The Incidence Algebra of a Composition Poset

Bruce Sagan
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027
www.math.msu.edu/~sagan

June 18, 2006
Compositions

Rational generating functions

Commuting variables

The zeta and Möbius functions

Comments and open problems
Outline

Compositions

Rational generating functions

Commuting variables

The zeta and Möbius functions

Comments and open problems
Let \mathbb{P} be the positive integers.

A composition of a non-negative integer N is a sequence $w = k_1 k_2 \ldots k_r$ with all $k_i \in \mathbb{P}$ and $\sum i k_i = N$.

Let c_N be the number of compositions of N.

Ex. If $N = 3$ then $c_3 = 4$ counting compositions $3, 21, 12, 111$.

Theorem $c_N = \begin{cases} 2^{N-1} & \text{if } N \geq 1 \\ 1 & \text{if } N = 0 \end{cases}$.

So we have the rational generating function $\sum_{N \geq 0} c_N x^N = \frac{1}{1 - 2x}$.

Question: Is this an isolated incident or part of a larger picture?
Let \(\mathbb{P} \) be the positive integers.

A *composition* of a non-negative integer \(N \) is a sequence

\[
w = k_1 k_2 \ldots k_r \text{ with all } k_i \in \mathbb{P} \text{ and } \sum_i k_i = N.
\]
Let \(\mathbb{P} \) be the positive integers.

A *composition* of a non-negative integer \(N \) is a sequence

\[
 w = k_1 k_2 \ldots k_r \text{ with all } k_i \in \mathbb{P} \text{ and } \sum_i k_i = N.
\]

Let \(c_N \) be the number of compositions of \(N \).
Let \mathbb{P} be the positive integers.
A *composition* of a non-negative integer N is a sequence

$$w = k_1k_2 \ldots k_r$$

with all $k_i \in \mathbb{P}$ and $\sum_i k_i = N$.

Let c_N be the number of compositions of N.

Ex. If $N = 3$ then $c_3 = 4$ counting compositions

$$3, 21, 12, 111.$$
Let \mathbb{P} be the positive integers. A composition of a non-negative integer N is a sequence

$$w = k_1 k_2 \ldots k_r \text{ with all } k_i \in \mathbb{P} \text{ and } \sum_i k_i = N.$$

Let c_N be the number of compositions of N. Ex. If $N = 3$ then $c_3 = 4$ counting compositions

$$3, 21, 12, 111.$$

Theorem

$$c_N = \begin{cases}
2^{N-1} & \text{if } N \geq 1 \\
1 & \text{if } N = 0
\end{cases}.$$
Let \mathbb{P} be the positive integers.
A *composition* of a non-negative integer N is a sequence

\[w = k_1 k_2 \ldots k_r \text{ with all } k_i \in \mathbb{P} \text{ and } \sum_i k_i = N. \]

Let c_N be the number of compositions of N.

Ex. If $N = 3$ then $c_3 = 4$ counting compositions

\[3, 21, 12, 111. \]

Theorem

\[c_N = \begin{cases} 2^{N-1} & \text{if } N \geq 1 \\ 1 & \text{if } N = 0 \end{cases}. \]

So we have the rational generating function

\[\sum_{N \geq 0} c_N x^N = \frac{1 - x}{1 - 2x}. \]
Let \(\mathbb{P} \) be the positive integers.

A composition of a non-negative integer \(N \) is a sequence

\[w = k_1 k_2 \ldots k_r \text{ with all } k_i \in \mathbb{P} \text{ and } \sum_i k_i = N. \]

Let \(c_N \) be the number of compositions of \(N \).

Ex. If \(N = 3 \) then \(c_3 = 4 \) counting compositions

\[3, 21, 12, 111. \]

Theorem

\[c_N = \begin{cases}
2^{N-1} & \text{if } N \geq 1 \\
1 & \text{if } N = 0
\end{cases} . \]

So we have the rational generating function

\[\sum_{N \geq 0} c_N x^N = \frac{1 - x}{1 - 2x}. \]

Question: Is this an isolated incident or part of a larger picture?
Any set A (the alphabet) has Kleene closure

$$A^* = \{w = k_1 k_2 \ldots k_r \mid k_i \in A \text{ for all } i \text{ and } r \geq 0\}.$$
Any set A (the alphabet) has Kleene closure

$$A^* = \{ w = k_1 k_2 \ldots k_r \mid k_i \in A \text{ for all } i \text{ and } r \geq 0 \}.$$

Note that w is a composition iff $w \in \mathbb{P}^*$.

Any set A (the alphabet) has Kleene closure

$$A^* = \{w = k_1 k_2 \ldots k_r \mid k_i \in A \text{ for all } i \text{ and } r \geq 0\}.$$

Note that w is a composition iff $w \in P^*$.

Partially order P^* (Bergeron, Bousquet-Mélou, and Dulucq, 1995): If $u = k_1 \ldots k_r$ and $w = l_1 \ldots l_s$ then $u \leq w$ iff there is a subsequence $l_{i_1} \ldots l_{i_r}$ of w with

$$k_j \leq l_{i_j} \text{ for } 1 \leq j \leq r.$$
Any set A (the alphabet) has Kleene closure

$$A^* = \{ w = k_1 k_2 \ldots k_r \mid k_i \in A \text{ for all } i \text{ and } r \geq 0 \}.$$

Note that w is a composition iff $w \in P^*$.

Partially order P^* (Bergeron, Bousquet-Mélou, and Dulucq, 1995): If $u = k_1 \ldots k_r$ and $w = l_1 \ldots l_s$ then $u \leq w$ iff there is a subsequence $l_{i_1} \ldots l_{i_r}$ of w with

$$k_j \leq l_{i_j} \text{ for } 1 \leq j \leq r.$$

The index set $I = \{ i_1, \ldots, i_r \}$ is called an embedding of u into w.

Any set A (the alphabet) has Kleene closure

$$A^* = \{ w = k_1 k_2 \ldots k_r \mid k_i \in A \text{ for all } i \text{ and } r \geq 0 \}. $$

Note that w is a composition iff $w \in \mathbb{P}^*$. Partially order \mathbb{P}^* (Bergeron, Bousquet-Mélou, and Dulucq, 1995): If $u = k_1 \ldots k_r$ and $w = l_1 \ldots l_s$ then $u \leq w$ iff there is a subsequence $l_{i_1} \ldots l_{i_r}$ of w with

$$k_j \leq l_{i_j} \text{ for } 1 \leq j \leq r.$$

The index set $I = \{ i_1, \ldots, i_r \}$ is called an embedding of u into w. **Ex.** If $u = 4 \ 1 \ 3$ and $w = 4 \ 1 \ 4 \ 3 \ 2 \ 4 \ 2$ then $u \leq w$.

