B_2 , let $L : \emptyset$, $\{1\}$, $\{2\}$, $\{1,2\}$. Then a typical element of $M(B_2)$ is

$$M = \begin{cases} 0 & \{1\} & \{2\} & \{1,2\} \\ \\ \{1\} & \{2\} & \\ \\ \{1,2\} & \end{cases}$$

 $M(P) = \{M \in \operatorname{Mat}_n(\mathbb{R}) \mid M \text{ is } L \times L \text{ and } M_{x,y} = 0 \text{ if } x \not\leq y.\}$ Note that M(P) is a subalgebra of $\operatorname{Mat}_n(\mathbb{R})$. **Example.** For B_2 , let $L : \emptyset$, $\{1\}$, $\{2\}$, $\{1,2\}$. Then a typical element of $M(B_2)$ is

$$M = \begin{cases} 0 & \{1\} & \{2\} & \{1,2\} \\ \\ \{1\} & \{2\} & \\ \\ \{1,2\} & \end{cases}$$

 $M(P) = \{M \in \operatorname{Mat}_n(\mathbb{R}) \mid M \text{ is } L \times L \text{ and } M_{x,y} = 0 \text{ if } x \not\leq y.\}$ Note that M(P) is a subalgebra of $\operatorname{Mat}_n(\mathbb{R})$. **Example.** For B_2 , let $L : \emptyset$, $\{1\}$, $\{2\}$, $\{1,2\}$. Then a typical element of $M(B_2)$ is

$$M = \begin{cases} \emptyset & \{1\} & \{2\} & \{1,2\} \\ \\ \{1\} & \{2\} & \\ \\ \{1,2\} & \\ \end{cases} \begin{bmatrix} \emptyset & \emptyset & \emptyset & \emptyset & \emptyset \\ 0 & \emptyset & 0 & \emptyset \\ 0 & 0 & \emptyset & \emptyset \\ 0 & 0 & \emptyset & \emptyset \end{bmatrix}$$

 $M(P) = \{M \in \operatorname{Mat}_n(\mathbb{R}) \mid M \text{ is } L \times L \text{ and } M_{x,y} = 0 \text{ if } x \not\leq y.\}$ Note that M(P) is a subalgebra of $\operatorname{Mat}_n(\mathbb{R})$. **Example.** For B_2 , let $L : \emptyset$, $\{1\}$, $\{2\}$, $\{1,2\}$. Then a typical element of $M(B_2)$ is

 $M(P) = \{M \in \operatorname{Mat}_n(\mathbb{R}) \mid M \text{ is } L \times L \text{ and } M_{x,y} = 0 \text{ if } x \not\leq y.\}$ Note that M(P) is a subalgebra of $\operatorname{Mat}_n(\mathbb{R})$. **Example.** For B_2 , let $L : \emptyset$, $\{1\}$, $\{2\}$, $\{1,2\}$. Then a typical element of $M(B_2)$ is

where the &'s can be replace by any complex numbers.

 $M(P) = \{M \in \operatorname{Mat}_n(\mathbb{R}) \mid M \text{ is } L \times L \text{ and } M_{x,y} = 0 \text{ if } x \not\leq y.\}$ Note that M(P) is a subalgebra of $\operatorname{Mat}_n(\mathbb{R})$. **Example.** For B_2 , let $L : \emptyset$, $\{1\}$, $\{2\}$, $\{1,2\}$. Then a typical element of $M(B_2)$ is

$$M = \begin{cases} 0 & \{1\} & \{2\} & \{1,2\} \\ 0 & \{1\} & \{2\} & \{1,2\} \\ \{2\} & \{1,2\} & 0 & \{1\} & \{1,2\} \\ 0 & 0 & 0 & \{2\} & 0 & 0 & \{1\} & \{2\} & \{1,2\} \\ 0 & \{1\} & \{2\} & \{1,2\} & \{2\} & \{1,2\} & \{2\} & \{1,2\} \\ 0 & \{1\} & \{2\} & \{1,2\} & \{2\} & \{1\} & \{2\} & \{1,2\} \\ 0 & \{1\} & \{2\} & \{1\} & \{2\} & \{1,2\} \\ 0 & \{1\} & \{2\} & \{1\} & \{2\} & \{1,2\} \\ 0 & \{1\} & \{2\} & \{1,2\} & \{2\} & \{1\} & \{1\} & \{2\} & \{1\} & \{2\} & \{1\} & \{2\} & \{1\} & \{2\} & \{1\} & \{2\} & \{1\} & \{2\} & \{1\} & \{2\} & \{1\} & \{2\} & \{1\} & \{2\} & \{1\} & \{2\} & \{1\} & \{2\} & \{1\} & \{2\} & \{1\} & \{1\} & \{2\} & \{1\} & \{2\} & \{1\} & \{2\} & \{1\} & \{2\} & \{1\} & \{1\} & \{2\}$$

where the \clubsuit 's can be replace by any complex numbers. The list $L : x_1, ..., x_n$ is a *linear extension* of P if $x_i \le x_j$ in P implies $i \le j$, i.e., x_i comes before x_i in L.

 $M(P) = \{M \in \operatorname{Mat}_n(\mathbb{R}) \mid M \text{ is } L \times L \text{ and } M_{x,y} = 0 \text{ if } x \not\leq y.\}$ Note that M(P) is a subalgebra of $\operatorname{Mat}_n(\mathbb{R})$. **Example.** For B_2 , let $L : \emptyset$, $\{1\}$, $\{2\}$, $\{1,2\}$. Then a typical element of $M(B_2)$ is

$$M = \begin{cases} \emptyset & \{1\} & \{2\} & \{1,2\} \\ \\ \{1\} & \{2\} & \\ \\ \{1,2\} & \\ \end{cases} \begin{pmatrix} \emptyset & & & & & \bullet & \bullet \\ 0 & & & & & \bullet \\ 0 & 0 & & & \bullet & \bullet \\ 0 & 0 & & & \bullet & \bullet \\ 0 & 0 & 0 & & \bullet & \bullet \\ \end{bmatrix}$$

where the \clubsuit 's can be replace by any complex numbers. The list $L : x_1, \ldots, x_n$ is a *linear extension* of P if $x_i \le x_j$ in P implies $i \le j$, i.e., x_i comes before x_j in L. Henceforth we will take L to be a linear extension. This makes each $M \in M(P)$ upper triangular since

 $M(P) = \{M \in \operatorname{Mat}_n(\mathbb{R}) \mid M \text{ is } L \times L \text{ and } M_{x,y} = 0 \text{ if } x \not\leq y.\}$ Note that M(P) is a subalgebra of $\operatorname{Mat}_n(\mathbb{R})$. **Example.** For B_2 , let $L : \emptyset$, $\{1\}$, $\{2\}$, $\{1,2\}$. Then a typical element of $M(B_2)$ is

$$M = \begin{cases} \emptyset & \{1\} & \{2\} & \{1,2\} \\ \\ \{1\} & \{2\} & \\ \\ \{1,2\} & \\ \end{cases} \begin{pmatrix} \emptyset & & & & & \bullet & \bullet \\ 0 & & & & & \bullet \\ 0 & 0 & & & \bullet & \bullet \\ 0 & 0 & & & \bullet & \bullet \\ 0 & 0 & 0 & & \bullet & \bullet \\ \end{bmatrix}$$

where the \clubsuit 's can be replace by any complex numbers. The list $L : x_1, \ldots, x_n$ is a *linear extension* of P if $x_i \le x_j$ in P implies $i \le j$, i.e., x_i comes before x_j in L. Henceforth we will take L to be a linear extension. This makes each $M \in M(P)$ upper triangular since

$$i > j \implies x_i \not\leq x_j$$

 $M(P) = \{M \in \operatorname{Mat}_n(\mathbb{R}) \mid M \text{ is } L \times L \text{ and } M_{x,y} = 0 \text{ if } x \not\leq y.\}$ Note that M(P) is a subalgebra of $\operatorname{Mat}_n(\mathbb{R})$. **Example.** For B_2 , let $L : \emptyset$, $\{1\}$, $\{2\}$, $\{1,2\}$. Then a typical element of $M(B_2)$ is

$$M = \begin{cases} \emptyset & \{1\} & \{2\} & \{1,2\} \\ \\ \{1\} & \{2\} & \\ \\ \{1,2\} & \\ \end{cases} \begin{pmatrix} \emptyset & & & & & \bullet & \bullet \\ 0 & & & & & \bullet \\ 0 & 0 & & & \bullet & \bullet \\ 0 & 0 & & & \bullet & \bullet \\ 0 & 0 & 0 & & \bullet & \bullet \\ \end{bmatrix}$$

where the \clubsuit 's can be replace by any complex numbers. The list $L : x_1, \ldots, x_n$ is a *linear extension* of P if $x_i \le x_j$ in P implies $i \le j$, i.e., x_i comes before x_j in L. Henceforth we will take L to be a linear extension. This makes each $M \in M(P)$ upper triangular since

$$i > j \implies x_i \leq x_j \implies M_{x_i,x_j} = 0.$$

・ロト・日本・モト・モー ショー ショー

 $f(a+b) = f(a) + f(b), \ f(a \bullet b) = f(a) \bullet f(b), \ f(k \cdot a) = k \cdot f(a).$

 $f(a + b) = f(a) + f(b), f(a \bullet b) = f(a) \bullet f(b), f(k \cdot a) = k \cdot f(a).$ Given any $\alpha \in I(P)$ we let M^{α} be the matrix with entries

$$M^{\alpha}_{\mathbf{x},\mathbf{y}} = \alpha(\mathbf{x},\mathbf{y}).$$

(日)

 $f(a + b) = f(a) + f(b), f(a \bullet b) = f(a) \bullet f(b), f(k \cdot a) = k \cdot f(a).$ Given any $\alpha \in I(P)$ we let M^{α} be the matrix with entries

$$M^{lpha}_{\mathbf{x},\mathbf{y}} = lpha(\mathbf{x},\mathbf{y}).$$

Example. $M^{\delta} = I$ where *I* is the identity matrix.

 $f(a + b) = f(a) + f(b), f(a \bullet b) = f(a) \bullet f(b), f(k \cdot a) = k \cdot f(a).$ Given any $\alpha \in I(P)$ we let M^{α} be the matrix with entries

$$M^{\alpha}_{\mathbf{x},\mathbf{y}} = \alpha(\mathbf{x},\mathbf{y}).$$

Example. $M^{\delta} = I$ where *I* is the identity matrix.

Theorem The map $\alpha \mapsto M^{\alpha}$ is an algebra isomorphism $I(P) \to M(P)$.

