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The incidence algebra of a finite poset P is the set

I(P) = {α : P × P → R | α(x , y) = 0 if x 6≤ y},

together with the operations:
1. (addition) (α + β)(x , y) = α(x , y) + β(x , y),
2. (scalar multiplication) (kα)(x , y) = k · α(x , y) for k ∈ R,
3. (convolution) (α ∗ β)(x , y) =

∑
z α(x , z)β(z, y).

Example. I(P) has Kronecker’s delta: δ(x , y) =

{
1 if x = y ,
0 if x 6= y .

Proposition
For all α ∈ I(P): α ∗ δ = δ ∗ α = α.
Proof of α ∗ δ = α. For any x , y ∈ P:

(α ∗ δ)(x , y) =
∑

z

α(x , z)δ(z, y) = α(x , y)δ(y , y) = α(x , y).

Note. We have

(α ∗ β)(x , y) =
∑

z∈[x ,y ]

α(x , z)β(z, y)

since α(x , z) 6= 0 implies x ≤ z and β(z, y) 6= 0 implies z ≤ y .
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An algebra over a field F is a set A together with operations of
sum (+), product (•), and scalar multiplication (·) such that

1. (A,+, •) is a ring,
2. (A,+, ·) is a vector space over F ,
3. k · (a • b) = (k · a) • b = a • (k · b) for all k ∈ F , a, b ∈ A.

Example. The matrix algebra over R is

Matn(R) = all n × n matrices with entries in R.

Example. The Boolean algebra is an algebra over F2 where,
for all S, T ∈ Bn:

1. S + T = (S ∪ T )− (S ∩ T ),
2. S • T = S ∩ T ,
3. 0 · S = ∅ and 1 · S = S.

Example. The incidence algebra I(P) is an algebra with
convolution as the product.

Note. Often · and • are suppressed since context makes it
clear which multiplication is meant.
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Let L : x1, . . . , xn be a list of the elements of P. An L× L matrix
has rows and columns indexed by L.

The matrix algebra of P is

M(P) = {M ∈ Matn(R) | M is L× L and Mx ,y = 0 if x 6≤ y .}
Note that M(P) is a subalgebra of Matn(R).
Example. For B2, let L : ∅, {1}, {2}, {1, 2}. Then a typical
element of M(B2) is

M =

∅ {1} {2} {1, 2}
∅
{1}
{2}
{1, 2}



♣ ♣ ♣ ♣
0 ♣ 0 ♣
0 0 ♣ ♣
0 0 0 ♣


where the ♣’s can be replace by any complex numbers.

The list L : x1, . . . , xn is a linear extension of P if xi ≤ xj in P
implies i ≤ j , i.e., xi comes before xj in L. Henceforth we will
take L to be a linear extension. This makes each M ∈ M(P)
upper triangular since

i > j =⇒ xi 6≤ xj =⇒ Mxi ,xj = 0.
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An isomorphism of algebras A and B is a bijection f : A → B
such that for all a, b ∈ A and k ∈ F ,

f (a + b) = f (a) + f (b), f (a • b) = f (a) • f (b), f (k · a) = k · f (a).

Given any α ∈ I(P) we let Mα be the matrix with entries

Mα
x ,y = α(x , y).

Example. Mδ = I where I is the identity matrix.

Theorem
The map α 7→ Mα is an algebra isomorphism I(P) → M(P).
Proof that product is preserved. We wish to show
Mα∗β = MαMβ. But given x , y ∈ P:

Mα∗β
x ,y = (α ∗ β)(x , y) =

∑
z

α(x , z)β(z, y) = (MαMβ)x ,y .

Proposition
If α ∈ I(P) then α−1 exists if and only if α(x , x) 6= 0 for all x ∈ P.
Proof. By the previous theorem

∃α−1 ⇐⇒ ∃(Mα)−1 ⇐⇒ det Mα 6= 0 ⇐⇒
∏
x∈P

α(x , x) 6= 0.
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The Möbius Function
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µ(y) =
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∑
z<y µ(z) if y > 0̂.