Ex. If $u = 4 \ 1 \ 3$ and $w = 4 \ 1 \ 4 \ 3 \ 2 \ 4 \ 2$ then $u \leq w$,

Ex. If $u = 4 \ 1 \ 3$ and $w = 4 \ 1 \ 4 \ 3 \ 2 \ 4 \ 2$ then $u \leq w$,

Any set A (the alphabet) has Kleene closure

$$A^* = \{w = k_1 k_2 \ldots k_r \mid k_i \in A \text{ for all } i \text{ and } r \geq 0\}.$$

Note that w is a composition iff $w \in \mathbb{P}^*$.

Partially order \mathbb{P}^* (Bergeron, Bousquet-Mélou, and Dulucq, 1995): If $u = k_1 \ldots k_r$ and $w = l_1 \ldots l_s$ then $u \leq w$ iff there is a subsequence $l_{i_1} \ldots l_{i_r}$ of w with

$$k_j \leq l_{i_j} \text{ for } 1 \leq j \leq r.$$

The index set $I = \{i_1, \ldots, i_r\}$ is called an embedding of u into w.

Ex. If $u = 4 1 3$ and $w = 4 1 4 3 2 4 2$ then $u \leq w$, for example,

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>w</td>
<td>=</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Partially order \mathbb{P}^* (Bergeron, Bousquet-Mélou, and Dulucq, 1995): If $u = k_1 \ldots k_r$ and $w = l_1 \ldots l_s$ then $u \leq w$ iff there is a subsequence $l_{i_1} \ldots l_{i_r}$ of w with

$$k_j \leq l_{i_j} \text{ for } 1 \leq j \leq r.$$

The index set $I = \{i_1, \ldots, i_r\}$ is called an embedding of u into w.

Ex. If $u = 4 1 3$ and $w = 4 1 4 3 2 4 2$ then $u \leq w$, for example,

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>w</td>
<td>=</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Partially order \mathbb{P}^* (Bergeron, Bousquet-Mélou, and Dulucq, 1995): If $u = k_1 \ldots k_r$ and $w = l_1 \ldots l_s$ then $u \leq w$ iff there is a subsequence $l_{i_1} \ldots l_{i_r}$ of w with

$$k_j \leq l_{i_j} \text{ for } 1 \leq j \leq r.$$

The index set $I = \{i_1, \ldots, i_r\}$ is called an embedding of u into w.

Ex. If $u = 4 1 3$ and $w = 4 1 4 3 2 4 2$ then $u \leq w$, for example,
Any set A (the alphabet) has Kleene closure

$$A^* = \{w = k_1 k_2 \ldots k_r \mid k_i \in A \text{ for all } i \text{ and } r \geq 0\}.$$

Note that w is a composition iff $w \in \mathbb{P}^*$. Partially order \mathbb{P}^* (Bergeron, Bousquet-Mélou, and Dulucq, 1995): If $u = k_1 \ldots k_r$ and $w = l_1 \ldots l_s$ then $u \leq w$ iff there is a subsequence $l_{i_1} \ldots l_{i_r}$ of w with

$$k_j \leq l_{i_j} \text{ for } 1 \leq j \leq r.$$

The index set $I = \{i_1, \ldots, i_r\}$ is called an embedding of u into w.

Ex. If $u = 4 \ 1 \ 3$ and $w = 4 \ 1 \ 4 \ 3 \ 2 \ 4 \ 2$ then $u \leq w$, for example,

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline \\
4 & 1 & 4 & 3 & 2 & 4 & 2
\end{array}
\]

$I = \{4, 5, 6\}$.

\[
\begin{array}{cccc}
u = 4 & 1 & 3 \\
\hline \\
IV & IV & IV
\end{array}
\]
Any set A (the alphabet) has Kleene closure

$$A^* = \{ w = k_1 k_2 \ldots k_r \mid k_i \in A \text{ for all } i \text{ and } r \geq 0 \}.$$

Note that w is a composition iff $w \in \mathbb{P}^*$.

Partially order \mathbb{P}^* (Bergeron, Bousquet-Mélou, and Dulucq, 1995): If $u = k_1 \ldots k_r$ and $w = l_1 \ldots l_s$ then $u \leq w$ iff there is a subsequence $l_{i_1} \ldots l_{i_r}$ of w with

$$k_j \leq l_{i_j} \text{ for } 1 \leq j \leq r.$$

The index set $I = \{ i_1, \ldots, i_r \}$ is called an embedding of u into w.

Ex. If $u = 4 \ 1 \ 3$ and $w = 4 \ 1 \ 4 \ 3 \ 2 \ 4 \ 2$ then $u \leq w$, for example,

$$w = \begin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline 4 & 1 & 4 & 3 & 2 & 4 & 2 \end{array} \quad \text{and} \quad I = \{3, 5, 6\}.

u = \begin{array}{cc} 4 & 1 \ 3 \end{array}$$
Any set A (the alphabet) has Kleene closure

$$A^* = \{w = k_1 k_2 \ldots k_r \mid k_i \in A \text{ for all } i \text{ and } r \geq 0 \}.$$ Note that w is a composition iff $w \in \mathbb{P}^*$. Partially order \mathbb{P}^* (Bergeron, Bousquet-Mélou, and Dulucq, 1995): If $u = k_1 \ldots k_r$ and $w = l_1 \ldots l_s$ then $u \leq w$ iff there is a subsequence $l_{i_1} \ldots l_{i_r}$ of w with

$$k_j \leq l_{i_j} \text{ for } 1 \leq j \leq r.$$ The index set $I = \{i_1, \ldots, i_r\}$ is called an embedding of u into w. **Ex.** If $u = 4 \ 1 \ 3$ and $w = 4 \ 1 \ 4 \ 3 \ 2 \ 4 \ 2$ then $u \leq w$, for example,

