Möbius Functions of Embedding Orders

Bruce E. Sagan Department of Mathematics Michigan State University East Lansing, MI 48824-1027 sagan@math.msu.edu www.math.msu.edu/~sagan and Vincent R. Vatter Department of Mathematics Rutgers University Frelinghuysen Rd Piscataway, NJ 08854-8019 vatter@math.rutgers.edu

- 1. Möbius functions
- 2. Subword order
- 3. Layered permutations
- 4. Further work

1. Möbius functions

Let (P, \leq) be a finite poset (partially ordered set). Let Int P be the set of closed intervals in P:

 $[x, z] = \{ y \in P \mid x \le y \le z \}.$

The *incidence algebra* of P is the set

 $I(P) = \{ \phi \mid \phi : \operatorname{Int} P \to \mathbb{C} \}$

under the operations

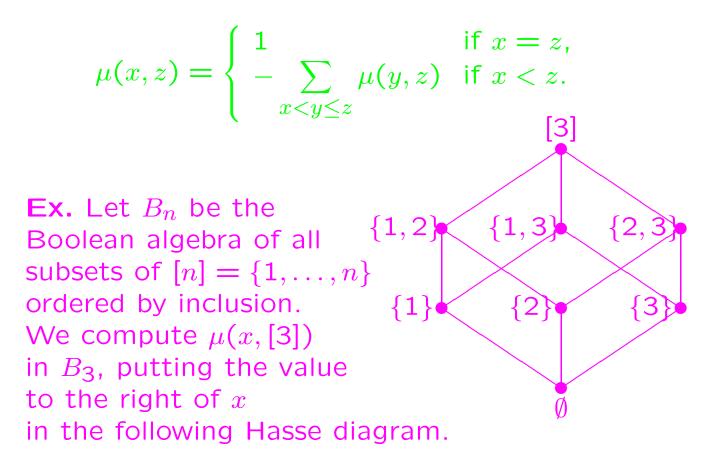
$$\begin{array}{rcl} (\phi+\psi)(x,z) &=& \phi(x,z)+\psi(x,z),\\ (c\phi)(x,z) &=& c\phi(x,z), \quad c\in\mathbb{C},\\ (\phi*\psi)(x,z) &=& \sum\limits_{x\leq y\leq z} \phi(x,y)\psi(y,z). \end{array}$$

Then I(P) is an algebra with unit the Kronecker delta $\delta(x, z)$ since $\delta * \phi = \phi * \delta = \phi$, e.g.,

$$(\delta * \phi)(x, z) = \sum_{x \le y \le z} \delta(x, y) \phi(y, z) = \phi(x, z).$$

Element $\phi \in I(P)$ has convolution inverse ϕ^{-1} iff $\phi(x,x) \neq 0$ for all $x \in P$. The zeta function of P is $\zeta(x,z) = 1$ for all $x, z \in P$. The Möbius function of P is $\mu = \zeta^{-1}$ so $\zeta * \mu = \delta$ or $\sum_{x \leq y \leq z} \mu(y,z) = \delta(x,z)$ or

$$\mu(x,z) = \begin{cases} 1 & \text{if } x = z, \\ -\sum_{x < y \le z} \mu(y,z) & \text{if } x < z. \end{cases}$$



Theorem 1 (Möbius Inversion Thm) *Given any two functions* $f, g : P \to \mathbb{C}$ *, then*

$$f(z) = \sum_{x \le z} g(x) \quad \forall z \in P$$

$$\iff g(z) = \sum_{x \le z} \mu(x, z) f(x) \quad \forall z \in P.$$

This Theorem has as corollaries the Principle of Inclusion-Exclusion (for $P = B_n$), the Fundamental Theorem of the Difference Calculus (for P a chain), and the Möbius Inversion Theorem of Number Theory (for P a divisor lattice).

2. Subword order

Let A be an alphabet with $0 \notin A$. Partially order

 $A^* = \{ w \mid w \text{ a finite word over } A \}$

by $v \leq w$ iff v is a subword of w.

Ex. If $w = a \ a \ b \ b \ a \ b \ a$ then $v = a \ b \ b \ a$ is a subword as is shown by the green letters in $w = a \ a \ b \ b \ a \ b \ a$.

