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Let P be the positive integers.

A composition of a non-negative integer N is a sequence

w = k1k2 . . . kr with all ki ∈ P and
∑

i ki = N.

Let cN be the number of compositions of N.
Ex. If N = 3 then c3 = 4 counting compositions

3, 21, 12, 111.

Theorem

cN =

{
2N−1 if N ≥ 1
1 if N = 0

.

So we have the rational generating function∑
N≥0

cNxN =
1− x

1− 2x
.

Question: Is this an isolated incident or part of a larger picture?
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Any set A (the alphabet) has Kleene closure

A∗ = {w = k1k2 . . . kr | ki ∈ A for all i and r ≥ 0}.

Note that w is a composition iff w ∈ P∗.
Partially order P∗ (Bergeron, Bousquet-Mélou, and Dulucq,
1995): If u = k1 . . . kr and w = l1 . . . ls then u ≤ w iff there is a
subsequence li1 . . . lir of w with

kj ≤ lij for 1 ≤ j ≤ r .

The index set I = {i1, . . . , ir} is called an embedding of u into w .
Ex. If u = 4 1 3 and w = 4 1 4 3 2 4 2 then u ≤ w , for example,

1 2 3 4 5 6 7
w = 4 1 4 3 2 4 2≥ ≥ ≥

u = 4 1 3

and I = {3, 5, 6}.

Given u ≤ w there is a unique rightmost embedding, I, such
that I ≥ I′ componentwise for all embeddings I′. The
embedding above is rightmost.
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For any alphabet A, the formal power series in noncommuting
variables A with integral coefficients is

Z〈〈A〉〉 = {f =
∑

w∈A∗
c(w)w | c(w) ∈ Z ∀w}.

Let [n] = {1, . . . , n} have alphabet [n̄] = {1̄, . . . , n̄}. Given
u ∈ [n̄]∗, consider

Z (u) =
∑
w≥u

w ∈ Z〈〈[n̄]〉〉.

Ex. Z (1̄ 1̄) = 1̄ 1̄ + 1̄ 1̄ 1̄ + 1̄ 2̄ + 2̄ 1̄ + · · ·
Theorem (Björner & S)
For all u ∈ [n̄]∗, the series Z (u) is rational.
Given f =

∑
w c(w)w ∈ Z〈〈A〉〉 with c(ε) = 0, let

f ∗ = ε + f + f 2 + f 3 + · · ·
= (ε− f )−1.

Convention: If S ⊆ A, then we also let S stand for
∑

s∈S s.



For any alphabet A, the formal power series in noncommuting
variables A with integral coefficients is

Z〈〈A〉〉 = {f =
∑

w∈A∗
c(w)w | c(w) ∈ Z ∀w}.

Let [n] = {1, . . . , n} have alphabet [n̄] = {1̄, . . . , n̄}.

Given
u ∈ [n̄]∗, consider

Z (u) =
∑
w≥u

w ∈ Z〈〈[n̄]〉〉.

Ex. Z (1̄ 1̄) = 1̄ 1̄ + 1̄ 1̄ 1̄ + 1̄ 2̄ + 2̄ 1̄ + · · ·
Theorem (Björner & S)
For all u ∈ [n̄]∗, the series Z (u) is rational.
Given f =

∑
w c(w)w ∈ Z〈〈A〉〉 with c(ε) = 0, let

f ∗ = ε + f + f 2 + f 3 + · · ·
= (ε− f )−1.

Convention: If S ⊆ A, then we also let S stand for
∑

s∈S s.



For any alphabet A, the formal power series in noncommuting
variables A with integral coefficients is

Z〈〈A〉〉 = {f =
∑

w∈A∗
c(w)w | c(w) ∈ Z ∀w}.

Let [n] = {1, . . . , n} have alphabet [n̄] = {1̄, . . . , n̄}. Given
u ∈ [n̄]∗, consider

Z (u) =
∑
w≥u

w ∈ Z〈〈[n̄]〉〉.