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\text{w} & = & 4 & 1 & 4 & 3 & 2 & 4 & 2 \\
\uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\
\text{u} & = & 4 & 1 & 3 & & & \\
\end{array}
\]

and $I = \{3, 5, 6\}$. Given $u \leq w$ there is a unique rightmost embedding, I, such that $I \geq I'$ componentwise for all embeddings I'. The embedding above is rightmost.
\(\mathbb{P}^* = \epsilon \)
\[P^* = \begin{bmatrix} 1 & \epsilon \\ \end{bmatrix} \]
\[\mathbb{P}^* = \]
\[P^* = \]

\[\epsilon \]
\[P^* = \]

\[
\begin{array}{c}
 \vdots \\
 1 \ 1 \ 1 \ \\
 1 \ 2 \\
 2 \ 1 \\
 3 \\
\end{array}
\]

\[
\begin{array}{c}
 1 \ 1 \\
 1 \ 2 \\
 1 \\
\end{array}
\]

\[
\begin{array}{c}
 1 \\
\end{array}
\]

\[
\begin{array}{c}
 \epsilon \\
\end{array}
\]
Outline

Compositions

Rational generating functions

Commuting variables

The zeta and Möbius functions

Comments and open problems
For any alphabet A, the \textit{formal power series in noncommuting variables} A \textit{with integral coefficients} is

$$
\mathbb{Z}\langle\langle A \rangle\rangle = \left\{ f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \quad \forall w \right\}.
$$

Let $[n] = \{1, \ldots, n\}$ have alphabet $[\bar{n}] = \{\bar{1}, \ldots, \bar{n}\}$. Given $u \in [\bar{n}]^*$, consider $Z(u) = \sum_{w \geq u} w \in \mathbb{Z}\langle\langle [\bar{n}] \rangle\rangle$.

\textbf{Ex.} $Z(\bar{1}\bar{1}) = \bar{1}\bar{1} + \bar{1}\bar{1}\bar{1} + \bar{1}\bar{2} + \bar{2}\bar{1} + \cdots$

\textbf{Theorem (Björner & S)} For all $u \in [\bar{n}]^*$, the series $Z(u)$ is rational.

Given $f = \sum_{w \in A^*} c(w)w$ with $c(\epsilon) = 0$, let $f^* = \epsilon + f + f^2 + f^3 + \cdots = (\epsilon - f)^{-1}$.

\textbf{Convention:} If $S \subseteq A$, then we also let S stand for $\sum_{s \in S} s$.
For any alphabet A, the *formal power series in noncommuting variables A with integral coefficients* is

$$\mathbb{Z}\langle\langle A \rangle\rangle = \{ f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \quad \forall w \}. $$

Let $[n] = \{1, \ldots, n\}$ have alphabet $[\bar{n}] = \{\bar{1}, \ldots, \bar{n}\}$.
For any alphabet A, the formal power series in noncommuting variables A with integral coefficients is

$$
\mathbb{Z}\langle\langle A \rangle\rangle = \{ f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \ \forall w \}.
$$

Let $[n] = \{1, \ldots, n\}$ have alphabet $[\bar{n}] = \{\bar{1}, \ldots, \bar{n}\}$. Given $u \in [\bar{n}]^*$, consider

$$
Z(u) = \sum_{w \geq u} w \in \mathbb{Z}\langle\langle [\bar{n}] \rangle\rangle.
$$
For any alphabet A, the \textit{formal power series in noncommuting variables A with integral coefficients} is

$$\mathbb{Z}\langle\langle A \rangle\rangle = \{ f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \ \forall w \}.$$

Let $[n] = \{1, \ldots, n\}$ have alphabet $[\bar{n}] = \{\bar{1}, \ldots, \bar{n}\}$. Given $u \in [\bar{n}]^*$, consider

$$Z(u) = \sum_{w \geq u} w \in \mathbb{Z}\langle\langle [\bar{n}] \rangle\rangle.$$

\textbf{Ex.} $Z(\bar{1} \bar{1}) = \bar{1} \bar{1} + \bar{1} \bar{1} \bar{1} + \bar{1} \bar{2} + \bar{2} \bar{1} + \ldots$
For any alphabet A, the **formal power series in noncommuting variables A with integral coefficients** is

$$\mathbb{Z}\langle\langle A \rangle\rangle = \{ f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \ \forall w \}.$$

Let $[n] = \{1, \ldots, n\}$ have alphabet $[\bar{n}] = \{\bar{1}, \ldots, \bar{n}\}$. Given $u \in [\bar{n}]^*$, consider

$$Z(u) = \sum_{w \geq u} w \in \mathbb{Z}\langle\langle [\bar{n}] \rangle\rangle.$$

Ex. $Z(\bar{1} \bar{1}) = \bar{1} \bar{1} + \bar{1} \bar{1} \bar{1} + 1 \bar{2} + 2 \bar{1} + \cdots$

Theorem (Björner & S)

For all $u \in [\bar{n}]^$, the series $Z(u)$ is rational.*
For any alphabet A, the formal power series in noncommuting variables A with integral coefficients is

$$\mathbb{Z}\langle\langle A\rangle\rangle = \{ f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \quad \forall w \}. $$

Let $[n] = \{1, \ldots, n\}$ have alphabet $[\bar{n}] = \{\bar{1}, \ldots, \bar{n}\}$. Given $u \in [\bar{n}]^*$, consider

$$Z(u) = \sum_{w \geq u} w \in \mathbb{Z}\langle\langle [\bar{n}]\rangle\rangle.$$

Ex. $Z(\bar{1} \bar{1}) = \bar{1} \bar{1} + \bar{1} \bar{1} \bar{1} \bar{1} + \bar{1} \bar{2} + \bar{2} \bar{1} + \ldots$

Theorem (Björner & S)

For all $u \in [\bar{n}]^*$, the series $Z(u)$ is rational.