Example: The Chain.
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Theorem

1. If f : P → Q is an isomorphism and x , y ∈ P then

µP(x , y) = µQ(f (x), f (y)).

2. If a, b ∈ P and x , y ∈ Q then

µP×Q((a, x), (b, y)) = µP(a, b)µQ(x , y). (1)

Proof for P ×Q. For any poset R, the equation∑
t∈[r ,s] µ(r , t) = δ(r , s) uniquely defines µ. So it suffices to

show that the right-hand side of (1) satisfies the defining
equation.∑
(c,z)∈[(a,x),(b,y)]

µP(a, c)µQ(x , z) =
∑

c∈[a,b]

µP(a, c)
∑

z∈[x ,y ]

µQ(x , z)

= δP(a, b)δQ(x , y)

= δP×Q((a, x), (b, y)).
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Theorem

1. If S ∈ Bn then µ(S) = (−1)|S|

2. If d = pm1
1 · · ·pmk

k ∈ Dn then

µ(d) =

{
(−1)k if m1 = . . . = mk = 1,
0 if mi ≥ 2 for some i.

Proof for Bn. We have an isomorphism f : Bn → (C1)
n. Also

µC1
(0) = 1 and µC1

(1) = −1.

Now if f (S) = (b1, . . . , bn) then by the previous theorem

µBn(S) = µ(C1)n(b1, . . . , bn)

=
∏

i

µC1
(bi)

= (−1)(# of bi = 1)

= (−1)|S|.
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The Incidence Algebra

The Möbius Function

The Möbius Inversion Theorem



Theorem (Möbius Inversion Theorem or MIT, Weisner
(1935))
Consider a finite poset P and two functions f : P → R and
g : P → R. Then the following are equivalent statements.

1. f (y) =
∑
x≤y

g(x) for all y ∈ P.

2. g(y) =
∑
x≤y

µ(x , y)f (x) for all y ∈ P.

Proof. Let L : x1, . . . , xn be the linear extension used for I(P).
Associate with f the row vector v f = [f (x1) · · · f (xn)] and
similarly for g. Then

f (y) =
∑
x≤y

g(x) ∀y ∈ P ⇐⇒ f (y) =
∑
x∈P

g(x)ζ(x , y) ∀y ∈ P

⇐⇒ v f = vgMζ ⇐⇒ vg = v f (Mζ)−1 = v f Mµ

⇐⇒ g(y) =
∑
x∈P

f (x)µ(x , y) ∀y ∈ P.
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Theorem (MIT)

f (y) =
∑
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∑
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µ(x , y)f (x)∀y ∈ P.

Example: Theory of Finite Differences.

For g : Z≥0 → R: ∆g(n) = g(n)− g(n − 1), Sg(n) =
n∑

i=0

g(i).

Theorem (FTDC)
If g : Z≥0 → R then: ∆Sg(n) = g(n).

Proof. Consider the chain Cn and the restriction g : Cn → R.
For each k ∈ Cn, define

f (k) =
∑
i≤k

g(i) = Sg(k).

Then by the MIT applied to Cn

g(n) =
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Theorem (Dual MIT)

f (x) =
∑
y≥x

g(y)∀x ∈ P ⇐⇒ g(x) =
∑
y≥x

µ(x , y)f (y)∀x ∈ P.

Example: Principle of Inclusion-Exclusion.

Theorem (PIE)
Let U be a finite set and U1, . . . , Un ⊆ U.

|U −
n⋃

i=1

Ui | = |U| −
∑

1≤i≤n

|Ui |+ · · ·+ (−1)n|
n⋂

i=1

Ui |.

Proof. For the Boolean algebra Bn, define f , g : Bn → R by

f (S) = # of elements in all Ui , i ∈ S, and possibly other Uj ,

g(S) = # of elements in all Ui , i ∈ S, and no other Uj .

Now f (S) = | ∩i∈S Ui | and f (S) =
∑

T⊇S g(T ). By the Dual MIT

|U −
n⋃

i=1

Ui | = g(∅) =
∑
T⊇∅

µ(∅, T )f (T ) =
∑

T∈Bn

(−1)|T ||
⋂
i∈T

Ui |.
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