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Let P be the positive integers.
A composition of a non-negative integer N is a sequence

w = kykp ...k with all ki € Pand 37,k = N.

Let cy be the number of compositions of N.
Ex. If N = 3 then c3 = 4 counting compositions

3, 21, 12, 111.
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So we have the rational generating function
Sow' =15
N 2x

Question: s this an isolated incident or part of a larger picture?
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Any set A (the alphabet) has Kleene closure
A" ={w =Kkiky...k | ki € Aforalliandr > 0}.

Note that w is a composition iff w € P*.

Partially order P* (Bergeron, Bousquet-Mélou, and Dulucq,
1995): If u =k, ... kyandw =y ...ls then u < w iff there is a
subsequence |;, ..., of w with

kjgliJ forl <j<r.

Theindex set| = {iy,...,i} is called an embedding of u into w.
Ex.fu=413andw =4143242thenu <w, for example,

1 2 3 45 6 7
w =41 4 3 2 4 2
N VY and | ={3,5,6}.

u 4 1 3

Given u < w there is a unique rightmost embedding, |, such
that | > I’ componentwise for all embeddings I’. The
embedding above is rightmost.
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For any alphabet A, the formal power series in noncommuting
variables A with integral coefficients is

Z(A) = {f=) cww | c(w)eZ vw}
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Let [n] = {1,...,n} have alphabet [i] = {1,...,A}. Given
u € [A]*, consider
Z(u) =Y w e Z({{[A]).
w>u
Ex.Z(11)=11+111+12+4+21+---
Theorem (Bjorner & S)
For all u € [n]*, the series Z(u) is rational.
Givenf =" c(w)w € Z((A)) with c(e) = 0, let
f* = e+f+f24+f34+...
= (e— f)_l.

Convention: IfS C A, then we also let S stand for ) ;g s.
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Theorem (Bjorner & S)
For all u € [n]*, the series Z(u) is rational.

Proof We generate each w > u by rightmost embedding as
follows. If k € [A] then let z(k) be the sum of all w which begin
with an element > k followed only by elements < k. So

z(k) = [K.Al[k —1]"
where [k,n] = {k,k +1,...,n}.
Now if u = k; ...k, then

Z(u) = [l'2(K) - z(k). =

Ex. If n =4 and k = 3 then

z(3) = (
= 3+4+
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Recall:
Z(u) = [A]*z(ky) - --z(k;) with z(k)=[k,A][k —1]*.
The norm of u = ky ...k € P*is [u| = 3,k

Let x be a variable and substitute k ~» xK.

U=Kky...kk ~ xK...xk =xlul
Z( ) ~ (Xk+Xk+l—|—--'+Xn)(X+X2—{—---+Xk_1)*
xK 1xk+1 . yn 3k _ yn+l
T—(X+X2+ -+ xk1) = 1-2x +xK’

1-Xx

= 2 ny*

n X+X+...+X _—
A~ ) 1—2x 4 xn+1

The type of u € [A]*is t(u) = (ty,...,ty) where t, = # of k € u.

Corollary (B & S)
Ifu e [n]* has t(u) = (t1,...,ty) then

wi _ - XK —xmL
X = . |
Z 2X+Xn+1H<l_2X +Xk>

w>u
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Corollary (Bjorner & S)
Ifu e [n]* hast(u) = (Ky,...,kn) then

1— k n+1 t
S = H XX . om
1—2x 4+ xn+1 1— 2x + xk

w>u

Note: 1. Letting n — oo in this corollary we get u € P* and the
x"*1 terms in the product drop out. So

Z cyxN = ZX‘W‘

N>0 W>e
B 1-x
- 1-2x

since t(e) = (0,0,...).
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andw =l;...lsthenu < w iff there is |, ...l with

kj:IiJ. forl <j<r.

Ex. fA={a,b},u=abbaandw =aabbbabathen
u <w, forexample,w =aabbbaba.

Theorem (Bjorner and Reutenauer)

In subword order, Z(u) = }_,,~, W is rational. |

For any poset P, define generalized subword order on P* by: If
U=ki...kkandw =1;...Is thenu <p- w iffthereis | ...I
with

ir
ki <p Iij forl1 <j<r.

P an antichain = P* is subword order,
P achain = P*is composition order.

Theorem (Bjorner & S)
In generalized subword order, Z(u) = >_,,-, W is rational. |
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The incidence algebra of poset P over the rationals Q is
I(P)={¢:PxP—=Q : ¢(uw)=0ifu Lw}.
The zeta function is ¢ € I(P) defined by

1 ifu<w,

Gluw) = { 0 else.

Note that
Z(u) =) ¢(u,w)w.

weP

The Mdbius function is i € I(P) defined by
p=¢t

Question: What is 1 in composition order on P*? We first
discuss u in subword order on A*.
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So p(u,w) = (—1)2 + (-1)° = 2.
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Theorem (S & Vatter)
In P* we have

pluw) = S2(-2)0
.
where the sum is over all normal embeddings 7, into w. [
There are three proofs of this theorem:

1. (S & Vatter) using a sign-reversing involution.

2. (S & Vatter) using Forman’s discrete Morse theory as
applied to the order complex by Babson and Hersh. Note
that intervals in P* are not shellable, in general. Also, the
critical chains are in bijective correspondence with normal
embeddings.

3. (Bjorner & S) using formal power series in noncommuting
variables.
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1. Is there a bijective proof that the norm generating function for
compositions only depends on type? That is, given u,u’ € P*
with t(u) = t(u’), find a norm-preserving bijection

w:w>ule{w:w>u}.

2. Bjorner and Reutenauer gave generating functions for the
powers ("™ for m > 1 in subword order on A*. Bjorner and S
were only able to do this for composition order on [2]*, and the
proof involved hypergeometric series identities. What can be
said for [n]*?
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3. What can be said about 4 in P* for an arbitrary poset P? Call
P arooted forest if each component of its Hasse diagram is a
tree with a uniqgue minimal element. In this case, S & Vatter
give a formula for x in P* similar to the one in P* with minimal
elements acting like k = 1 and nonminimal elements acting like
the positive integers k > 2. This theorem has the results for
composition order and subword order as special cases.

The smallest poset which is not a rooted forest is

- /\

Conjecture (Sagan & V)
For alli < j, the value u(a',cl) is the coefficient of x)~' in
Ti1j(x), the Tchebyshev polynomial of the first kind.



THANKS FOR LISTENING!
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