Given $f = \sum_w c(w)w \in \mathbb{Z}\langle\langle A\rangle\rangle$ with $c(\epsilon) = 0$, let

$$f^* = \epsilon + f + f^2 + f^3 + \ldots$$
For any alphabet A, the **formal power series in noncommuting variables A with integral coefficients** is

$$
\mathbb{Z}\langle\langle A \rangle\rangle = \{ f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \ \forall w \}.
$$

Let $[n] = \{1, \ldots, n\}$ have alphabet $[\bar{n}] = \{\bar{1}, \ldots, \bar{n}\}$. Given $u \in [\bar{n}]^*$, consider

$$
Z(u) = \sum_{w \geq u} w \in \mathbb{Z}\langle\langle [\bar{n}] \rangle\rangle.
$$

Ex. $Z(\bar{1} \bar{1}) = \bar{1} \bar{1} + \bar{1} \bar{1} \bar{1} + \bar{1} \bar{2} + \bar{2} \bar{1} + \ldots$

Theorem (Björner & S)

For all $u \in [\bar{n}]^$, the series $Z(u)$ is rational.*

Given $f = \sum_w c(w)w \in \mathbb{Z}\langle\langle A \rangle\rangle$ with $c(\epsilon) = 0$, let

$$
f^* = \epsilon + f + f^2 + f^3 + \ldots \\
= (\epsilon - f)^{-1}.
$$
For any alphabet A, the *formal power series in noncommuting variables* A with integral coefficients is

$$\mathbb{Z}\langle\langle A \rangle\rangle = \{ f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \ \forall w \}.$$

Let $[n] = \{1, \ldots, n\}$ have alphabet $[\tilde{n}] = \{\tilde{1}, \ldots, \tilde{n}\}$. Given $u \in [\tilde{n}]^*$, consider

$$Z(u) = \sum_{w \geq u} w \in \mathbb{Z}\langle\langle [\tilde{n}] \rangle\rangle.$$

Ex. $Z(\tilde{1} \tilde{1}) = \tilde{1} \tilde{1} + \tilde{1} \tilde{1} \tilde{1} + \tilde{1} \tilde{2} + \tilde{2} \tilde{1} + \cdots$

Theorem (Björner & S)

For all $u \in [\tilde{n}]^$, the series $Z(u)$ is rational.*

Given $f = \sum_w c(w)w \in \mathbb{Z}\langle\langle A \rangle\rangle$ with $c(\epsilon) = 0$, let

$$f^* = \epsilon + f + f^2 + f^3 + \cdots$$

$$= (\epsilon - f)^{-1}.$$

Convention: If $S \subseteq A$, then we also let S stand for $\sum_{s \in S} s$.
Theorem (Björner & S)

For all $u \in [\bar{n}]^*$, the series $Z(u)$ is rational.
Theorem (Björner & S)

For all $u \in [\tilde{n}]^*$, the series $Z(u)$ is rational.

Proof We generate each $w \geq u$ by rightmost embedding as follows.

Ex. If $n = 4$ and $k = 3$ then $z(\bar{3}) = (\bar{3} + \bar{4})(\bar{1} + \bar{2}) \cdot \cdots$
Theorem (Björner & S)

For all \(u \in [\bar{n}]^* \), *the series* \(Z(u) \) *is rational.*

Proof We generate each \(w \geq u \) by rightmost embedding as follows. If \(\bar{k} \in [\bar{n}] \) then let \(z(\bar{k}) \) be the sum of all \(w \) which begin with an element \(\geq \bar{k} \) followed only by elements \(< \bar{k} \).
Theorem (Björner & S)
For all \(u \in [\bar{n}]^* \), the series \(Z(u) \) is rational.

Proof We generate each \(w \geq u \) by rightmost embedding as follows. If \(k \in [\bar{n}] \) then let \(z(k) \) be the sum of all \(w \) which begin with an element \(\geq k \) followed only by elements \(< k \). So

\[
z(k) = [k, \bar{n}][k-1]^*
\]

where \([k, n] = \{k, k + 1, \ldots, n\}\).
Theorem (Björner & S)

For all $u \in [\bar{n}]^*$, the series $Z(u)$ is rational.

Proof We generate each $w \geq u$ by rightmost embedding as follows. If $\bar{k} \in [\bar{n}]$ then let $z(\bar{k})$ be the sum of all w which begin with an element $\geq \bar{k}$ followed only by elements $< \bar{k}$. So

$$z(\bar{k}) = [\bar{k}, \bar{n}][\bar{k}-1]^*$$

where $[k, n] = \{k, k + 1, \ldots, n\}$.

Ex. If $n = 4$ and $k = 3$ then

$$z(\bar{3}) = (\bar{3} + 4)(\bar{1} + \bar{2})^*$$
Theorem (Björner & S)

For all \(u \in [\bar{n}]^* \), the series \(Z(u) \) is rational.

Proof We generate each \(w \geq u \) by rightmost embedding as follows. If \(\bar{k} \in [\bar{n}] \) then let \(z(\bar{k}) \) be the sum of all \(w \) which begin with an element \(\geq \bar{k} \) followed only by elements \(< \bar{k} \). So

\[
z(\bar{k}) = [\bar{k}, \bar{n}] \bar{k} \bar{k}^{-1}*)
\]

where \([k, n] = \{k, k + 1, \ldots, n\}\).

Ex. If \(n = 4 \) and \(k = 3 \) then

\[
z(\bar{3}) = (\bar{3} + \bar{4})(\bar{1} + \bar{2})^* = \bar{3} + \bar{4} + \bar{3} \bar{1} + \bar{3} \bar{2} + \bar{4} \bar{1} + \bar{4} \bar{2} + \ldots
\]
Theorem (Björner & S)

For all \(u \in [\bar{n}]^* \), *the series* \(Z(u) \) *is rational.*

Proof We generate each \(w \geq u \) by rightmost embedding as follows. If \(\bar{k} \in [\bar{n}] \) then let \(z(\bar{k}) \) be the sum of all \(w \) which begin with an element \(\geq \bar{k} \) followed only by elements \(< \bar{k} \). So

\[
z(\bar{k}) = [\bar{k}, \bar{n}][\bar{k} - 1]^*
\]

where \([k, n] = \{k, k + 1, \ldots, n\}\).

Now if \(u = \bar{k}_1 \ldots \bar{k}_r \) then

\[
Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r).
\]

Ex. If \(n = 4 \) and \(k = 3 \) then

\[
z(\bar{3}) = (\bar{3} + 4)(\bar{1} + \bar{2})^* = \bar{3} + 4 + 3 \bar{1} + 3 \bar{2} + 4 \bar{1} + 4 \bar{2} + \cdots
\]
Outline

Compositions

Rational generating functions

Commuting variables

The zeta and Möbius functions

Comments and open problems
Recall:

\[Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r) \quad \text{with} \quad z(\bar{k}) = [\bar{k}, \bar{n}][\bar{k} - 1]^*. \]
Recall:
\[Z(u) = [\bar{n}]^*z(\bar{k}_1) \cdots z(\bar{k}_r) \quad \text{with} \quad z(\bar{k}) = [\bar{k}, \bar{n}][\overline{k - 1}]^*. \]

The *norm* of \(u = \bar{k}_1 \ldots \bar{k}_r \in \mathbb{P}^* \) is \(|u| = \sum_i k_i \).
Recall:

$$Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r) \quad \text{with} \quad z(\bar{k}) = [\bar{k}, \bar{n}][\bar{k} - 1]^*.$$

The *norm* of $u = \bar{k}_1 \ldots \bar{k}_r \in \mathbb{P}^*$ is $|u| = \sum_i k_i$.