Word
$$\epsilon = \epsilon(1) \dots \epsilon(n) \in (A \cup 0)^*$$
 has support

Supp $\epsilon = \{i \mid \epsilon(i) \neq 0\}.$

An expansion of $v \in A^*$ is $\epsilon_v \in (A \cup 0)^*$ such that if one restricts ϵ_v to its support one obtains v. An embedding of v into $w = w(1) \dots w(n)$ is an expansion $\epsilon_v = \epsilon_v(1) \dots \epsilon_v(n)$ of v such that

 $\epsilon_v(i) = w(i)$ for all $i \in \operatorname{Supp} \epsilon_v$.

Note that $v \leq w$ in A^* iff there is an embedding ϵ_v of v into w.

Ex. In the previous example, the expansion of v corresponding to the given subword of w is just $\epsilon_v = a \ 0 \ b \ 0 \ 0 \ 0 \ b \ a$.

Given a word $w = w(1) \dots w(n)$ then a *run of a's* in w is a maximal interval of indices [r, s] such that

$$w(r) = w(r+1) = \dots = w(s) = a.$$

Ex. $w = a \ a \ b \ b \ a \ b \ a$ has runs of *a*'s: [1,2], [6,6], [8,8]; and runs of *b*'s: [3,5] and [7,7].

An embedding ϵ_v of v into w is *normal* if for every $a \in A$ and every run [r, s] of a's we have

$$(r,s] \subseteq \operatorname{Supp} \epsilon_v.$$

Ex. In $w = a \ a \ b \ b \ a \ b \ a$ any normal embedding must contain the elements in blue. So there are two normal embeddings of $v = a \ b \ b \ a$, namely $\epsilon_v = 0 \ a \ 0 \ b \ b \ a \ 0$ and $\epsilon_v = 0 \ a \ 0 \ b \ b \ 0 \ 0 \ a$.

Theorem 2 (Björner) In A* we have

$$\mu(v, w) = (-1)^{|w| - |v|} {w \choose v}_n$$

where |w| is the length of w and $\binom{w}{v}_n$ is the number of normal embeddings of v in w.

Ex. We have

 $\mu(abba, aabbbaba) = (-1)^{8-4} \cdot 2 = 2.$

3. Layered permutations

Let \mathbb{P} denote the positive integers. Let \mathfrak{S}_n denote the symmetric group on [n]. Then $\pi \in \mathfrak{S}_n$ is *layered* if π has the form

$$\pi = a \ (a-1) \ \dots \ 1 \ b \ (b-1) \ \dots \ (a+1) \ \dots$$

Let \mathfrak{L} be the set of layered permutations partially ordered by pattern containment. Then there is a bijection $\mathfrak{L} \leftrightarrow \mathbb{P}^*$ given by $\pi \leftrightarrow p = p(1) \dots p(k)$ where the p(i) are the layer lengths of π . Under this bijection, the partial order becomes $p \leq q$ iff there is an expansion ϵ_p of p which has length |q|and satisfies

 $\epsilon_p(i) \leq q(i)$ for all $1 \leq i \leq |q|$.

Call such an expansion an *embedding* of p in q.

Ex. If $\pi = 3 \ 2 \ 1 \ 5 \ 4$ and $\sigma = 4 \ 3 \ 2 \ 1 \ 6 \ 5 \ 8 \ 7$ then one occurrence of π in σ is given by the green numbers in $\sigma = 4 \ 3 \ 2 \ 1 \ 6 \ 5 \ 8 \ 7$. In \mathbb{P}^* we have π and σ corresponding to $p = 3 \ 2$ and $q = 4 \ 2 \ 2$, respectively. And the occurrence of p in q corresponds to $\epsilon_p = 3 \ 0 \ 2$.

An embedding ϵ_p of p in $q \in \mathfrak{S}_n$ is *normal* if

1. For all
$$i$$
, $1 \le i \le n$, we have $\epsilon_p(i) = q(i), \ q(i) - 1$, or 0

2. For every $k \in \mathbb{P}$ and every run [r, s] of k's

(a)
$$(r,s] \subseteq \operatorname{Supp} \epsilon_p$$
 if $k = 1$,

(b) $r \in \operatorname{Supp} \epsilon_p$ if k > 1.