Ex. Z (1̄ 1̄) = 1̄ 1̄ + 1̄ 1̄ 1̄ + 1̄ 2̄ + 2̄ 1̄ + · · ·
Theorem (Björner & S)
For all u ∈ [n̄]∗, the series Z (u) is rational.
Given f =

∑
w c(w)w ∈ Z〈〈A〉〉 with c(ε) = 0, let

f ∗ = ε + f + f 2 + f 3 + · · ·
= (ε− f )−1.

Convention: If S ⊆ A, then we also let S stand for
∑

s∈S s.



For any alphabet A, the formal power series in noncommuting
variables A with integral coefficients is

Z〈〈A〉〉 = {f =
∑

w∈A∗
c(w)w | c(w) ∈ Z ∀w}.

Let [n] = {1, . . . , n} have alphabet [n̄] = {1̄, . . . , n̄}. Given
u ∈ [n̄]∗, consider

Z (u) =
∑
w≥u

w ∈ Z〈〈[n̄]〉〉.

Ex. Z (1̄ 1̄) = 1̄ 1̄ + 1̄ 1̄ 1̄ + 1̄ 2̄ + 2̄ 1̄ + · · ·

Theorem (Björner & S)
For all u ∈ [n̄]∗, the series Z (u) is rational.
Given f =

∑
w c(w)w ∈ Z〈〈A〉〉 with c(ε) = 0, let

f ∗ = ε + f + f 2 + f 3 + · · ·
= (ε− f )−1.

Convention: If S ⊆ A, then we also let S stand for
∑

s∈S s.



For any alphabet A, the formal power series in noncommuting
variables A with integral coefficients is

Z〈〈A〉〉 = {f =
∑

w∈A∗
c(w)w | c(w) ∈ Z ∀w}.

Let [n] = {1, . . . , n} have alphabet [n̄] = {1̄, . . . , n̄}. Given
u ∈ [n̄]∗, consider

Z (u) =
∑
w≥u

w ∈ Z〈〈[n̄]〉〉.

Ex. Z (1̄ 1̄) = 1̄ 1̄ + 1̄ 1̄ 1̄ + 1̄ 2̄ + 2̄ 1̄ + · · ·
Theorem (Björner & S)
For all u ∈ [n̄]∗, the series Z (u) is rational.

Given f =
∑

w c(w)w ∈ Z〈〈A〉〉 with c(ε) = 0, let

f ∗ = ε + f + f 2 + f 3 + · · ·
= (ε− f )−1.

Convention: If S ⊆ A, then we also let S stand for
∑

s∈S s.



For any alphabet A, the formal power series in noncommuting
variables A with integral coefficients is

Z〈〈A〉〉 = {f =
∑

w∈A∗
c(w)w | c(w) ∈ Z ∀w}.

Let [n] = {1, . . . , n} have alphabet [n̄] = {1̄, . . . , n̄}. Given
u ∈ [n̄]∗, consider

Z (u) =
∑
w≥u

w ∈ Z〈〈[n̄]〉〉.

Ex. Z (1̄ 1̄) = 1̄ 1̄ + 1̄ 1̄ 1̄ + 1̄ 2̄ + 2̄ 1̄ + · · ·
Theorem (Björner & S)
For all u ∈ [n̄]∗, the series Z (u) is rational.
Given f =

∑
w c(w)w ∈ Z〈〈A〉〉 with c(ε) = 0, let

f ∗ = ε + f + f 2 + f 3 + · · ·

= (ε− f )−1.

Convention: If S ⊆ A, then we also let S stand for
∑

s∈S s.



For any alphabet A, the formal power series in noncommuting
variables A with integral coefficients is

Z〈〈A〉〉 = {f =
∑

w∈A∗
c(w)w | c(w) ∈ Z ∀w}.

Let [n] = {1, . . . , n} have alphabet [n̄] = {1̄, . . . , n̄}. Given
u ∈ [n̄]∗, consider

Z (u) =
∑
w≥u

w ∈ Z〈〈[n̄]〉〉.

Ex. Z (1̄ 1̄) = 1̄ 1̄ + 1̄ 1̄ 1̄ + 1̄ 2̄ + 2̄ 1̄ + · · ·
Theorem (Björner & S)
For all u ∈ [n̄]∗, the series Z (u) is rational.
Given f =

∑
w c(w)w ∈ Z〈〈A〉〉 with c(ε) = 0, let

f ∗ = ε + f + f 2 + f 3 + · · ·
= (ε− f )−1.