Let x be a variable and substitute $\bar{k} \sim x^k$.
Recall:

\[Z(u) = [\bar{n}]^* z(\bar{k}_1) \ldots z(\bar{k}_r) \quad \text{with} \quad z(\bar{k}) = [\bar{k}, \bar{n}][k - 1]^*. \]

The \textit{norm} of \(u = \bar{k}_1 \ldots \bar{k}_r \in \mathbb{P}^* \) is \(|u| = \sum_i k_i \).

Let \(x \) be a variable and substitute \(\bar{k} \leadsto x^k \).

\[u = \bar{k}_1 \ldots \bar{k}_r \leadsto x^{k_1} \ldots x^{k_r} = x^{|u|}, \]
Recall:

\[Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r) \text{ with } z(\bar{k}) = [\bar{k}, \bar{n}][\bar{k} - 1]^*. \]

The norm of \(u = \bar{k}_1 \ldots \bar{k}_r \in \mathbb{P}^* \) is \(|u| = \sum_i k_i \).

Let \(x \) be a variable and substitute \(\bar{k} \sim x^k \).

\[u = \bar{k}_1 \ldots \bar{k}_r \sim x^{k_1} \cdots x^{k_r} = x^{|u|}, \]

\[z(\bar{k}) \sim (x^k + x^{k+1} + \cdots + x^n)(x + x^2 + \cdots + x^{k-1})^*. \]
Recall:
\[Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r) \quad \text{with} \quad z(\bar{k}) = [\bar{k}, \bar{n}][\bar{k} - 1]^*. \]

The \textit{norm} of \(u = \bar{k}_1 \ldots \bar{k}_r \in \mathbb{P}^* \) is \(|u| = \sum_i k_i \).

Let \(x \) be a variable and substitute \(\bar{k} \sim x^k \).

\[
\begin{align*}
 u = \bar{k}_1 \ldots \bar{k}_r & \sim x^{k_1} \ldots x^{k_r} = x^{|u|}, \\
 z(\bar{k}) & \sim (x^k + x^{k+1} + \cdots + x^n)(x + x^2 + \cdots + x^{k-1})^* \\
 & = \frac{x^k + x^{k+1} + \cdots + x^n}{1 - (x + x^2 + \cdots + x^{k-1})}
\end{align*}
\]
Recall:

\[Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r) \quad \text{with} \quad z(\bar{k}) = [k, \bar{n}] [k - 1]^*. \]

The norm of \(u = \bar{k}_1 \ldots \bar{k}_r \in \mathbb{P}^* \) is \(|u| = \sum_i k_i \).

Let \(x \) be a variable and substitute \(\bar{k} \sim x^k \).

\[
\begin{align*}
 u = \bar{k}_1 \ldots \bar{k}_r & \sim x^{k_1} \cdots x^{k_r} = x^{|u|}, \\
 z(\bar{k}) & \sim (x^k + x^{k+1} + \cdots + x^n)(x + x^2 + \cdots + x^{k-1})^* \\
 &= \frac{x^k + x^{k+1} + \cdots + x^n}{1 - (x + x^2 + \cdots + x^{k-1})} = \frac{x^k - x^{n+1}}{1 - 2x + x^k},
\end{align*}
\]
Recall:

\[Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r) \quad \text{with} \quad z(\bar{k}) = [\bar{k}, \bar{n}][\overline{k-1}]^*. \]

The \textit{norm} of \(u = \bar{k}_1 \ldots \bar{k}_r \in \mathbb{P}^* \) is \(|u| = \sum_i k_i \).

Let \(x \) be a variable and substitute \(\bar{k} \sim x^k \).

\[
\begin{align*}
 u = \bar{k}_1 \ldots \bar{k}_r & \sim x^{k_1} \ldots x^{k_r} = x|u|, \\
 z(\bar{k}) & \sim (x^k + x^{k+1} + \cdots + x^n)(x + x^2 + \cdots + x^{k-1})^* \\
 & = \frac{x^k + x^{k+1} + \cdots + x^n}{1 - (x + x^2 + \cdots + x^{k-1})} = \frac{x^k - x^{n+1}}{1 - 2x + x^k}, \\
 [\bar{n}]^* & \sim (x + x^2 + \cdots + x^n)^*
\end{align*}
\]
Recall:

\[Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r) \quad \text{with} \quad z(\bar{k}) = [\bar{k}, \bar{n}][\bar{k} - 1]^*. \]

The norm of \(u = \bar{k}_1 \ldots \bar{k}_r \in \mathbb{P}^* \) is \(|u| = \sum_i k_i \).

Let \(x \) be a variable and substitute \(\bar{k} \sim x^k \).

\[u = \bar{k}_1 \ldots \bar{k}_r \sim x^{k_1} \ldots x^{k_r} = x^{|u|}, \]
\[z(\bar{k}) \sim (x^k + x^{k+1} + \cdots + x^n)(x + x^2 + \cdots + x^{k-1})^* \]
\[= \frac{x^k + x^{k+1} + \cdots + x^n}{1 - (x + x^2 + \cdots + x^{k-1})} = \frac{x^k - x^{n+1}}{1 - 2x + x^k}, \]
\[[\bar{n}]^* \sim (x + x^2 + \ldots + x^n)^* = \frac{1 - x}{1 - 2x + x^{n+1}}. \]
Recall:

$$Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r) \quad \text{with} \quad z(\bar{k}) = [\bar{k}, \bar{n}][\bar{k} - 1]^*.$$

The **norm** of $$u = \bar{k}_1 \ldots \bar{k}_r \in \mathbb{P}^*$$ is $$|u| = \sum_i k_i.$$