Ex. In $q = 2 \ 2 \ 1 \ 1 \ 1 \ 3 \ 3$ then any normal embedding must support the elements in blue. So there are two normal embeddings of $p = 2 \ 1 \ 1 \ 1 \ 3$, namely $\epsilon_p = 2 \ 1 \ 0 \ 1 \ 1 \ 3 \ 0$ and $\epsilon_p = 2 \ 0 \ 1 \ 1 \ 1 \ 3 \ 0$.

The sign of a normal embedding ϵ_p of p in q is

(-1)# of *i* where $\epsilon_p(i) = q(i) - 1$.

The exponent is the *defect* $d(\epsilon_p)$.

Theorem 3 (S-V) In £ we have

$$\mu(p,q) = \sum_{\epsilon_p} (-1)^{d(\epsilon_p)}$$

summed over all normal embeddings ϵ_p of p in q.

Ex. We have

 $\mu(21113, 2211133) = (-1)^2 + (-1)^0 = 2.$

4. Further work

A. Topology of \mathfrak{L} . If *P* is a poset then $[x, z] \subseteq P$ has *order complex*

$$\Delta(x,z) = \{c \mid c \text{ a chain in } (x,z)\}.$$

So $\Delta(x, z)$ is a simplicial complex with *reduced Euler characteristic*

$$\tilde{\chi}(\Delta(x,z)) := \sum_{i \ge -1} (-1)^i \operatorname{rk} \tilde{H}_i(\Delta(x,z)) = \mu(x,z).$$

Theorem 4 (Björner) In A^* , the interval [v, w] is lexicographically shellable for all v, w. And

$$\operatorname{rk} \tilde{H}_{i}(\Delta(v, w)) = \begin{cases} \binom{w}{v}_{n} & \text{if } i = |w| - |v| - 2, \\ 0 & \text{else.} \end{cases}$$

In \mathfrak{L} , [p,q] is not always shellable. But Forman developed a discrete analogue of Morse Theory to compute the homology of any CW-complex by collapsing it onto a subcomplex of critical cells. Babson & Hersh showed how any lexicographic ordering of the maximal chains of an interval gives rise to the critical cells of a Morse function.

Conjecture 5 In \mathcal{L} there is a Morse function for [p,q] with a single critical cell of dimension $d(\epsilon_p)$ for each normal embedding ϵ_p of p in q.

B. Embedding orders. Let *P* be any poset. Take $0 \notin P$ and set 0 < x for all $x \in P$. Partially order P^* by $p \leq q$ in P^* iff there is an expansion ϵ_p of length |q| with

 $\epsilon_p(i) \leq q(i)$ for all $1 \leq i \leq |q|$.

Call this the *embedding order* on P^* .

Call *P* a *rooted forest* if each component of the Hasse diagram of *P* is a tree with a unique minimal element. Then there is a notion of normal embedding in P^* where minimal elements play the role of q(i) = 1, nonminimal elements play the role of q(i) > 1, and the element adjacent to q(i) on then unique q(i)-root path plays the role of q(i) - 1.

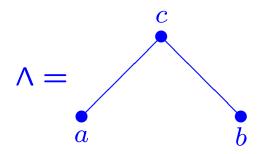
Conjecture 6 Let P be a rooted forest. Then in P^* we have

$$\mu(p,q) = \sum_{\epsilon_p} (-1)^{d(\epsilon_p)}$$

summed over all normal embeddings ϵ_p of p in q.

Note that if this conjecture is true then the theorems for A^* or \mathfrak{L} are the special cases where P is an antichain or a chain, respectively. **C. Other orders.** Let \mathfrak{S} be the set of all permutations ordered by pattern containment. What is $\mu(p,q)$ for $p,q \in \mathfrak{S}$?

What about P^* for any poset P (not just rooted forests)? The simplest such poset is



Let a^j denote the word in Λ^* consisting of j copies of a and similarly for the other elements of Λ . Let $T_n(x)$ denote the *nth Chebyshev polynomial of the first kind*.

Conjecture 7 If $j, k \ge 0$ then $\mu(a^j, c^k)$ is the coefficient of x^{k-j} in $T_{k+j}(x)$.