Convention: If S ⊆ A, then we also let S stand for
∑

s∈S s.



For any alphabet A, the formal power series in noncommuting
variables A with integral coefficients is

Z〈〈A〉〉 = {f =
∑

w∈A∗
c(w)w | c(w) ∈ Z ∀w}.

Let [n] = {1, . . . , n} have alphabet [n̄] = {1̄, . . . , n̄}. Given
u ∈ [n̄]∗, consider

Z (u) =
∑
w≥u

w ∈ Z〈〈[n̄]〉〉.

Ex. Z (1̄ 1̄) = 1̄ 1̄ + 1̄ 1̄ 1̄ + 1̄ 2̄ + 2̄ 1̄ + · · ·
Theorem (Björner & S)
For all u ∈ [n̄]∗, the series Z (u) is rational.
Given f =

∑
w c(w)w ∈ Z〈〈A〉〉 with c(ε) = 0, let

f ∗ = ε + f + f 2 + f 3 + · · ·
= (ε− f )−1.

Convention: If S ⊆ A, then we also let S stand for
∑

s∈S s.



Theorem (Björner & S)
For all u ∈ [n̄]∗, the series Z (u) is rational.

Proof We generate each w ≥ u by rightmost embedding as
follows. If k̄ ∈ [n̄] then let z(k̄) be the sum of all w which begin
with an element ≥ k̄ followed only by elements < k̄ . So

z(k̄) = [k̄ , n̄][ k − 1 ]∗

where [k , n] = {k , k + 1, . . . , n}.

Now if u = k̄1 . . . k̄r then

Z (u) = [n̄]∗z(k̄1) · · · z(k̄r ).

Ex. If n = 4 and k = 3 then

z(3̄) = (3̄ + 4̄)(1̄ + 2̄)∗

= 3̄ + 4̄ + 3̄ 1̄ + 3̄ 2̄ + 4̄ 1̄ + 4̄ 2̄ + · · ·
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Note: 1. Letting n →∞ in this corollary we get u ∈ P∗ and the
xn+1 terms in the product drop out. So∑

N≥0

cNxN =
∑
w≥ε

x |w |

=
1− x

1− 2x
· 1

since t(ε) = (0, 0, . . .).
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2. For any set A, define subword order on A∗ by: If u = k1 . . . kr

and w = l1 . . . ls then u ≤ w iff there is li1 . . . lir with

kj = lij for 1 ≤ j ≤ r .

Ex. If A = {a, b}, u = a b b a and w = a a b b b a b a then
u ≤ w , for example, w = a a b b b a b a.

Theorem (Björner and Reutenauer)
In subword order, Z (u) =

∑
w≥u w is rational.

For any poset P, define generalized subword order on P∗ by: If
u = k1 . . . kr and w = l1 . . . ls then u ≤P∗ w iff there is li1 . . . lir
with

kj ≤P lij for 1 ≤ j ≤ r .

P an antichain ⇒ P∗ is subword order,
P a chain ⇒ P∗ is composition order.

Theorem (Björner & S)
In generalized subword order, Z (u) =

∑
w≥u w is rational.
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∑
w≥u w is rational.



2. For any set A, define subword order on A∗ by: If u = k1 . . . kr

and w = l1 . . . ls then u ≤ w iff there is li1 . . . lir with

kj = lij for 1 ≤ j ≤ r .

Ex. If A = {a, b}, u = a b b a and w = a a b b b a b a then
u ≤ w , for example, w = a a b b b a b a.

Theorem (Björner and Reutenauer)
In subword order, Z (u) =

∑
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The incidence algebra of poset P over the rationals Q is

I(P) = {φ : P × P → Q : φ(u, w) = 0 if u 6≤ w}.

The zeta function is ζ ∈ I(P) defined by

ζ(u, w) =

{
1 if u ≤ w ,
0 else.

Note that
Z (u) =

∑
w∈P

ζ(u, w)w .