 $f(a + b) = f(a) + f(b), f(a \bullet b) = f(a) \bullet f(b), f(k \cdot a) = k \cdot f(a).$ Given any $\alpha \in I(P)$ we let M^{α} be the matrix with entries

$$M^{\alpha}_{\mathbf{x},\mathbf{y}} = \alpha(\mathbf{x},\mathbf{y}).$$

Example. $M^{\delta} = I$ where *I* is the identity matrix.

Theorem The map $\alpha \mapsto M^{\alpha}$ is an algebra isomorphism $I(P) \to M(P)$. Proof that product is preserved.

 $f(a + b) = f(a) + f(b), f(a \bullet b) = f(a) \bullet f(b), f(k \cdot a) = k \cdot f(a).$ Given any $\alpha \in I(P)$ we let M^{α} be the matrix with entries

$$M^{\alpha}_{\mathbf{x},\mathbf{y}} = \alpha(\mathbf{x},\mathbf{y}).$$

Example. $M^{\delta} = I$ where *I* is the identity matrix.

Theorem The map $\alpha \mapsto M^{\alpha}$ is an algebra isomorphism $I(P) \to M(P)$. **Proof that product is preserved.** We wish to show $M^{\alpha*\beta} = M^{\alpha}M^{\beta}$

 $f(a + b) = f(a) + f(b), f(a \bullet b) = f(a) \bullet f(b), f(k \cdot a) = k \cdot f(a).$ Given any $\alpha \in I(P)$ we let M^{α} be the matrix with entries

$$M^{\alpha}_{\mathbf{x},\mathbf{y}} = \alpha(\mathbf{x},\mathbf{y}).$$

Example. $M^{\delta} = I$ where *I* is the identity matrix.

Theorem The map $\alpha \mapsto M^{\alpha}$ is an algebra isomorphism $I(P) \to M(P)$. **Proof that product is preserved.** We wish to show $M^{\alpha*\beta} = M^{\alpha}M^{\beta}$. But given $x, y \in P$:

 $M_{\mathbf{X},\mathbf{V}}^{\alpha*\beta}$

 $f(a + b) = f(a) + f(b), f(a \bullet b) = f(a) \bullet f(b), f(k \cdot a) = k \cdot f(a).$ Given any $\alpha \in I(P)$ we let M^{α} be the matrix with entries

$$M^{\alpha}_{\mathbf{x},\mathbf{y}} = \alpha(\mathbf{x},\mathbf{y}).$$

Example. $M^{\delta} = I$ where *I* is the identity matrix.

Theorem The map $\alpha \mapsto M^{\alpha}$ is an algebra isomorphism $I(P) \to M(P)$.

Proof that product is preserved. We wish to show $M^{\alpha*\beta} = M^{\alpha}M^{\beta}$. But given $x, y \in P$:

 $M_{\mathbf{x},\mathbf{y}}^{\alpha*\beta} = (\alpha*\beta)(\mathbf{x},\mathbf{y})$

 $f(a + b) = f(a) + f(b), f(a \bullet b) = f(a) \bullet f(b), f(k \cdot a) = k \cdot f(a).$ Given any $\alpha \in I(P)$ we let M^{α} be the matrix with entries

$$M^{\alpha}_{\mathbf{x},\mathbf{y}} = \alpha(\mathbf{x},\mathbf{y}).$$

Example. $M^{\delta} = I$ where *I* is the identity matrix.

Theorem M^{α} is an already

The map $\alpha \mapsto M^{\alpha}$ is an algebra isomorphism $I(P) \to M(P)$.

Proof that product is preserved. We wish to show $M^{\alpha*\beta} = M^{\alpha}M^{\beta}$. But given $x, y \in P$:

$$M_{\mathbf{x},\mathbf{y}}^{lpha*eta} = (lpha*eta)(\mathbf{x},\mathbf{y}) = \sum_{\mathbf{z}} lpha(\mathbf{x},\mathbf{z})eta(\mathbf{z},\mathbf{y})$$

 $f(a + b) = f(a) + f(b), f(a \bullet b) = f(a) \bullet f(b), f(k \cdot a) = k \cdot f(a).$ Given any $\alpha \in I(P)$ we let M^{α} be the matrix with entries

$$M^{\alpha}_{\mathbf{x},\mathbf{y}} = \alpha(\mathbf{x},\mathbf{y}).$$

Example. $M^{\delta} = I$ where *I* is the identity matrix.

Theorem The map $\alpha \mapsto M^{\alpha}$ is an algebra isomorphism $I(P) \to M(P)$.

Proof that product is preserved. We wish to show $M^{\alpha*\beta} = M^{\alpha}M^{\beta}$. But given $x, y \in P$:

$$M_{\mathbf{x},\mathbf{y}}^{\alpha*\beta} = (\alpha*\beta)(\mathbf{x},\mathbf{y}) = \sum_{\mathbf{z}} \alpha(\mathbf{x},\mathbf{z})\beta(\mathbf{z},\mathbf{y}) = (M^{\alpha}M^{\beta})_{\mathbf{x},\mathbf{y}}.$$

 $f(a + b) = f(a) + f(b), f(a \bullet b) = f(a) \bullet f(b), f(k \cdot a) = k \cdot f(a).$ Given any $\alpha \in I(P)$ we let M^{α} be the matrix with entries

$$M^{\alpha}_{\mathbf{x},\mathbf{y}} = \alpha(\mathbf{x},\mathbf{y}).$$

Example. $M^{\delta} = I$ where *I* is the identity matrix.

Theorem

The map $\alpha \mapsto M^{\alpha}$ is an algebra isomorphism $I(P) \to M(P)$.

Proof that product is preserved. We wish to show $M^{\alpha*\beta} = M^{\alpha}M^{\beta}$. But given $x, y \in P$:

$$M_{\mathbf{x},\mathbf{y}}^{\alpha*\beta} = (\alpha*\beta)(\mathbf{x},\mathbf{y}) = \sum_{\mathbf{z}} \alpha(\mathbf{x},\mathbf{z})\beta(\mathbf{z},\mathbf{y}) = (M^{\alpha}M^{\beta})_{\mathbf{x},\mathbf{y}}. \quad \Box$$

Proposition

If $\alpha \in I(P)$ then α^{-1} exists if and only if $\alpha(x, x) \neq 0$ for all $x \in P$.

 $f(a + b) = f(a) + f(b), f(a \bullet b) = f(a) \bullet f(b), f(k \cdot a) = k \cdot f(a).$ Given any $\alpha \in I(P)$ we let M^{α} be the matrix with entries

$$M^{\alpha}_{\mathbf{x},\mathbf{y}} = \alpha(\mathbf{x},\mathbf{y}).$$

Example. $M^{\delta} = I$ where *I* is the identity matrix.

Theorem

The map $\alpha \mapsto M^{\alpha}$ is an algebra isomorphism $I(P) \to M(P)$.

Proof that product is preserved. We wish to show $M^{\alpha*\beta} = M^{\alpha}M^{\beta}$. But given $x, y \in P$:

$$M_{\mathbf{x},\mathbf{y}}^{\alpha*\beta} = (\alpha*\beta)(\mathbf{x},\mathbf{y}) = \sum_{\mathbf{z}} \alpha(\mathbf{x},\mathbf{z})\beta(\mathbf{z},\mathbf{y}) = (M^{\alpha}M^{\beta})_{\mathbf{x},\mathbf{y}}. \quad \Box$$

Proposition

If $\alpha \in I(P)$ then α^{-1} exists if and only if $\alpha(x, x) \neq 0$ for all $x \in P$. **Proof.** By the previous theorem

 $\exists \alpha^{-1}$

 $f(a + b) = f(a) + f(b), f(a \bullet b) = f(a) \bullet f(b), f(k \cdot a) = k \cdot f(a).$ Given any $\alpha \in I(P)$ we let M^{α} be the matrix with entries

$$M^{\alpha}_{\mathbf{x},\mathbf{y}} = \alpha(\mathbf{x},\mathbf{y}).$$

Example. $M^{\delta} = I$ where *I* is the identity matrix.

Theorem

The map $\alpha \mapsto M^{\alpha}$ is an algebra isomorphism $I(P) \to M(P)$.

Proof that product is preserved. We wish to show $M^{\alpha*\beta} = M^{\alpha}M^{\beta}$. But given $x, y \in P$:

$$M_{\mathbf{x},\mathbf{y}}^{\alpha*\beta} = (\alpha*\beta)(\mathbf{x},\mathbf{y}) = \sum_{\mathbf{z}} \alpha(\mathbf{x},\mathbf{z})\beta(\mathbf{z},\mathbf{y}) = (M^{\alpha}M^{\beta})_{\mathbf{x},\mathbf{y}}. \quad \Box$$

Proposition

If $\alpha \in I(P)$ then α^{-1} exists if and only if $\alpha(x, x) \neq 0$ for all $x \in P$. **Proof.** By the previous theorem

$$\exists \alpha^{-1} \iff \exists (M^{\alpha})^{-1}$$

 $f(a + b) = f(a) + f(b), f(a \bullet b) = f(a) \bullet f(b), f(k \cdot a) = k \cdot f(a).$ Given any $\alpha \in I(P)$ we let M^{α} be the matrix with entries

$$M^{\alpha}_{\mathbf{x},\mathbf{y}} = \alpha(\mathbf{x},\mathbf{y}).$$

Example. $M^{\delta} = I$ where *I* is the identity matrix.

Theorem

The map $\alpha \mapsto M^{\alpha}$ is an algebra isomorphism $I(P) \to M(P)$.

Proof that product is preserved. We wish to show $M^{\alpha*\beta} = M^{\alpha}M^{\beta}$. But given $x, y \in P$:

$$M_{\mathbf{x},\mathbf{y}}^{\alpha*\beta} = (\alpha*\beta)(\mathbf{x},\mathbf{y}) = \sum_{\mathbf{z}} \alpha(\mathbf{x},\mathbf{z})\beta(\mathbf{z},\mathbf{y}) = (M^{\alpha}M^{\beta})_{\mathbf{x},\mathbf{y}}. \quad \Box$$

Proposition

If $\alpha \in I(P)$ then α^{-1} exists if and only if $\alpha(x, x) \neq 0$ for all $x \in P$. **Proof.** By the previous theorem

$$\exists \alpha^{-1} \iff \exists (M^{\alpha})^{-1} \iff \det M^{\alpha} \neq 0$$

 $f(a + b) = f(a) + f(b), f(a \bullet b) = f(a) \bullet f(b), f(k \cdot a) = k \cdot f(a).$ Given any $\alpha \in I(P)$ we let M^{α} be the matrix with entries

$$M^{\alpha}_{\mathbf{x},\mathbf{y}} = \alpha(\mathbf{x},\mathbf{y}).$$

Example. $M^{\delta} = I$ where *I* is the identity matrix.