Let $$x$$ be a variable and substitute $$\bar{k} \sim x^k.$$

$$u = \bar{k}_1 \ldots \bar{k}_r \sim x^{k_1} \ldots x^{k_r} = x^{|u|},$$

$$z(\bar{k}) \sim (x^k + x^{k+1} + \cdots + x^n)(x + x^2 + \cdots + x^{k-1})^* = \frac{x^{k} + x^{k+1} + \cdots + x^n}{1 - (x + x^2 + \cdots + x^{k-1})} = \frac{x^{k} - x^{n+1}}{1 - 2x + x^k},$$

$$[\bar{n}]^* \sim (x + x^2 + \cdots + x^n)^* = \frac{1 - x}{1 - 2x + x^{n+1}}.$$

The **type** of $$u \in [\bar{n}]^*$$ is $$t(u) = (t_1, \ldots, t_n)$$ where $$t_k = \# \text{ of } \bar{k} \in u.$$
Recall:

\[Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r) \quad \text{with} \quad z(\bar{k}) = [\bar{k}, \bar{n}][\bar{k} - 1]^*. \]

The norm of \(u = \bar{k}_1 \ldots \bar{k}_r \in \mathbb{P}^* \) is \(|u| = \sum_i k_i. \)

Let \(x \) be a variable and substitute \(\bar{k} \sim x^k. \)

\[
\begin{align*}
 u = \bar{k}_1 \ldots \bar{k}_r & \sim x^{k_1} \ldots x^{k_r} = x^{|u|}, \\
 z(\bar{k}) & \sim (x^k + x^{k+1} + \cdots + x^n)(x + x^2 + \cdots + x^{k-1})^* \\
 &= \frac{x^k + x^{k+1} + \cdots + x^n}{1 - (x + x^2 + \cdots + x^{k-1})} = \frac{x^k - x^{n+1}}{1 - 2x + x^k}, \\
 [\bar{n}]^* & \sim (x + x^2 + \ldots + x^n)^* = \frac{1 - x}{1 - 2x + x^{n+1}}.
\end{align*}
\]

The type of \(u \in [\bar{n}]^* \) is \(t(u) = (t_1, \ldots, t_n) \) where \(t_k = \# \) of \(\bar{k} \in u. \)

Corollary (B & S)

If \(u \in [\bar{n}]^* \) has \(t(u) = (t_1, \ldots, t_n) \) then

\[
\sum_{w \geq u} x^{|w|} = \frac{1 - x}{1 - 2x + x^{n+1}} \prod_{k=1}^n \left(\frac{x^k - x^{n+1}}{1 - 2x + x^k} \right)^{t_k}.
\]
Corollary (Björner & S)

If \(u \in [\bar{n}]^* \) has \(t(u) = (k_1, \ldots, k_n) \) then

\[
\sum_{w \geq u} x^{|w|} = \frac{1 - x}{1 - 2x + x^{n+1}} \prod_{k=1}^{n} \left(\frac{x^k - x^{n+1}}{1 - 2x + x^k} \right)^{t_k}.
\]
Corollary (Björner & S)

If \(u \in [\bar{n}]^* \) has \(t(u) = (k_1, \ldots, k_n) \) then

\[
\sum_{w \geq u} x^{|w|} = \frac{1 - x}{1 - 2x + x^{n+1}} \prod_{k=1}^{n} \left(\frac{x^k - x^{n+1}}{1 - 2x + x^k} \right)^{t_k}.
\]

Note: 1. Letting \(n \to \infty \) in this corollary we get \(u \in \mathbb{P}^* \) and the \(x^{n+1} \) terms in the product drop out.
Corollary (Björner & S)

If \(u \in [\bar{n}]^* \) has \(t(u) = (k_1, \ldots, k_n) \) then

\[
\sum_{w \geq u} x^{|w|} = \frac{1 - x}{1 - 2x + x^{n+1}} \prod_{k=1}^{n} \left(\frac{x^k - x^{n+1}}{1 - 2x + x^k} \right)^{t_k}.
\]

\[\square\]

Note: 1. Letting \(n \to \infty \) in this corollary we get \(u \in \mathbb{P}^* \) and the \(x^{n+1} \) terms in the product drop out. So

\[
\sum_{N \geq 0} c_N x^N
\]
Corollary (Björner & S)

If \(u \in [\bar{n}]^* \) has \(t(u) = (k_1, \ldots, k_n) \) then

\[
\sum_{w \geq u} x^{|w|} = \frac{1 - x}{1 - 2x + x^{n+1}} \prod_{k=1}^{n} \left(\frac{x^k - x^{n+1}}{1 - 2x + x^k} \right)^{t_k}.
\]

Note: 1. Letting \(n \to \infty \) in this corollary we get \(u \in \mathbb{P}^* \) and the \(x^{n+1} \) terms in the product drop out. So

\[
\sum_{N \geq 0} c_N x^N = \sum_{w \geq \epsilon} x^{|w|}
\]
Corollary (Björner & S)

If \(u \in [\bar{n}]^* \) has \(t(u) = (k_1, \ldots, k_n) \) then

\[
\sum_{w \geq u} x^{|w|} = \frac{1 - x}{1 - 2x + x^{n+1}} \prod_{k=1}^{n} \left(\frac{x^k - x^{n+1}}{1 - 2x + x^k} \right)^{t_k}.
\]

\[\text{Note: } 1. \text{ Letting } n \to \infty \text{ in this corollary we get } u \in \mathbb{P}^* \text{ and the } x^{n+1} \text{ terms in the product drop out. So}
\]

\[
\sum_{N \geq 0} c_N x^N = \sum_{w \geq \epsilon} x^{|w|} = \frac{1 - x}{1 - 2x} \cdot 1
\]

since \(t(\epsilon) = (0, 0, \ldots) \).
2. For any set A, define *subword order* on A^* by: If $u = k_1 \ldots k_r$ and $w = l_1 \ldots l_s$ then $u \leq w$ iff there is $l_{i_1} \ldots l_{i_r}$ with

$$k_j = l_{i_j} \text{ for } 1 \leq j \leq r.$$
2. For any set A, define \textit{subword order} on A^* by: If $u = k_1 \ldots k_r$ and $w = l_1 \ldots l_s$ then $u \leq w$ iff there is $l_{i_1} \ldots l_{i_r}$ with

$$k_j = l_{i_j} \text{ for } 1 \leq j \leq r.$$

\textbf{Ex.} If $A = \{a, b\}$, $u = a \ b \ b \ a$ and $w = a \ a \ b \ b \ b \ a \ b \ a$ then $u \leq w$, for example, $w = a \ a \ b \ b \ b \ a \ b \ a$.

