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THE NBB THEOREM

Let (L,<) be a finite lattice with minimum 0 and
maximum 1. Let u: L — Z be L's M06bius function
which is the unique function satisfying

> u(y) = dg,-

y<zx

Let A(L) be the atom set of L and put an arbitrary
partial order < on A(L). Then D C A(L) is bounded
below (BB) if, for every d € D there is an a € A(L)
such that

a < d and
a<\/D.

Then B C A(L) is an NBB base of z if x =\/ B and
B does not contain any D which is BB.

Theorem 1 Let L be any finite lattice and let < be
any partial order on A(L). Then for all x € L

w(z) = ()P

B
where the sum is over all NBB bases B of x.



D C A(L) is BB if Vd € D Ja € A(L) such that
a<d and cz<:\/ll

NBB Theorem. For all x € L
u(@) =Y (-DIP
B

where the sum is over all NBB bases B of z.
1
Xz Yy a C
(L, <) = (A(L), Q) =

a C

EXx. Note that from the definition of BB

1. No set containing a min. element of < is BB.
2. No single element set is BB.

So for L and < in the figure, the only possible BB
set is {a,c}. It is since b<da,c and b < \V{a,c} = 1.
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NBB Theorem. For all x € L
u(a) = Y (1)
B
where the sum is over all NBB bases B of z.

Pf. Let fi(z) =Y (-1l & show Y ji(y) = d5,.
B y<x

z=0: NBB base B=0 & ¥, 5 ii(y) = (-1)0 =1.

x > 0: want signed S & sign-reversing involution «.

S = {B an NBB base for some y < z}
e(B) = (-8
YAy = Y «B).
y<z BeS
1(B) = B Aag

where A is the symmetric difference operator and
ag < z is <-min. Suffices to show «(B) is still NBB.

(B) = B\ ag: clear. If «(B) = BUag := B' D> D
where D is BB then ag € D. Let a be the element
guaranteed for ag from the definition of BB. Then
a lag and a < VD < VB’ < z, contradicting the
definition of ag. |



COMPARISON WITH NBC AND CROSSCUT

Let L be geometric with rank function p. So for
any B C A(L) we have p(VB) < |B|. Say B is
independent if p(\V B) = |B|. A minimal dependent
set C is a circuit. If < is a total order on A(L) then
C' = C\ minC is a broken circuit (BC). An NBC
base B for x has VB = x and B contains no BC.

Theorem 2 (Rota) 1. (NBC) Let L be geometric,
< total. If x € L:

w(x) = (—1)p("”)(number of NBC bases of z).
2. (Crosscut) Let L be any finite lattice. If x € L:

u(z) =3 (-DIPI
B
where the sum is over all B C A(L) with \/ B = x.

If L is geometric and < is total than the NBC and
NBB bases are the same. Further, all bases of z
have size p(x). If L is arbitrary and < is total in-
comparability then the NBB bases are all B with
VB = x. Thus our theorem interpolates between
NBC and Crosscut.



APPLICATION 1: SHUFFLE POSETS

A subword of x = z1...xm is word X' = z;, ... x5,
with 21 < ... < 1. A shuffle of x and y = y1...yn
where xNy =0 iss=s;...5,,4, having x and y as
subwords denoted sx and sy

FIX X =21...xm, Yy = y1...yn- QGreene’'s poset of
shuffles has as elements all shuffles w of a subword
of x and a subword of y with v < w iff vx O wx and
vy C Wy.

AWm.n): An a-atom, resp. b-atom, is gotten from
X by deleting a letter of x, resp. inserting a letter of
y. Let A, = set of a-atoms, A, = set of b-atoms.
Define < by a<b iff a€ A, and b € A4,

Theorem 3 1. Lets be a shuffle of x,y and let
BszAa,U{bEAb : bSS}.

Then the NBB bases of y € Wmn under the given
partial order are exactly the Bg.

2. [Greene] p(Wm.n) = (—1)mt7 (m:;”) |
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Example W5 1: Ay = {d, e}, Ay = {Dde, dDe, deD}

S ‘ Dde dDe deD
Bs | {d,e,Dde} {d,e,dDe} {d,e,deD}

D = {Dde,dDe} is BB: VD = De so e < \VD and
e < Dde, dDe.

B = {d,e,Dde} is NBB: Take D C B. No D with
d € D is BB (d is <-min) nor with |D| < 1. So check
D = {e,Dde}: VD = De and e in <-min under De
so D is not BB.