Theorem

The map $\alpha \mapsto M^{\alpha}$ is an algebra isomorphism $I(P) \to M(P)$.

Proof that product is preserved. We wish to show $M^{\alpha*\beta} = M^{\alpha}M^{\beta}$. But given $x, y \in P$:

$$M_{\mathbf{x},\mathbf{y}}^{\alpha*\beta} = (\alpha*\beta)(\mathbf{x},\mathbf{y}) = \sum_{\mathbf{z}} \alpha(\mathbf{x},\mathbf{z})\beta(\mathbf{z},\mathbf{y}) = (M^{\alpha}M^{\beta})_{\mathbf{x},\mathbf{y}}. \quad \Box$$

Proposition

If $\alpha \in I(P)$ then α^{-1} exists if and only if $\alpha(x, x) \neq 0$ for all $x \in P$. **Proof.** By the previous theorem

$$\exists \alpha^{-1} \iff \exists (M^{\alpha})^{-1} \iff \det M^{\alpha} \neq 0 \iff \prod_{x \in P} \alpha(x, x) \neq 0. \square$$

Outline

The Incidence Algebra

The Möbius Function

The Möbius Inversion Theorem

$$\zeta(\mathbf{x},\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{x} \leq \mathbf{y}, \\ 0 & \text{if } \mathbf{x} \leq \mathbf{y}. \end{cases}$$

$$\zeta(\mathbf{x},\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{x} \leq \mathbf{y}, \\ 0 & \text{if } \mathbf{x} \leq \mathbf{y}. \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

The *Möbius function* of *P* is $\mu = \zeta^{-1}$.

$$\zeta(\mathbf{x},\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{x} \leq \mathbf{y}, \\ 0 & \text{if } \mathbf{x} \leq \mathbf{y}. \end{cases}$$

The *Möbius function* of *P* is $\mu = \zeta^{-1}$. Note that μ is well defined by the previous proposition.

$$\zeta(\mathbf{x},\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{x} \leq \mathbf{y}, \\ 0 & \text{if } \mathbf{x} \leq \mathbf{y}. \end{cases}$$

The *Möbius function* of *P* is $\mu = \zeta^{-1}$. Note that μ is well defined by the previous proposition. From the definition of μ :

$$\delta(\mathbf{x},\mathbf{y}) = (\mu * \zeta)(\mathbf{x},\mathbf{y})$$

$$\zeta(\mathbf{x},\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{x} \leq \mathbf{y}, \\ 0 & \text{if } \mathbf{x} \leq \mathbf{y}. \end{cases}$$

The *Möbius function* of *P* is $\mu = \zeta^{-1}$. Note that μ is well defined by the previous proposition. From the definition of μ :

$$\delta(\mathbf{x}, \mathbf{y}) = (\mu * \zeta)(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{z} \in [\mathbf{x}, \mathbf{y}]} \mu(\mathbf{x}, \mathbf{z}) \zeta(\mathbf{z}, \mathbf{y})$$

$$\zeta(\mathbf{x},\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{x} \leq \mathbf{y}, \\ 0 & \text{if } \mathbf{x} \leq \mathbf{y}. \end{cases}$$

The *Möbius function* of *P* is $\mu = \zeta^{-1}$. Note that μ is well defined by the previous proposition. From the definition of μ :

$$\delta(\mathbf{x},\mathbf{y}) = (\mu * \zeta)(\mathbf{x},\mathbf{y}) = \sum_{\mathbf{z} \in [\mathbf{x},\mathbf{y}]} \mu(\mathbf{x},\mathbf{z})\zeta(\mathbf{z},\mathbf{y}) = \sum_{\mathbf{z} \in [\mathbf{x},\mathbf{y}]} \mu(\mathbf{x},\mathbf{z}).$$

$$\zeta(\mathbf{x},\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{x} \leq \mathbf{y}, \\ 0 & \text{if } \mathbf{x} \leq \mathbf{y}. \end{cases}$$

The *Möbius function* of *P* is $\mu = \zeta^{-1}$. Note that μ is well defined by the previous proposition. From the definition of μ :

$$\delta(\mathbf{x},\mathbf{y}) = (\mu * \zeta)(\mathbf{x},\mathbf{y}) = \sum_{\mathbf{z} \in [\mathbf{x},\mathbf{y}]} \mu(\mathbf{x},\mathbf{z})\zeta(\mathbf{z},\mathbf{y}) = \sum_{\mathbf{z} \in [\mathbf{x},\mathbf{y}]} \mu(\mathbf{x},\mathbf{z}).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

So if x = y then $\mu(x, x) = 1$;

$$\zeta(\mathbf{x},\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{x} \leq \mathbf{y}, \\ 0 & \text{if } \mathbf{x} \leq \mathbf{y}. \end{cases}$$

The *Möbius function* of *P* is $\mu = \zeta^{-1}$. Note that μ is well defined by the previous proposition. From the definition of μ :

$$\delta(\mathbf{x},\mathbf{y}) = (\mu * \zeta)(\mathbf{x},\mathbf{y}) = \sum_{\mathbf{z} \in [\mathbf{x},\mathbf{y}]} \mu(\mathbf{x},\mathbf{z})\zeta(\mathbf{z},\mathbf{y}) = \sum_{\mathbf{z} \in [\mathbf{x},\mathbf{y}]} \mu(\mathbf{x},\mathbf{z}).$$

So if x = y then $\mu(x, x) = 1$; if x < y then $\sum_{z \in [x,y]} \mu(x, z) = 0$.

$$\zeta(\mathbf{x},\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{x} \leq \mathbf{y}, \\ 0 & \text{if } \mathbf{x} \leq \mathbf{y}. \end{cases}$$

The *Möbius function* of *P* is $\mu = \zeta^{-1}$. Note that μ is well defined by the previous proposition. From the definition of μ :

$$\delta(\mathbf{x},\mathbf{y}) = (\mu * \zeta)(\mathbf{x},\mathbf{y}) = \sum_{\mathbf{z} \in [\mathbf{x},\mathbf{y}]} \mu(\mathbf{x},\mathbf{z})\zeta(\mathbf{z},\mathbf{y}) = \sum_{\mathbf{z} \in [\mathbf{x},\mathbf{y}]} \mu(\mathbf{x},\mathbf{z}).$$

So if x = y then $\mu(x, x) = 1$; if x < y then $\sum_{z \in [x,y]} \mu(x, z) = 0$. Equivalently

$$\mu(\mathbf{x}, \mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{x} = \mathbf{y}, \\ -\sum_{\mathbf{z} \in [\mathbf{x}, \mathbf{y})} \mu(\mathbf{x}, \mathbf{z}) & \text{if } \mathbf{x} < \mathbf{y}. \end{cases}$$

$$\zeta(\mathbf{x},\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{x} \leq \mathbf{y}, \\ 0 & \text{if } \mathbf{x} \leq \mathbf{y}. \end{cases}$$

The *Möbius function* of *P* is $\mu = \zeta^{-1}$. Note that μ is well defined by the previous proposition. From the definition of μ :

$$\delta(\mathbf{x},\mathbf{y}) = (\mu * \zeta)(\mathbf{x},\mathbf{y}) = \sum_{\mathbf{z} \in [\mathbf{x},\mathbf{y}]} \mu(\mathbf{x},\mathbf{z})\zeta(\mathbf{z},\mathbf{y}) = \sum_{\mathbf{z} \in [\mathbf{x},\mathbf{y}]} \mu(\mathbf{x},\mathbf{z}).$$

So if x = y then $\mu(x, x) = 1$; if x < y then $\sum_{z \in [x,y]} \mu(x, z) = 0$. Equivalently

$$\mu(\mathbf{x}, \mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{x} = \mathbf{y}, \\ -\sum_{z \in [\mathbf{x}, \mathbf{y})} \mu(\mathbf{x}, z) & \text{if } \mathbf{x} < \mathbf{y}. \end{cases}$$

Note. If *P* has a zero then we write

$$\mu(\mathbf{y}) = \mu(\hat{\mathbf{0}}, \mathbf{y}).$$

$$\mu(\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{y} = \hat{\mathbf{0}}, \\ -\sum_{z < \mathbf{y}} \mu(z) & \text{if } \mathbf{y} > \hat{\mathbf{0}}. \end{cases}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

$$\mu(\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{y} = \hat{\mathbf{0}}, \\ -\sum_{\mathbf{z} < \mathbf{y}} \mu(\mathbf{z}) & \text{if } \mathbf{y} > \hat{\mathbf{0}}. \end{cases}$$

$$C_3 = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 0 \end{bmatrix}$$

$$\mu(\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{y} = \hat{\mathbf{0}}, \\ -\sum_{\mathbf{z} < \mathbf{y}} \mu(\mathbf{z}) & \text{if } \mathbf{y} > \hat{\mathbf{0}}. \end{cases}$$

$$C_3 = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 0 \end{bmatrix}$$

μ**(0)**

$$\mu(\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{y} = \hat{\mathbf{0}}, \\ -\sum_{z < \mathbf{y}} \mu(z) & \text{if } \mathbf{y} > \hat{\mathbf{0}}. \end{cases}$$

$$C_3 = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 0 \end{bmatrix}$$

$$\mu(\mathbf{0}) = \mu(\hat{\mathbf{0}})$$

$$\mu(\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{y} = \hat{\mathbf{0}}, \\ -\sum_{\mathbf{z} < \mathbf{y}} \mu(\mathbf{z}) & \text{if } \mathbf{y} > \hat{\mathbf{0}}. \end{cases}$$

$$C_3 = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 0 \end{bmatrix}$$

$$\mu(\mathbf{0})=\mu(\hat{\mathbf{0}})=\mathbf{1},$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$\mu(\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{y} = \hat{\mathbf{0}}, \\ -\sum_{z < \mathbf{y}} \mu(z) & \text{if } \mathbf{y} > \hat{\mathbf{0}}. \end{cases}$$

$$C_3 = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 0 \end{bmatrix}$$

$$\mu(0) = \mu(\hat{0}) = 1,$$

<□ > < @ > < E > < E > E のQ@

$$\mu(\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{y} = \hat{\mathbf{0}}, \\ -\sum_{z < \mathbf{y}} \mu(z) & \text{if } \mathbf{y} > \hat{\mathbf{0}}. \end{cases}$$

$$C_{3} = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 0 \end{bmatrix} = 1,$$

$$\mu(0) = \mu(\hat{0}) = 1,$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへぐ

$$\mu(\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{y} = \hat{\mathbf{0}}, \\ -\sum_{z < \mathbf{y}} \mu(z) & \text{if } \mathbf{y} > \hat{\mathbf{0}}. \end{cases}$$

$$C_3 = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}$$

$$\mu(0) = \mu(\hat{0}) = 1,$$

 $\mu(1) = -\mu(0)$

$$\mu(\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{y} = \hat{\mathbf{0}}, \\ -\sum_{z < \mathbf{y}} \mu(z) & \text{if } \mathbf{y} > \hat{\mathbf{0}}. \end{cases}$$

$$C_{3} = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\mu(\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{y} = \hat{\mathbf{0}}, \\ -\sum_{z < \mathbf{y}} \mu(z) & \text{if } \mathbf{y} > \hat{\mathbf{0}}. \end{cases}$$

$$C_{3} = \begin{bmatrix} 3 \\ 2 \\ 1 \\ -1 \\ 0 \end{bmatrix} = 1,$$

$$\mu(0) = \mu(\hat{0}) = 1,$$

$$\mu(1) = -\mu(0) = -1,$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$\mu(\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{y} = \hat{\mathbf{0}}, \\ -\sum_{\mathbf{z} < \mathbf{y}} \mu(\mathbf{z}) & \text{if } \mathbf{y} > \hat{\mathbf{0}}. \end{cases}$$