2. For any set A, define subword order on A^* by: If $u = k_1 \ldots k_r$ and $w = l_1 \ldots l_s$ then $u \leq w$ iff there is $l_i_1 \ldots l_i_r$ with

$$k_j = l_{i_j} \text{ for } 1 \leq j \leq r.$$

Ex. If $A = \{a, b\}$, $u = a\ b\ b\ a$ and $w = a\ a\ b\ b\ b\ a\ b\ a$ then $u \leq w$, for example, $w = a\ a\ b\ b\ b\ a\ b\ a$.

Theorem (Björner and Reutenauer)

In subword order, $Z(u) = \sum_{w \geq u} w$ is rational.
2. For any set A, define **subword order** on A^* by: If $u = k_1 \ldots k_r$ and $w = l_1 \ldots l_s$ then $u \leq w$ iff there is $l_i \ldots l_{ir}$ with

$$k_j = l_i \text{ for } 1 \leq j \leq r.$$

Ex. If $A = \{a, b\}$, $u = a \ b \ b \ a$ and $w = a \ a \ b \ b \ b \ a \ b \ a$ then $u \leq w$, for example, $w = a \ a \ b \ b \ b \ a \ b \ a$.

Theorem (Björner and Reutenauer)

In subword order, $Z(u) = \sum_{w \geq u} w$ is rational.

For any poset P, define **generalized subword order** on P^* by: If $u = k_1 \ldots k_r$ and $w = l_1 \ldots l_s$ then $u \leq_{P^*} w$ iff there is $l_i \ldots l_{ir}$ with

$$k_j \leq_P l_i \text{ for } 1 \leq j \leq r.$$
2. For any set A, define **subword order** on A^* by: If $u = k_1 \ldots k_r$ and $w = l_1 \ldots l_s$ then $u \leq w$ iff there is $l_i_1 \ldots l_i_r$ with

$$k_j = l_{ij} \text{ for } 1 \leq j \leq r.$$

Ex. If $A = \{a, b\}$, $u = a \ b \ b \ a$ and $w = a \ a \ b \ b \ b \ a \ b \ a$ then $u \leq w$, for example, $w = a \ a \ b \ b \ b \ a \ b \ a$.

Theorem (Björner and Reutenauer)

In subword order, $Z(u) = \sum_{w \geq u} w$ is rational.

For any poset P, define **generalized subword order** on P^* by: If $u = k_1 \ldots k_r$ and $w = l_1 \ldots l_s$ then $u \leq_{P^*} w$ iff there is $l_{i_1} \ldots l_{i_r}$ with

$$k_j \leq_P l_{ij} \text{ for } 1 \leq j \leq r.$$

P an antichain \Rightarrow P^* is subword order,
2. For any set A, define **subword order** on A^* by: If $u = k_1 \ldots k_r$ and $w = l_1 \ldots l_s$ then $u \leq w$ iff there is $l_{i_1} \ldots l_{i_r}$ with

$$k_j = l_{i_j} \text{ for } 1 \leq j \leq r.$$

Ex. If $A = \{a, b\}$, $u = a \ b \ b \ a$ and $w = a \ a \ b \ b \ b \ a \ b \ a$ then $u \leq w$, for example, $w = a \ a \ b \ b \ a \ b \ a$.

Theorem (Björner and Reutenauer)

In subword order, $Z(u) = \sum_{w \geq u} w$ is rational. □

For any poset P, define **generalized subword order** on P^* by: If $u = k_1 \ldots k_r$ and $w = l_1 \ldots l_s$ then $u \leq_{P^*} w$ iff there is $l_{i_1} \ldots l_{i_r}$ with

$$k_j \leq_P l_{i_j} \text{ for } 1 \leq j \leq r.$$

P an antichain \hspace{1cm} \Rightarrow \hspace{1cm} P^* is subword order,

P a chain \hspace{1cm} \Rightarrow \hspace{1cm} P^* is composition order.
2. For any set A, define *subword order* on A^* by: If $u = k_1 \ldots k_r$ and $w = l_1 \ldots l_s$ then $u \leq w$ iff there is $l_{i_1} \ldots l_{i_r}$ with

$$k_j = l_{i_j} \text{ for } 1 \leq j \leq r.$$

Ex. If $A = \{a, b\}$, $u = a \ b \ b \ a$ and $w = a \ a \ b \ b \ b \ a \ b \ a$ then $u \leq w$, for example, $w = a \ a \ b \ b \ b \ a \ b \ a$.

Theorem (Björner and Reutenauer)
In subword order, $Z(u) = \sum_{w \geq u} w$ is rational.

For any poset P, define *generalized subword order* on P^* by: If $u = k_1 \ldots k_r$ and $w = l_1 \ldots l_s$ then $u \leq_{P^*} w$ iff there is $l_{i_1} \ldots l_{i_r}$ with

$$k_j \leq_P l_{i_j} \text{ for } 1 \leq j \leq r.$$

P an antichain \Rightarrow P^* is subword order,

P a chain \Rightarrow P^* is composition order.

Theorem (Björner & S)
In generalized subword order, $Z(u) = \sum_{w \geq u} w$ is rational.
Outline

Compositions

Rational generating functions

Commuting variables

The zeta and Möbius functions

Comments and open problems
The *incidence algebra* of poset P over the rationals \mathbb{Q} is

$$I(P) = \{ \phi : P \times P \to \mathbb{Q} : \phi(u, w) = 0 \text{ if } u \nleq w \}.$$
The *incidence algebra* of poset P over the rationals \mathbb{Q} is

$$I(P) = \{\phi : P \times P \rightarrow \mathbb{Q} : \phi(u, w) = 0 \text{ if } u \not\leq w\}.$$

The *zeta function* is $\zeta \in I(P)$ defined by

$$\zeta(u, w) = \begin{cases}
1 & \text{if } u \leq w, \\
0 & \text{else}.
\end{cases}$$
The *incidence algebra* of poset P over the rationals \mathbb{Q} is

$$I(P) = \{ \phi : P \times P \to \mathbb{Q} : \phi(u, w) = 0 \text{ if } u \not\leq w \}.$$