2: NON-CROSSING PARTITIONS

Arrange the numbers in [n] = {1,...,n} in order
around a circle. Partition # = By/... /By of [n] is
non-crossing if, when replacing each block by a
complete graph, no edge of B, crosses an edge of
B;. Let NC, be the lattice of non-crossing parti-
tions ordered by refinement.

Each atom of NC), is an edge rs. A set of atoms is
non-crossing if its graph contains no pair of crossing
edges. Define < to be the ranked poset with rank r—
1 being {rs:r > s} and all possible covers between
ranks.

Theorem 4 1. The NBB bases of NC,, are those
non-crossing forests obtained by picking at most
one atom from each rank of (A(NCy), <).

2. [Kreweras] u(1) = (-1)"1C,,_1 where C,,_1 is a
Catalan number. u



Examples.

noncrossing partition Crossing partition
8/7651/432: 87/652/431:
1 1 2
Se 3 8I ﬁ3
7 4 7 4
5 6 5
41e 4 43
The poset (A(NCy),<): 31 32
21

Some BB and NBB sets in A(NCy):

1. D ={31,32} is BB (atoms from the same rank)
since we have 21 31,32 and 21 <\/ D = 321.

2. D = {31,42} is BB (crossing atoms) since we
have 21 31,42 and 21 <\ D = 4321.

3. B ={32,42} is NBB since if b = 32 then a <b
implies a = 21. But 21 is not <\ B = 432.



LL LATICES & SUPERSOLVABILITY

let A :0=290< 21 < ... < xp_1 <2xpn =1 be a
maximal chain of L. It induces both levels

Ai={acAla<zx;butaLx,_1}
and by a<biffaec A; and be A; with 1 < j.
p(x) ;= #{i . A; contains an atom < z}.
The level condition is

< is induced & a<1by by ... by = a £ VE_{b;
An element =z € L is left-modular if for all z < y:

zV(eANy) =(zVzx)Ay

Chain A/lattice L are left-modular if all the ele-
ments x; are left-modular. An LL lattice has a left-
modular A satisfying the level condition.

Proposition 5 The following implications hold for
L but not their converses.

1. semimodular = level condition

2. supersolvable = left-modular. n
10
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Example W5 1: Let A :de <d <0 < D of length 3.
This induces

A1 ={d}, Ap ={e}, A3 = {Dde,dDe,deD}
and the partial order in the figure. Bases for 1:
{d,e, Dde}, {d,e,dDe}, {d,e,deD}

Characteristic polynomial
xWa1,t) = Y p()3—r@
z€W> 1
(t —1)2(t — 3)
(t — |A1])(t — |A2])(t — |A3])
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Theorem 6 Let (L,A) be LL with A of length n
and < induced. Then

1. The NBB bases of L are those taking < 1 atom
from each A; and B an NBB base of ¢ = |B| = p(x).

2. x(L,t) i= Tpep m(@)t"P@) =TI, (t — |4]). =
Proof. We will show 1 = 2. By the NBB Theorem:

x(L,t) = > > (—1)|Blgn—p(z)

zel  \/{B:NBB}=z

e Z (_1)|B|tn_|B|

|BNA;|<1

= JJG—-14D. =
1=1

Corollary 7 Consider the shuffle posets Wy n with
XZQC]_...ZBm, y:yl...yn.
1. [Greene] There is a left-modular chain
A X<xp...0n<...<0<y1<yiyn<...<y
2. If n =1 then A satifies the level condition so
X(Wm,1,t) = (@ —1)"({t —m —1).

For general n > 2, A does not satisfy the level
condition and x does not factor. |
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REMARKS

Topology and algebra. Segev has shown that the
NBB complex is homotopic to the order complex.
This can be used to rederive results of Kahn, Linus-
son, Edelman and Reiner. Liu and S have shown
that left-modular lattices are shellable. Can NBB
sets be used to define an Orlik-Solomon algebra?

Perfect orders. When computing u(x) it is sim-
plest to have the minimum number of bases, namely
lu(x)|, all of the same parity. Call < perfect if this
happens for alll x € L. If < is perfect then so is any
linear extension, however it is often clearer combi-
natorially to use < with as few relations as possible.
There are also posets with no perfect order. Can
one characterize which posets have a perfect order?

Spliting x. Stanley has proved that if x € L with «x
modular and L geometric then

X(L,t) = x(Layt) Y. ()t @ =el)
y:y/\acZG
where L. is the lower order ideal generated by x. An
analog of this result is currently being investigated
by Liu and S.

13