Example: The Chain.

$$C_{3} = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 0 \end{bmatrix} = -1$$

$$\mu(0) = \mu(\hat{0}) = 1,$$

$$\mu(1) = -\mu(0) = -1,$$

$$\mu(2)$$

$$\mu(\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{y} = \hat{\mathbf{0}}, \\ -\sum_{\mathbf{z} < \mathbf{y}} \mu(\mathbf{z}) & \text{if } \mathbf{y} > \hat{\mathbf{0}}. \end{cases}$$

$$C_{3} = \begin{bmatrix} 3 \\ -1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

$$\mu(0) = \mu(\hat{0}) = 1,$$

$$\mu(1) = -\mu(0) = -1,$$

$$\mu(2) = -(\mu(0) + \mu(1))$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$\mu(\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{y} = \hat{\mathbf{0}}, \\ -\sum_{\mathbf{z} < \mathbf{y}} \mu(\mathbf{z}) & \text{if } \mathbf{y} > \hat{\mathbf{0}}. \end{cases}$$

$$C_{3} = \begin{bmatrix} 3 \\ -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{aligned} \mu(0) &= \mu(0) = 1, \\ \mu(1) &= -\mu(0) = -1, \\ \mu(2) &= -(\mu(0) + \mu(1)) = -(1 - 1) = 0, \end{aligned}$$

$$\mu(\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{y} = \hat{\mathbf{0}}, \\ -\sum_{z < \mathbf{y}} \mu(z) & \text{if } \mathbf{y} > \hat{\mathbf{0}}. \end{cases}$$

$$C_{3} = \begin{bmatrix} 3 \\ 2 \\ 1 \\ -1 \\ 0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\begin{aligned} \mu(0) &= \mu(\hat{0}) = 1, \\ \mu(1) &= -\mu(0) = -1, \\ \mu(2) &= -(\mu(0) + \mu(1)) = -(1 - 1) = 0, \end{aligned}$$

$$\mu(\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{y} = \hat{\mathbf{0}}, \\ -\sum_{\mathbf{z} < \mathbf{y}} \mu(\mathbf{z}) & \text{if } \mathbf{y} > \hat{\mathbf{0}}. \end{cases}$$

μ**(3)**

$$C_{3} = \begin{bmatrix} 3 \\ 2 \\ -1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

$$\mu(0) = \mu(\hat{0}) = 1,$$

$$\mu(1) = -\mu(0) = -1,$$

$$\mu(2) = -(\mu(0) + \mu(1)) = -(1 - 1) = 0,$$

$$\mu(\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{y} = \hat{\mathbf{0}}, \\ -\sum_{z < \mathbf{y}} \mu(z) & \text{if } \mathbf{y} > \hat{\mathbf{0}}. \end{cases}$$

$$C_{3} = \begin{bmatrix} 3 \\ 2 \\ 1 \\ -1 \\ 0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\begin{split} \mu(0) &= \mu(\hat{0}) = 1, \\ \mu(1) &= -\mu(0) = -1, \\ \mu(2) &= -(\mu(0) + \mu(1)) = -(1 - 1) = 0, \\ \mu(3) &= -(\mu(0) + \mu(1) + \mu(2)) \end{split}$$

$$\mu(\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{y} = \hat{\mathbf{0}}, \\ -\sum_{z < \mathbf{y}} \mu(z) & \text{if } \mathbf{y} > \hat{\mathbf{0}}. \end{cases}$$

$$C_3 = \begin{bmatrix} 3 \\ 2 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

$$\begin{split} \mu(0) &= \mu(\hat{0}) = 1, \\ \mu(1) &= -\mu(0) = -1, \\ \mu(2) &= -(\mu(0) + \mu(1)) = -(1 - 1) = 0, \\ \mu(3) &= -(\mu(0) + \mu(1) + \mu(2)) = -(1 - 1 + 0) = 0, \end{split}$$

$$\mu(\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{y} = \hat{\mathbf{0}}, \\ -\sum_{z < \mathbf{y}} \mu(z) & \text{if } \mathbf{y} > \hat{\mathbf{0}}. \end{cases}$$

$$C_{3} = \begin{bmatrix} 3 & 0 \\ 2 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix}$$

$$\begin{split} \mu(0) &= \mu(\hat{0}) = 1, \\ \mu(1) &= -\mu(0) = -1, \\ \mu(2) &= -(\mu(0) + \mu(1)) = -(1 - 1) = 0, \\ \mu(3) &= -(\mu(0) + \mu(1) + \mu(2)) = -(1 - 1 + 0) = 0, \end{split}$$

$$\mu(\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{y} = \hat{\mathbf{0}}, \\ -\sum_{z < \mathbf{y}} \mu(z) & \text{if } \mathbf{y} > \hat{\mathbf{0}}. \end{cases}$$

$$C_{3} = \begin{bmatrix} 3 & 0 \\ 2 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix}$$

$$\begin{split} \mu(0) &= \mu(\hat{0}) = 1, \\ \mu(1) &= -\mu(0) = -1, \\ \mu(2) &= -(\mu(0) + \mu(1)) = -(1 - 1) = 0, \\ \mu(3) &= -(\mu(0) + \mu(1) + \mu(2)) = -(1 - 1 + 0) = 0, \end{split}$$

Proposition

In
$$C_n$$
 we have $\mu(i, j) = \begin{cases} 1 & \text{if } i = j \\ -1 & \text{if } i \triangleleft j, \\ 0 & \text{else.} \end{cases}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

 $\mu(\emptyset)$

$$\mu(\emptyset) = \mu(\hat{0}) = 1,$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$\mu(\emptyset) = \mu(\hat{0}) = \mathbf{1},$$

$$\mu(\emptyset) = \mu(\hat{0}) = 1, \ \mu(\{1\})$$

$$\mu(\emptyset) = \mu(\hat{0}) = 1,$$

$$\mu(\{1\}) = -\mu(\emptyset) = -1,$$

$$\mu(\emptyset) = \mu(\hat{0}) = 1,$$

$$\mu(\{1\}) = -\mu(\emptyset) = -1,$$

$$\mu(\emptyset) = \mu(\hat{0}) = 1,$$

$$\mu(\{1\}) = -\mu(\emptyset) = -1,$$

$$\mu(\emptyset) = \mu(\hat{0}) = 1, \mu(\{1\}) = -\mu(\emptyset) = -1, \mu(\{1,2\})$$

$$\begin{aligned} \mu(\emptyset) &= \mu(\hat{0}) = 1, \\ \mu(\{1\}) &= -\mu(\emptyset) = -1, \\ \mu(\{1,2\}) &= -(\mu(\emptyset) + \mu(\{1\}) + \mu(\{2\}) \end{aligned}$$

$$\begin{split} \mu(\emptyset) &= \mu(\hat{0}) = 1, \\ \mu(\{1\}) &= -\mu(\emptyset) = -1, \\ \mu(\{1,2\}) &= -(\mu(\emptyset) + \mu(\{1\}) + \mu(\{2\})) = -(1-1-1) = 1, \end{split}$$

イロト 不得 トイヨト イヨト

æ

$$\begin{split} \mu(\emptyset) &= \mu(\hat{0}) = 1, \\ \mu(\{1\}) &= -\mu(\emptyset) = -1, \\ \mu(\{1,2\}) &= -(\mu(\emptyset) + \mu(\{1\}) + \mu(\{2\})) = -(1-1-1) = 1, \end{split}$$

イロト イポト イヨト イヨト

æ

$$\begin{split} \mu(\emptyset) &= \mu(\hat{0}) = 1, \\ \mu(\{1\}) &= -\mu(\emptyset) = -1, \\ \mu(\{1,2\}) &= -(\mu(\emptyset) + \mu(\{1\}) + \mu(\{2\})) = -(1-1-1) = 1, \end{split}$$

イロト 不得 トイヨト イヨト

æ

$$\begin{aligned} \mu(\emptyset) &= \mu(\hat{0}) = 1, \\ \mu(\{1\}) &= -\mu(\emptyset) = -1, \\ \mu(\{1,2\}) &= -(\mu(\emptyset) + \mu(\{1\}) + \mu(\{2\})) = -(1-1-1) = 1, \\ \mu(\{1,2,3\}) \end{aligned}$$

$$\begin{split} \mu(\emptyset) &= \mu(\hat{0}) = 1, \\ \mu(\{1\}) &= -\mu(\emptyset) = -1, \\ \mu(\{1,2\}) &= -(\mu(\emptyset) + \mu(\{1\}) + \mu(\{2\})) = -(1-1-1) = 1, \\ \mu(\{1,2,3\}) &= -(1-1-1-1+1+1+1) = -1 \end{split}$$

$$\begin{split} \mu(\emptyset) &= \mu(\hat{0}) = 1, \\ \mu(\{1\}) &= -\mu(\emptyset) = -1, \\ \mu(\{1,2\}) &= -(\mu(\emptyset) + \mu(\{1\}) + \mu(\{2\})) = -(1-1-1) = 1, \\ \mu(\{1,2,3\}) &= -(1-1-1-1+1+1+1) = -1 \end{split}$$

$$\mu(\emptyset) = \mu(\hat{0}) = 1, \mu(\{1\}) = -\mu(\emptyset) = -1, \mu(\{1,2\}) = -(\mu(\emptyset) + \mu(\{1\}) + \mu(\{2\})) = -(1-1-1) = 1, \mu(\{1,2,3\}) = -(1-1-1-1+1+1+1) = -1$$