The Möbius function is µ ∈ I(P) defined by

µ = ζ−1.

Question: What is µ in composition order on P∗? We first
discuss µ in subword order on A∗.
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Suppose 0 6∈ A. An expansion of u ∈ A∗ is η ∈ (A ∪ {0})∗
gotten by inserting zeros into u.

An embedding I of u into w
corresponds to an expansion ηu: put u in the positions of the I
and zeros elsewhere.

The support of ηu is Supp ηu = I.

Ex. If A = {a, b}, u = a b b a and w = a a b b b a b a then
w = a a b b b a b a corresponds to ηu = 0 a 0 0 b 0 b a

and
I = Supp ηu = {2, 5, 7, 8}.
A run of k ’s in w = k1 . . . kt is a maximal interval [r , s] with
kr = kr+1 = . . . = ks. An embedding ηu in w is normal if, for
each k and every run [r , s] of k ’s in w ,

(r , s] ⊆ Supp ηu.

Theorem (Björner)
In A∗: µ(u, w) = (−1)#w−#u(# of normal ηu in w).

Ex. runs in w = a a b b b a b a

normal ηu : 0 a 0 b b a 0 0,
0 a 0 b b 0 0 a.

So µ(u, w) = (−1)8−4 2 = 2.
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In P∗, embedding ηu = l1 . . . lt of u into w = k1 . . . kt is normal if

1. li = ki , ki − 1, or 0 for all i .

2. ∀ k and runs [r , s] of k ’s in w
{

(r , t ] ⊆ Supp ηu if k = 1,
r ∈ Supp ηu if k ≥ 2.

Given ηu = k1 . . . kt normal in w = l1 . . . lt , it’s defect is

d(ηu) = #{i | ki = li − 1}.

Theorem (S & Vatter)
In P∗ we have µ(u, w) =

∑
ηu

(−1)d(ηu)

where the sum is over all normal embeddings ηu into w.
Ex. Suppose u = 2 1 1 1 3 and

w = 2 2 1 1 1 3 3

abnormal ηu : 2 0 0 1 1 1 3
0 2 1 1 1 3 0

normal ηu : 2 1 0 1 1 3 0
2 0 1 1 1 3 0

So µ(u, w) = (−1)2 + (−1)0 = 2.
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In P∗, embedding ηu = l1 . . . lt of u into w = k1 . . . kt is normal if

1. li = ki , ki − 1, or 0 for all i .
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In P∗ we have

µ(u, w) =
∑
ηu

(−1)d(ηu)

where the sum is over all normal embeddings ηu into w.

There are three proofs of this theorem:

1. (S & Vatter) using a sign-reversing involution.

2. (S & Vatter) using Forman’s discrete Morse theory as
applied to the order complex by Babson and Hersh. Note
that intervals in P∗ are not shellable, in general. Also, the
critical chains are in bijective correspondence with normal
embeddings.

3. (Björner & S) using formal power series in noncommuting
variables.
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1. Is there a bijective proof that the norm generating function for
compositions only depends on type? That is, given u, u′ ∈ P∗

with t(u) = t(u′), find a norm-preserving bijection

{w : w ≥ u} ↔ {w : w ≥ u′}.

2. Björner and Reutenauer gave generating functions for the
powers ζm for m ≥ 1 in subword order on A∗. Björner and S
were only able to do this for composition order on [2]∗, and the
proof involved hypergeometric series identities. What can be
said for [n]∗?
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3. What can be said about µ in P∗ for an arbitrary poset P?

Call
P a rooted forest if each component of its Hasse diagram is a
tree with a unique minimal element. In this case, S & Vatter
give a formula for µ in P∗ similar to the one in P∗ with minimal
elements acting like k = 1 and nonminimal elements acting like
the positive integers k ≥ 2. This theorem has the results for
composition order and subword order as special cases.
The smallest poset which is not a rooted forest is

Λ =

a
�
��

b
A

AA

c

Conjecture (Sagan & V)
For all i ≤ j , the value µ(ai , c j) is the coefficient of x j−i in
Ti+j(x), the Tchebyshev polynomial of the first kind.
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THANKS FOR LISTENING!
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