Conjecture In B_n we have $\mu(S) = (-1)^{|S|}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

μ(1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conjecture

If $d \in D_n$ has prime factorization $d = p_1^{m_1} \cdots p_k^{m_k}$ then

$$\mu(d) = \begin{cases} (-1)^k & \text{if } m_1 = \ldots = m_k = 1, \\ 0 & \text{if } m_i \geq 2 \text{ for some } i. \end{cases}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

1. If $f : P \to Q$ is an isomorphism and $x, y \in P$ then $\mu_P(x, y) = \mu_Q(f(x), f(y)).$

1. If $f : P \to Q$ is an isomorphism and $x, y \in P$ then $\mu_P(x, y) = \mu_Q(f(x), f(y)).$

2. If $a, b \in P$ and $x, y \in Q$ then $\mu_{P \times Q}((a, x), (b, y)) = \mu_P(a, b)\mu_Q(x, y).$ (1)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

1. If $f : P \to Q$ is an isomorphism and $x, y \in P$ then $\mu_P(x, y) = \mu_Q(f(x), f(y)).$

2. If $a, b \in P$ and $x, y \in Q$ then $\mu_{P \times Q}((a, x), (b, y)) = \mu_P(a, b)\mu_Q(x, y).$ (1)

Proof for $P \times Q$ **.**

1. If $f : P \to Q$ is an isomorphism and $x, y \in P$ then $\mu_P(x, y) = \mu_Q(f(x), f(y)).$

2. If $a, b \in P$ and $x, y \in Q$ then $\mu_{P \times Q}((a, x), (b, y)) = \mu_P(a, b)\mu_Q(x, y).$ (1)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Proof for $P \times Q$. For any poset *R*, the equation $\sum_{t \in [r,s]} \mu(r,t) = \delta(r,s)$ uniquely defines μ .

1. If $f : P \to Q$ is an isomorphism and $x, y \in P$ then $\mu_P(x, y) = \mu_Q(f(x), f(y)).$

2. If $a, b \in P$ and $x, y \in Q$ then $\mu_{P \times Q}((a, x), (b, y)) = \mu_P(a, b)\mu_Q(x, y).$ (1)

Proof for $P \times Q$. For any poset *R*, the equation $\sum_{t \in [r,s]} \mu(r,t) = \delta(r,s)$ uniquely defines μ . So it suffices to show that the right-hand side of (1) satisfies the defining equation.

1. If $f : P \to Q$ is an isomorphism and $x, y \in P$ then $\mu_P(x, y) = \mu_Q(f(x), f(y)).$

2. If $a, b \in P$ and $x, y \in Q$ then $\mu_{P \times Q}((a, x), (b, y)) = \mu_P(a, b)\mu_Q(x, y).$ (1)

Proof for $P \times Q$. For any poset *R*, the equation $\sum_{t \in [r,s]} \mu(r,t) = \delta(r,s)$ uniquely defines μ . So it suffices to show that the right-hand side of (1) satisfies the defining equation.

$$\sum_{(c,z)\in [(a,x),(b,y)]} \mu_P(a,c)\mu_Q(x,z)$$

1. If $f : P \to Q$ is an isomorphism and $x, y \in P$ then $\mu_P(x, y) = \mu_Q(f(x), f(y)).$

2. If $a, b \in P$ and $x, y \in Q$ then $\mu_{P \times Q}((a, x), (b, y)) = \mu_P(a, b)\mu_Q(x, y).$ (1)

Proof for $P \times Q$. For any poset *R*, the equation $\sum_{t \in [r,s]} \mu(r,t) = \delta(r,s)$ uniquely defines μ . So it suffices to show that the right-hand side of (1) satisfies the defining equation.

$$\sum_{(c,z)\in [(a,x),(b,y)]} \mu_P(a,c)\mu_Q(x,z) = \sum_{c\in [a,b]} \mu_P(a,c) \sum_{z\in [x,y]} \mu_Q(x,z)$$

1. If $f : P \to Q$ is an isomorphism and $x, y \in P$ then $\mu_P(x, y) = \mu_Q(f(x), f(y)).$

2. If $a, b \in P$ and $x, y \in Q$ then $\mu_{P \times Q}((a, x), (b, y)) = \mu_P(a, b)\mu_Q(x, y).$ (1)

Proof for $P \times Q$. For any poset *R*, the equation $\sum_{t \in [r,s]} \mu(r,t) = \delta(r,s)$ uniquely defines μ . So it suffices to show that the right-hand side of (1) satisfies the defining equation.

$$\sum_{\substack{(c,z)\in[(a,x),(b,y)]}} \mu_P(a,c)\mu_Q(x,z) = \sum_{\substack{c\in[a,b]}} \mu_P(a,c)\sum_{\substack{z\in[x,y]}} \mu_Q(x,z)$$
$$= \delta_P(a,b)\delta_Q(x,y)$$

1. If $f : P \to Q$ is an isomorphism and $x, y \in P$ then $\mu_P(x, y) = \mu_Q(f(x), f(y)).$

2. If $a, b \in P$ and $x, y \in Q$ then $\mu_{P \times Q}((a, x), (b, y)) = \mu_P(a, b)\mu_Q(x, y).$ (1)

Proof for $P \times Q$. For any poset *R*, the equation $\sum_{t \in [r,s]} \mu(r,t) = \delta(r,s)$ uniquely defines μ . So it suffices to show that the right-hand side of (1) satisfies the defining equation.

$$\sum_{(c,z)\in[(a,x),(b,y)]} \mu_P(a,c)\mu_Q(x,z) = \sum_{c\in[a,b]} \mu_P(a,c) \sum_{z\in[x,y]} \mu_Q(x,z)$$
$$= \delta_P(a,b)\delta_Q(x,y)$$
$$= \delta_{P\times Q}((a,x),(b,y)). \square$$

1. If $S \in B_n$ then $\mu(S) = (-1)^{|S|}$

1. If $S \in B_n$ then $\mu(S) = (-1)^{|S|}$ 2. If $d = p_1^{m_1} \cdots p_k^{m_k} \in D_n$ then $\mu(d) = \begin{cases} (-1)^k & \text{if } m_1 = \ldots = m_k = 1, \\ 0 & \text{if } m_i \ge 2 \text{ for some } i. \end{cases}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1. If
$$S \in B_n$$
 then $\mu(S) = (-1)^{|S|}$
2. If $d = p_1^{m_1} \cdots p_k^{m_k} \in D_n$ then

$$\mu(d) = \begin{cases} (-1)^k & \text{if } m_1 = \ldots = m_k = 1, \\ 0 & \text{if } m_i \ge 2 \text{ for some } i. \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Proof for B_n .

1. If
$$S \in B_n$$
 then $\mu(S) = (-1)^{|S|}$
2. If $d = p_1^{m_1} \cdots p_k^{m_k} \in D_n$ then

$$\mu(d) = \begin{cases} (-1)^k & \text{if } m_1 = \ldots = m_k = 1, \\ 0 & \text{if } m_i \ge 2 \text{ for some } i. \end{cases}$$

Proof for B_n . We have an isomorphism $f : B_n \to (C_1)^n$.

1. If
$$S \in B_n$$
 then $\mu(S) = (-1)^{|S|}$
2. If $d = p_1^{m_1} \cdots p_k^{m_k} \in D_n$ then

$$\mu(d) = \begin{cases} (-1)^k & \text{if } m_1 = \ldots = m_k = 1, \\ 0 & \text{if } m_i \ge 2 \text{ for some } i. \end{cases}$$

Proof for B_n . We have an isomorphism $f : B_n \to (C_1)^n$. Also

$$\mu_{C_1}(0) = 1$$
 and $\mu_{C_1}(1) = -1$.

1. If
$$S \in B_n$$
 then $\mu(S) = (-1)^{|S|}$
2. If $d = p_1^{m_1} \cdots p_k^{m_k} \in D_n$ then

$$\mu(d) = \begin{cases} (-1)^k & \text{if } m_1 = \ldots = m_k = 1, \\ 0 & \text{if } m_i \ge 2 \text{ for some } i. \end{cases}$$

Proof for B_n . We have an isomorphism $f : B_n \to (C_1)^n$. Also

$$\mu_{C_1}(0) = 1$$
 and $\mu_{C_1}(1) = -1$.

Now if $f(S) = (b_1, ..., b_n)$ then by the previous theorem $\mu_{B_n}(S)$

1. If
$$S \in B_n$$
 then $\mu(S) = (-1)^{|S|}$
2. If $d = p_1^{m_1} \cdots p_k^{m_k} \in D_n$ then

$$\mu(d) = \begin{cases} (-1)^k & \text{if } m_1 = \ldots = m_k = 1, \\ 0 & \text{if } m_i \ge 2 \text{ for some } i. \end{cases}$$

Proof for B_n . We have an isomorphism $f : B_n \to (C_1)^n$. Also

$$\mu_{C_1}(0) = 1$$
 and $\mu_{C_1}(1) = -1$.

Now if $f(S) = (b_1, \ldots, b_n)$ then by the previous theorem

$$\mu_{B_n}(\mathsf{S}) = \mu_{(C_1)^n}(b_1,\ldots,b_n)$$

1. If
$$S \in B_n$$
 then $\mu(S) = (-1)^{|S|}$
2. If $d = p_1^{m_1} \cdots p_k^{m_k} \in D_n$ then

$$\mu(d) = \begin{cases} (-1)^k & \text{if } m_1 = \ldots = m_k = 1, \\ 0 & \text{if } m_i \ge 2 \text{ for some } i. \end{cases}$$

Proof for B_n . We have an isomorphism $f : B_n \to (C_1)^n$. Also

$$\mu_{C_1}(0) = 1$$
 and $\mu_{C_1}(1) = -1$.

Now if $f(S) = (b_1, \ldots, b_n)$ then by the previous theorem

$$\mu_{B_n}(S) = \mu_{(C_1)^n}(b_1,\ldots,b_n)$$
$$= \prod_i \mu_{C_1}(b_i)$$

1. If
$$S \in B_n$$
 then $\mu(S) = (-1)^{|S|}$
2. If $d = p_1^{m_1} \cdots p_k^{m_k} \in D_n$ then

$$\mu(d) = \begin{cases} (-1)^k & \text{if } m_1 = \ldots = m_k = 1, \\ 0 & \text{if } m_i \ge 2 \text{ for some } i. \end{cases}$$

Proof for B_n . We have an isomorphism $f : B_n \to (C_1)^n$. Also

$$\mu_{C_1}(0) = 1$$
 and $\mu_{C_1}(1) = -1$.

Now if $f(S) = (b_1, \ldots, b_n)$ then by the previous theorem

$$\mu_{B_n}(S) = \mu_{(C_1)^n}(b_1, \dots, b_n)$$

= $\prod_i \mu_{C_1}(b_i)$
= $(-1)^{(\# \text{ of } b_i = 1)}$

1. If
$$S \in B_n$$
 then $\mu(S) = (-1)^{|S|}$
2. If $d = p_1^{m_1} \cdots p_k^{m_k} \in D_n$ then

$$\mu(d) = \begin{cases} (-1)^k & \text{if } m_1 = \ldots = m_k = 1, \\ 0 & \text{if } m_i \ge 2 \text{ for some } i. \end{cases}$$

Proof for B_n . We have an isomorphism $f : B_n \to (C_1)^n$. Also

$$\mu_{C_1}(0) = 1$$
 and $\mu_{C_1}(1) = -1$.

Now if $f(S) = (b_1, \ldots, b_n)$ then by the previous theorem

$$\mu_{B_n}(S) = \mu_{(C_1)^n}(b_1, \dots, b_n)$$

$$= \prod_i \mu_{C_1}(b_i)$$

$$= (-1)^{(\# \text{ of } b_i = 1)}$$

$$= (-1)^{|S|}. \square$$

Outline

The Incidence Algebra

The Möbius Function

The Möbius Inversion Theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem (Möbius Inversion Theorem or MIT, Weisner (1935))

Consider a finite poset P and two functions $f : P \to \mathbb{R}$ and $g : P \to \mathbb{R}$. Then the following are equivalent statements.

1.
$$f(y) = \sum_{x \le y} g(x)$$
 for all $y \in P$.

Theorem (Möbius Inversion Theorem or MIT, Weisner (1935))

Consider a finite poset P and two functions $f : P \to \mathbb{R}$ and $g : P \to \mathbb{R}$. Then the following are equivalent statements.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

1.
$$f(y) = \sum_{x \le y} g(x)$$
 for all $y \in P$.
2. $g(y) = \sum_{x \le y} \mu(x, y) f(x)$ for all $y \in P$.

Theorem (Möbius Inversion Theorem or MIT, Weisner (1935))

Consider a finite poset P and two functions $f : P \to \mathbb{R}$ and $g : P \to \mathbb{R}$. Then the following are equivalent statements.

1.
$$f(y) = \sum_{x \le y} g(x)$$
 for all $y \in P$.
2. $g(y) = \sum_{x \le y} \mu(x, y) f(x)$ for all $y \in P$.

Proof. Let $L : x_1, \ldots, x_n$ be the linear extension used for I(P).

Consider a finite poset P and two functions $f : P \to \mathbb{R}$ and $g : P \to \mathbb{R}$. Then the following are equivalent statements.

1.
$$f(y) = \sum_{x \le y} g(x)$$
 for all $y \in P$.
2. $g(y) = \sum_{x \le y} \mu(x, y) f(x)$ for all $y \in P$.

Proof. Let $L : x_1, ..., x_n$ be the linear extension used for I(P). Associate with *f* the row vector $v^f = [f(x_1) \cdots f(x_n)]$ and similarly for *g*.

Consider a finite poset P and two functions $f : P \to \mathbb{R}$ and $g : P \to \mathbb{R}$. Then the following are equivalent statements.

1.
$$f(y) = \sum_{x \le y} g(x)$$
 for all $y \in P$.
2. $g(y) = \sum_{x \le y} \mu(x, y) f(x)$ for all $y \in P$.

Proof. Let $L : x_1, ..., x_n$ be the linear extension used for I(P). Associate with *f* the row vector $v^f = [f(x_1) \cdots f(x_n)]$ and similarly for *g*. Then

$$f(y) = \sum_{x \leq y} g(x) \; \forall y \in P$$

Consider a finite poset P and two functions $f : P \to \mathbb{R}$ and $g : P \to \mathbb{R}$. Then the following are equivalent statements.

1.
$$f(y) = \sum_{x \le y} g(x)$$
 for all $y \in P$.
2. $g(y) = \sum_{x \le y} \mu(x, y) f(x)$ for all $y \in P$.

Proof. Let $L: x_1, ..., x_n$ be the linear extension used for I(P). Associate with *f* the row vector $v^f = [f(x_1) \cdots f(x_n)]$ and similarly for *g*. Then

$$f(y) = \sum_{x \leq y} g(x) \ \forall y \in P \iff f(y) = \sum_{x \in P} g(x)\zeta(x,y) \ \forall y \in P$$

Consider a finite poset P and two functions $f : P \to \mathbb{R}$ and $g : P \to \mathbb{R}$. Then the following are equivalent statements.

1.
$$f(y) = \sum_{x \le y} g(x)$$
 for all $y \in P$.
2. $g(y) = \sum_{x \le y} \mu(x, y) f(x)$ for all $y \in P$.

Proof. Let $L: x_1, ..., x_n$ be the linear extension used for I(P). Associate with *f* the row vector $v^f = [f(x_1) \cdots f(x_n)]$ and similarly for *g*. Then

$$\begin{split} f(y) &= \sum_{x \leq y} g(x) \ \forall y \in P \iff f(y) = \sum_{x \in P} g(x) \zeta(x,y) \ \forall y \in P \\ \iff v^f = v^g M^\zeta \end{split}$$

Consider a finite poset P and two functions $f : P \to \mathbb{R}$ and $g : P \to \mathbb{R}$. Then the following are equivalent statements.

1.
$$f(y) = \sum_{x \le y} g(x)$$
 for all $y \in P$.
2. $g(y) = \sum_{x \le y} \mu(x, y) f(x)$ for all $y \in P$.

Proof. Let $L: x_1, ..., x_n$ be the linear extension used for I(P). Associate with *f* the row vector $v^f = [f(x_1) \cdots f(x_n)]$ and similarly for *g*. Then

$$egin{aligned} f(y) &= \sum_{x \leq y} g(x) \ \forall y \in P \iff f(y) = \sum_{x \in P} g(x) \zeta(x,y) \ \forall y \in P \ \iff v^f = v^g M^\zeta \iff v^g = v^f (M^\zeta)^{-1} \end{aligned}$$

Consider a finite poset P and two functions $f : P \to \mathbb{R}$ and $g : P \to \mathbb{R}$. Then the following are equivalent statements.

1.
$$f(y) = \sum_{x \le y} g(x)$$
 for all $y \in P$.
2. $g(y) = \sum_{x \le y} \mu(x, y) f(x)$ for all $y \in P$.

Proof. Let $L: x_1, ..., x_n$ be the linear extension used for I(P). Associate with *f* the row vector $v^f = [f(x_1) \cdots f(x_n)]$ and similarly for *g*. Then

$$egin{aligned} f(y) &= \sum_{x \leq y} g(x) \ orall y \in \mathcal{P} \iff f(y) = \sum_{x \in \mathcal{P}} g(x) \zeta(x,y) \ orall y \in \mathcal{P} \ \iff v^f = v^g M^\zeta \iff v^g = v^f (M^\zeta)^{-1} = v^f M^\mu \end{aligned}$$

Consider a finite poset P and two functions $f : P \to \mathbb{R}$ and $g : P \to \mathbb{R}$. Then the following are equivalent statements.

1.
$$f(y) = \sum_{x \le y} g(x)$$
 for all $y \in P$.
2. $g(y) = \sum_{x \le y} \mu(x, y) f(x)$ for all $y \in P$.

Proof. Let $L: x_1, ..., x_n$ be the linear extension used for I(P). Associate with *f* the row vector $v^f = [f(x_1) \cdots f(x_n)]$ and similarly for *g*. Then

$$\begin{split} f(y) &= \sum_{x \leq y} g(x) \ \forall y \in P \iff f(y) = \sum_{x \in P} g(x)\zeta(x,y) \ \forall y \in P \\ \iff v^f = v^g M^\zeta \iff v^g = v^f (M^\zeta)^{-1} = v^f M^\mu \\ \iff g(y) = \sum_{x \in P} f(x)\mu(x,y) \ \forall y \in P. \end{split}$$

$f(y) = \sum_{x \leq y} g(x) \, \forall y \in P \iff g(y) = \sum_{x \leq y} \mu(x, y) f(x) \, \forall y \in P.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$f(y) = \sum_{x \leq y} g(x) \, \forall y \in P \iff g(y) = \sum_{x \leq y} \mu(x, y) f(x) \, \forall y \in P.$$

Example: Theory of Finite Differences.

$$f(y) = \sum_{x \leq y} g(x) \, \forall y \in P \iff g(y) = \sum_{x \leq y} \mu(x, y) f(x) \, \forall y \in P.$$

Example: Theory of Finite Differences.

For $g : \mathbb{Z}_{\geq 0} \to \mathbb{R}$: $\Delta g(n) = g(n) - g(n-1)$,

$$f(y) = \sum_{x \leq y} g(x) \, \forall y \in P \iff g(y) = \sum_{x \leq y} \mu(x, y) f(x) \, \forall y \in P.$$

Example: Theory of Finite Differences.

For $g: \mathbb{Z}_{\geq 0} \to \mathbb{R}$: $\Delta g(n) = g(n) - g(n-1)$, $Sg(n) = \sum_{i=0}^{n} g(i)$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$f(y) = \sum_{x \leq y} g(x) \, \forall y \in P \iff g(y) = \sum_{x \leq y} \mu(x, y) f(x) \, \forall y \in P.$$

Example: Theory of Finite Differences.

For $g : \mathbb{Z}_{\geq 0} \to \mathbb{R}$: $\Delta g(n) = g(n) - g(n-1)$, $Sg(n) = \sum_{i=0}^{n} g(i)$. Theorem (FTDC)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

If $g: \mathbb{Z}_{\geq 0} \to \mathbb{R}$ then: $\Delta Sg(n) = g(n)$.

$$f(y) = \sum_{x \leq y} g(x) \, \forall y \in P \iff g(y) = \sum_{x \leq y} \mu(x, y) f(x) \, \forall y \in P.$$

Example: Theory of Finite Differences.

For $g : \mathbb{Z}_{\geq 0} \to \mathbb{R}$: $\Delta g(n) = g(n) - g(n-1)$, $Sg(n) = \sum_{i=0}^{n} g(i)$. Theorem (FTDC)

If $g: \mathbb{Z}_{\geq 0} \to \mathbb{R}$ then: $\Delta Sg(n) = g(n)$.

Proof. Consider the chain C_n and the restriction $g : C_n \to \mathbb{R}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$f(y) = \sum_{x \leq y} g(x) \, \forall y \in P \iff g(y) = \sum_{x \leq y} \mu(x, y) f(x) \, \forall y \in P.$$

Example: Theory of Finite Differences.

For $g: \mathbb{Z}_{\geq 0} \to \mathbb{R}$: $\Delta g(n) = g(n) - g(n-1)$, $Sg(n) = \sum_{i=0}^{n} g(i)$.

Theorem (FTDC) If $g : \mathbb{Z}_{\geq 0} \to \mathbb{R}$ then: $\Delta Sg(n) = g(n)$.

Proof. Consider the chain C_n and the restriction $g : C_n \to \mathbb{R}$. For each $k \in C_n$, define

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

$$f(k) = \sum_{i \le k} g(i)$$

$$f(y) = \sum_{x \leq y} g(x) \, \forall y \in P \iff g(y) = \sum_{x \leq y} \mu(x, y) f(x) \, \forall y \in P.$$

Example: Theory of Finite Differences.

For $g: \mathbb{Z}_{\geq 0} \to \mathbb{R}$: $\Delta g(n) = g(n) - g(n-1)$, $Sg(n) = \sum_{i=0}^{n} g(i)$.

Theorem (FTDC) If $g : \mathbb{Z}_{\geq 0} \to \mathbb{R}$ then: $\Delta Sg(n) = g(n)$. **Proof.** Consider the chain C_n and the restriction $g : C_n \to \mathbb{R}$.

For each $k \in C_n$, define

$$f(k) = \sum_{i \leq k} g(i) = Sg(k).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

$$f(y) = \sum_{x \leq y} g(x) \, \forall y \in P \iff g(y) = \sum_{x \leq y} \mu(x, y) f(x) \, \forall y \in P.$$

Example: Theory of Finite Differences.

For $g: \mathbb{Z}_{\geq 0} \to \mathbb{R}$: $\Delta g(n) = g(n) - g(n-1)$, $Sg(n) = \sum_{i=0}^{n} g(i)$.

Theorem (FTDC) If $g : \mathbb{Z}_{\geq 0} \to \mathbb{R}$ then: $\Delta Sg(n) = g(n)$. **Proof.** Consider the chain C_n and the restriction $g : C_n \to \mathbb{R}$.

For each $k \in C_n$, define

$$f(k) = \sum_{i \leq k} g(i) = Sg(k).$$

$$f(y) = \sum_{x \leq y} g(x) \, \forall y \in P \iff g(y) = \sum_{x \leq y} \mu(x, y) f(x) \, \forall y \in P.$$

Example: Theory of Finite Differences.

For $g: \mathbb{Z}_{\geq 0} \to \mathbb{R}$: $\Delta g(n) = g(n) - g(n-1)$, $Sg(n) = \sum_{i=0}^{n} g(i)$.

Theorem (FTDC) If $g : \mathbb{Z}_{\geq 0} \to \mathbb{R}$ then: $\Delta Sg(n) = g(n)$.

Proof. Consider the chain C_n and the restriction $g : C_n \to \mathbb{R}$. For each $k \in C_n$, define

$$f(k) = \sum_{i \leq k} g(i) = Sg(k).$$

$$g(n) = \sum_{i \le n} \mu(i, n) f(i)$$

$$f(y) = \sum_{x \leq y} g(x) \, \forall y \in P \iff g(y) = \sum_{x \leq y} \mu(x, y) f(x) \, \forall y \in P.$$

Example: Theory of Finite Differences.

For $g: \mathbb{Z}_{\geq 0} \to \mathbb{R}$: $\Delta g(n) = g(n) - g(n-1)$, $Sg(n) = \sum_{i=0}^{n} g(i)$.

Theorem (FTDC) If $g : \mathbb{Z}_{\geq 0} \to \mathbb{R}$ then: $\Delta Sg(n) = g(n)$.

Proof. Consider the chain C_n and the restriction $g : C_n \to \mathbb{R}$. For each $k \in C_n$, define

$$f(k) = \sum_{i \leq k} g(i) = Sg(k).$$

Then by the MIT applied to C_n

$$g(n) = \sum_{i \le n} \mu(i, n) f(i) = \mu(n, n) f(n) + \mu(n - 1, n) f(n - 1)$$

$$f(y) = \sum_{x \leq y} g(x) \, \forall y \in P \iff g(y) = \sum_{x \leq y} \mu(x, y) f(x) \, \forall y \in P.$$

Example: Theory of Finite Differences.

For $g: \mathbb{Z}_{\geq 0} \to \mathbb{R}$: $\Delta g(n) = g(n) - g(n-1)$, $Sg(n) = \sum_{i=0}^{n} g(i)$.

Theorem (FTDC) If $g : \mathbb{Z}_{\geq 0} \to \mathbb{R}$ then: $\Delta Sg(n) = g(n)$.

Proof. Consider the chain C_n and the restriction $g : C_n \to \mathbb{R}$. For each $k \in C_n$, define

$$f(k) = \sum_{i \leq k} g(i) = Sg(k).$$

$$g(n) = \sum_{i \le n} \mu(i, n) f(i) = \mu(n, n) f(n) + \mu(n - 1, n) f(n - 1)$$

= f(n) - f(n - 1)

$$f(y) = \sum_{x \leq y} g(x) \, \forall y \in P \iff g(y) = \sum_{x \leq y} \mu(x, y) f(x) \, \forall y \in P.$$

Example: Theory of Finite Differences.

For $g: \mathbb{Z}_{\geq 0} \to \mathbb{R}$: $\Delta g(n) = g(n) - g(n-1)$, $Sg(n) = \sum_{i=0}^{n} g(i)$.

Theorem (FTDC) If $g : \mathbb{Z}_{>0} \to \mathbb{R}$ then: $\Delta Sg(n) = g(n)$.

Proof. Consider the chain C_n and the restriction $g : C_n \to \mathbb{R}$. For each $k \in C_n$, define

$$f(k) = \sum_{i \leq k} g(i) = Sg(k).$$

$$g(n) = \sum_{i \le n} \mu(i, n) f(i) = \mu(n, n) f(n) + \mu(n - 1, n) f(n - 1)$$

= f(n) - f(n - 1) = \Delta f(n)

$$f(y) = \sum_{x \leq y} g(x) \, \forall y \in P \iff g(y) = \sum_{x \leq y} \mu(x, y) f(x) \, \forall y \in P.$$

Example: Theory of Finite Differences.

For $g: \mathbb{Z}_{\geq 0} \to \mathbb{R}$: $\Delta g(n) = g(n) - g(n-1)$, $Sg(n) = \sum_{i=0}^{n} g(i)$.

Theorem (FTDC) If $g : \mathbb{Z}_{\geq 0} \to \mathbb{R}$ then: $\Delta Sg(n) = g(n)$.

Proof. Consider the chain C_n and the restriction $g : C_n \to \mathbb{R}$. For each $k \in C_n$, define

$$f(k) = \sum_{i \leq k} g(i) = Sg(k).$$

$$g(n) = \sum_{i \le n} \mu(i, n) f(i) = \mu(n, n) f(n) + \mu(n - 1, n) f(n - 1)$$

= $f(n) - f(n - 1) = \Delta f(n) = \Delta Sg(n).$

$$f(x) = \sum_{y \ge x} g(y) \, \forall x \in P \iff g(x) = \sum_{y \ge x} \mu(x, y) f(y) \, \forall x \in P.$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

$$f(x) = \sum_{y \ge x} g(y) \, \forall x \in P \iff g(x) = \sum_{y \ge x} \mu(x, y) f(y) \, \forall x \in P.$$

Example: Principle of Inclusion-Exclusion.

$$f(x) = \sum_{y \ge x} g(y) \, \forall x \in P \iff g(x) = \sum_{y \ge x} \mu(x, y) f(y) \, \forall x \in P.$$

Example: Principle of Inclusion-Exclusion.

Theorem (PIE) Let U be a finite set and $U_1, \ldots, U_n \subseteq U$. $|U - \bigcup_{i=1}^n U_i| = |U| - \sum_{1 \le i \le n} |U_i| + \dots + (-1)^n |\bigcap_{i=1}^n U_i|.$

$$f(x) = \sum_{y \ge x} g(y) \, \forall x \in P \iff g(x) = \sum_{y \ge x} \mu(x, y) f(y) \, \forall x \in P.$$

Example: Principle of Inclusion-Exclusion.

Theorem (PIE) Let U be a finite set and $U_1, \ldots, U_n \subseteq U$. $|U - \bigcup_{i=1}^n U_i| = |U| - \sum_{1 \le i \le n} |U_i| + \cdots + (-1)^n |\bigcap_{i=1}^n U_i|.$

Proof. For the Boolean algebra B_n , define $f, g : B_n \to \mathbb{R}$ by

f(S) = # of elements in all U_i , $i \in S$, and possibly other U_j ,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$f(x) = \sum_{y \ge x} g(y) \, \forall x \in P \iff g(x) = \sum_{y \ge x} \mu(x, y) f(y) \, \forall x \in P.$$

Example: Principle of Inclusion-Exclusion.

Theorem (PIE) Let U be a finite set and $U_1, \ldots, U_n \subseteq U$. $|U - \bigcup_{i=1}^n U_i| = |U| - \sum_{1 \le i \le n} |U_i| + \dots + (-1)^n |\bigcap_{i=1}^n U_i|.$

Proof. For the Boolean algebra B_n , define $f, g : B_n \to \mathbb{R}$ by

f(S) = # of elements in all U_i , $i \in S$, and possibly other U_j ,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$g(S) = \#$$
 of elements in all U_i , $i \in S$, and no other U_j .

$$f(x) = \sum_{y \ge x} g(y) \, \forall x \in P \iff g(x) = \sum_{y \ge x} \mu(x, y) f(y) \, \forall x \in P.$$

Example: Principle of Inclusion-Exclusion.

Theorem (PIE) Let U be a finite set and $U_1, \ldots, U_n \subseteq U$. $|U - \bigcup_{i=1}^n U_i| = |U| - \sum_{1 \le i \le n} |U_i| + \dots + (-1)^n |\bigcap_{i=1}^n U_i|.$

Proof. For the Boolean algebra B_n , define $f, g : B_n \to \mathbb{R}$ by

f(S) = # of elements in all U_i , $i \in S$, and possibly other U_j ,

g(S) = # of elements in all $U_i, i \in S$, and no other U_j . Now $f(S) = | \cap_{i \in S} U_i |$

$$f(x) = \sum_{y \ge x} g(y) \, \forall x \in P \iff g(x) = \sum_{y \ge x} \mu(x, y) f(y) \, \forall x \in P.$$

Example: Principle of Inclusion-Exclusion.

Theorem (PIE) Let U be a finite set and $U_1, \ldots, U_n \subseteq U$. $|U - \bigcup_{i=1}^n U_i| = |U| - \sum_{1 \le i \le n} |U_i| + \dots + (-1)^n |\bigcap_{i=1}^n U_i|.$

Proof. For the Boolean algebra B_n , define $f, g : B_n \to \mathbb{R}$ by

f(S) = # of elements in all U_i , $i \in S$, and possibly other U_j ,

g(S) = # of elements in all U_i , $i \in S$, and no other U_j .

Now $f(S) = |\cap_{i \in S} U_i|$ and $f(S) = \sum_{T \supseteq S} g(T)$.

$$f(x) = \sum_{y \ge x} g(y) \, \forall x \in P \iff g(x) = \sum_{y \ge x} \mu(x, y) f(y) \, \forall x \in P.$$

Example: Principle of Inclusion-Exclusion.

Theorem (PIE) Let U be a finite set and $U_1, \ldots, U_n \subseteq U$. $|U - \bigcup_{i=1}^n U_i| = |U| - \sum_{1 \le i \le n} |U_i| + \dots + (-1)^n |\bigcap_{i=1}^n U_i|.$

Proof. For the Boolean algebra B_n , define $f, g : B_n \to \mathbb{R}$ by

f(S) = # of elements in all U_i , $i \in S$, and possibly other U_j ,

g(S) = # of elements in all U_i , $i \in S$, and no other U_j .

Now $f(S) = |\cap_{i \in S} U_i|$ and $f(S) = \sum_{T \supseteq S} g(T)$. By the Dual MIT

$$|U - \bigcup_{i=1}^n U_i| = g(\emptyset)$$

$$f(x) = \sum_{y \ge x} g(y) \, \forall x \in P \iff g(x) = \sum_{y \ge x} \mu(x, y) f(y) \, \forall x \in P.$$

Example: Principle of Inclusion-Exclusion.

Theorem (PIE) Let U be a finite set and $U_1, \ldots, U_n \subseteq U$. $|U - \bigcup_{i=1}^n U_i| = |U| - \sum_{1 \le i \le n} |U_i| + \dots + (-1)^n |\bigcap_{i=1}^n U_i|.$

Proof. For the Boolean algebra B_n , define $f, g : B_n \to \mathbb{R}$ by

f(S) = # of elements in all U_i , $i \in S$, and possibly other U_j ,

g(S) = # of elements in all U_i , $i \in S$, and no other U_j .

Now $f(S) = |\cap_{i \in S} U_i|$ and $f(S) = \sum_{T \supseteq S} g(T)$. By the Dual MIT

$$|U - \bigcup_{i=1}^{n} U_i| = g(\emptyset) = \sum_{T \supseteq \emptyset} \mu(\emptyset, T) f(T)$$

$$f(x) = \sum_{y \ge x} g(y) \, \forall x \in P \iff g(x) = \sum_{y \ge x} \mu(x, y) f(y) \, \forall x \in P.$$

Example: Principle of Inclusion-Exclusion.

Theorem (PIE) Let U be a finite set and $U_1, \ldots, U_n \subseteq U$. $|U - \bigcup_{i=1}^n U_i| = |U| - \sum_{1 \le i \le n} |U_i| + \dots + (-1)^n |\bigcap_{i=1}^n U_i|.$

Proof. For the Boolean algebra B_n , define $f, g : B_n \to \mathbb{R}$ by

f(S) = # of elements in all U_i , $i \in S$, and possibly other U_j ,

g(S) = # of elements in all U_i , $i \in S$, and no other U_j .

Now $f(S) = |\cap_{i \in S} U_i|$ and $f(S) = \sum_{T \supseteq S} g(T)$. By the Dual MIT

$$|U - \bigcup_{i=1}^{n} U_i| = g(\emptyset) = \sum_{T \supseteq \emptyset} \mu(\emptyset, T) f(T) = \sum_{T \in B_n} (-1)^{|T|} |\bigcap_{i \in T} U_i|. \square$$

$f(y) = \sum_{x \leq y} g(x) \, \forall y \in P \iff g(y) = \sum_{x \leq y} \mu(x, y) f(x) \, \forall y \in P.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$f(y) = \sum_{x \leq y} g(x) \, \forall y \in P \iff g(y) = \sum_{x \leq y} \mu(x, y) f(x) \, \forall y \in P.$$

Example: Number Theory

Theorem (Number Theory MIT) Let $f, g : \mathbb{Z}_{>0} \to \mathbb{R}$ satisfy $f(n) = \sum_{d|n} g(d)$ for all $n \in \mathbb{Z}_{>0}$. Then

$$g(n) = \sum_{d|n} \mu(n/d) f(d).$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$f(y) = \sum_{x \leq y} g(x) \, \forall y \in P \iff g(y) = \sum_{x \leq y} \mu(x, y) f(x) \, \forall y \in P.$$

Example: Number Theory

Theorem (Number Theory MIT) Let $f, g : \mathbb{Z}_{>0} \to \mathbb{R}$ satisfy $f(n) = \sum_{d|n} g(d)$ for all $n \in \mathbb{Z}_{>0}$. Then

$$g(n) = \sum_{d|n} \mu(n/d) f(d).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof. The restrictions $f, g : D_n \to \mathbb{R}$ satisfy, for all $m \in D_n$,

$$f(y) = \sum_{x \leq y} g(x) \, \forall y \in P \iff g(y) = \sum_{x \leq y} \mu(x, y) f(x) \, \forall y \in P.$$

Example: Number Theory

Theorem (Number Theory MIT) Let $f, g : \mathbb{Z}_{>0} \to \mathbb{R}$ satisfy $f(n) = \sum_{d|n} g(d)$ for all $n \in \mathbb{Z}_{>0}$. Then

 $g(n) = \sum_{d|n} \mu(n/d) f(d).$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof. The restrictions $f, g: D_n \to \mathbb{R}$ satisfy, for all $m \in D_n$,

$$f(m) = \sum_{d|m} g(d)$$

$$f(y) = \sum_{x \leq y} g(x) \, \forall y \in P \iff g(y) = \sum_{x \leq y} \mu(x, y) f(x) \, \forall y \in P.$$

Example: Number Theory

Theorem (Number Theory MIT) Let $f, g : \mathbb{Z}_{>0} \to \mathbb{R}$ satisfy $f(n) = \sum_{d|n} g(d)$ for all $n \in \mathbb{Z}_{>0}$. Then

 $g(n) = \sum_{d|n} \mu(n/d) f(d).$

Proof. The restrictions $f, g: D_n \to \mathbb{R}$ satisfy, for all $m \in D_n$,

$$f(m) = \sum_{d|m} g(d) = \sum_{d \leq_{D_n} m} g(d).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$f(y) = \sum_{x \leq y} g(x) \, \forall y \in P \iff g(y) = \sum_{x \leq y} \mu(x, y) f(x) \, \forall y \in P.$$

Example: Number Theory

Theorem (Number Theory MIT) Let $f, g : \mathbb{Z}_{>0} \to \mathbb{R}$ satisfy $f(n) = \sum_{d|n} g(d)$ for all $n \in \mathbb{Z}_{>0}$. Then

 $g(n) = \sum_{d|n} \mu(n/d) f(d).$

Proof. The restrictions $f, g: D_n \to \mathbb{R}$ satisfy, for all $m \in D_n$,

$$f(m) = \sum_{d|m} g(d) = \sum_{d \leq D_n m} g(d).$$

$$f(y) = \sum_{x \leq y} g(x) \, \forall y \in P \iff g(y) = \sum_{x \leq y} \mu(x, y) f(x) \, \forall y \in P.$$

Example: Number Theory

Theorem (Number Theory MIT) Let $f, g : \mathbb{Z}_{>0} \to \mathbb{R}$ satisfy $f(n) = \sum_{d|n} g(d)$ for all $n \in \mathbb{Z}_{>0}$. Then

 $g(n) = \sum_{d|n} \mu(n/d) f(d).$

Proof. The restrictions $f, g : D_n \to \mathbb{R}$ satisfy, for all $m \in D_n$,

$$f(m) = \sum_{d|m} g(d) = \sum_{d \leq D_n m} g(d).$$

$$g(n) = \sum_{d \leq D_n} \mu(d, n) f(d)$$

$$f(y) = \sum_{x \leq y} g(x) \, \forall y \in P \iff g(y) = \sum_{x \leq y} \mu(x, y) f(x) \, \forall y \in P.$$

Example: Number Theory

Theorem (Number Theory MIT) Let $f, g : \mathbb{Z}_{>0} \to \mathbb{R}$ satisfy $f(n) = \sum_{d|n} g(d)$ for all $n \in \mathbb{Z}_{>0}$. Then

 $g(n) = \sum_{d|n} \mu(n/d) f(d).$

Proof. The restrictions $f, g : D_n \to \mathbb{R}$ satisfy, for all $m \in D_n$,

$$f(m) = \sum_{d|m} g(d) = \sum_{d \leq D_n m} g(d).$$

$$g(n) = \sum_{d \leq D_n} \mu(d, n) f(d) = \sum_{d \mid n} \mu(d, n) f(d)$$

$$f(y) = \sum_{x \leq y} g(x) \, \forall y \in P \iff g(y) = \sum_{x \leq y} \mu(x, y) f(x) \, \forall y \in P.$$

Example: Number Theory

Theorem (Number Theory MIT) Let $f, g : \mathbb{Z}_{>0} \to \mathbb{R}$ satisfy $f(n) = \sum_{d|n} g(d)$ for all $n \in \mathbb{Z}_{>0}$. Then

 $g(n) = \sum_{d|n} \mu(n/d) f(d).$

Proof. The restrictions $f, g : D_n \to \mathbb{R}$ satisfy, for all $m \in D_n$,

$$f(m) = \sum_{d|m} g(d) = \sum_{d \leq D_n m} g(d).$$

$$g(n) = \sum_{d \leq_{D_n} n} \mu(d, n) f(d) = \sum_{d \mid n} \mu(d, n) f(d) = \sum_{d \mid n} \mu(n/d) f(d). \square$$