The *zeta function* is $\zeta \in I(P)$ defined by

$$\zeta(u, w) = \begin{cases}
1 & \text{if } u \leq w, \\
0 & \text{else.}
\end{cases}$$

Note that

$$Z(u) = \sum_{w \in P} \zeta(u, w)w.$$
The *incidence algebra* of poset P over the rationals \mathbb{Q} is

$$I(P) = \{ \phi : P \times P \to \mathbb{Q} : \phi(u, w) = 0 \text{ if } u \not\leq w \}.$$

The *zeta function* is $\zeta \in I(P)$ defined by

$$\zeta(u, w) = \begin{cases} 1 & \text{if } u \leq w, \\ 0 & \text{else.} \end{cases}$$

Note that

$$Z(u) = \sum_{w \in P} \zeta(u, w)w.$$

The *Möbius function* is $\mu \in I(P)$ defined by

$$\mu = \zeta^{-1}.$$
The *incidence algebra* of poset \(P \) over the rationals \(\mathbb{Q} \) is

\[
I(P) = \{ \phi : P \times P \to \mathbb{Q} : \phi(u, w) = 0 \text{ if } u \nleq w \}.
\]

The *zeta function* is \(\zeta \in I(P) \) defined by

\[
\zeta(u, w) = \begin{cases}
1 & \text{if } u \leq w, \\
0 & \text{else.}
\end{cases}
\]

Note that

\[
Z(u) = \sum_{w \in P} \zeta(u, w) w.
\]

The *Möbius function* is \(\mu \in I(P) \) defined by

\[
\mu = \zeta^{-1}.
\]

Question: What is \(\mu \) in composition order on \(\mathbb{P}^* \)?
The *incidence algebra* of poset P over the rationals \mathbb{Q} is

$$I(P) = \{ \phi : P \times P \to \mathbb{Q} : \phi(u, w) = 0 \text{ if } u \not\leq w \}.$$

The *zeta function* is $\zeta \in I(P)$ defined by

$$\zeta(u, w) = \begin{cases} 1 & \text{if } u \leq w, \\ 0 & \text{else}. \end{cases}$$

Note that

$$Z(u) = \sum_{w \in P} \zeta(u, w)w.$$

The *Möbius function* is $\mu \in I(P)$ defined by

$$\mu = \zeta^{-1}.$$

Question: What is μ in composition order on P^*? We first discuss μ in subword order on A^*.

Suppose $0 \notin A$. An expansion of $u \in A^*$ is $\eta \in (A \cup \{0\})^*$ gotten by inserting zeros into u.
Suppose $0 \not\in A$. An expansion of $u \in A^*$ is $\eta \in (A \cup \{0\})^*$ gotten by inserting zeros into u. An embedding I of u into w corresponds to an expansion η_u: put u in the positions of the I and zeros elsewhere.
Suppose $0 \not\in A$. An *expansion* of $u \in A^*$ is $\eta \in (A \cup \{0\})^*$ gotten by inserting zeros into u. An embedding I of u into w corresponds to an expansion η_u: put u in the positions of the I and zeros elsewhere.

Ex. If $A = \{a, b\}$, $u = a \ b \ b \ a$ and $w = a \ a \ b \ b \ b \ a \ b \ a$ then $w = a \ a \ b \ b \ b \ a \ b \ a$ corresponds to $\eta_u = 0 \ a \ 0 \ 0 \ b \ 0 \ b \ a$.
Suppose $0 \not\in A$. An expansion of $u \in A^*$ is $\eta \in (A \cup \{0\})^*$ gotten by inserting zeros into u. An embedding I of u into w corresponds to an expansion η_u: put u in the positions of the I and zeros elsewhere. The support of η_u is $\text{Supp} \eta_u = I$.

Ex. If $A = \{a, b\}$, $u = a \ b \ b \ a$ and $w = a \ a \ b \ b \ b \ a \ b \ a$ then $w = a \ a \ b \ b \ b \ a \ b \ a$ corresponds to $\eta_u = 0 \ a \ 0 \ 0 \ b \ 0 \ b \ a$.
Suppose $0 \not\in A$. An expansion of $u \in A^*$ is $\eta \in (A \cup \{0\})^*$ gotten by inserting zeros into u. An embedding I of u into w corresponds to an expansion η_u: put u in the positions of the I and zeros elsewhere. The support of η_u is $\text{Supp} \eta_u = I$.

Ex. If $A = \{a, b\}$, $u = a\ b\ b\ a$ and $w = a\ a\ b\ b\ b\ a\ b\ a$ then $w = a\ a\ b\ b\ b\ a\ b\ a$ corresponds to $\eta_u = 0\ a\ 0\ 0\ b\ 0\ b\ a$ and $I = \text{Supp} \eta_u = \{2, 5, 7, 8\}$.
Suppose $0 \not\in A$. An expansion of $u \in A^*$ is $\eta \in (A \cup \{0\})^*$ gotten by inserting zeros into u. An embedding l of u into w corresponds to an expansion η_u: put u in the positions of the l and zeros elsewhere. The support of η_u is $\text{Supp} \eta_u = l$.

Ex. If $A = \{a, b\}$, $u = a\ b\ b\ a$ and $w = a\ a\ b\ b\ b\ a\ b\ a$ then $w = a\ a\ b\ b\ b\ a\ b\ a$ corresponds to $\eta_u = 0\ a\ 0\ 0\ b\ 0\ b\ a$ and $l = \text{Supp} \eta_u = \{2, 5, 7, 8\}$.

A run of k’s in $w = k_1 \ldots k_t$ is a maximal interval $[r, s]$ with $k_r = k_{r+1} = \ldots = k_s$.
Suppose $0 \notin A$. An \textit{expansion} of $u \in A^*$ is $\eta \in (A \cup \{0\})^*$
gotten by inserting zeros into u. An embedding I of u into w
corresponds to an expansion η_u: put u in the positions of the I
and zeros elsewhere. The \textit{support} of η_u is $\text{Supp} \eta_u = I$.

\textbf{Ex.} If $A = \{a, b\}$, $u = a \ b \ b \ a$ and $w = a \ a \ b \ b \ b \ a \ b \ a$
then $w = a \ a \ b \ b \ b \ a \ b \ a$ corresponds to $\eta_u = 0 \ a \ 0 \ 0 \ b \ 0 \ b \ a$
and $I = \text{Supp} \eta_u = \{2, 5, 7, 8\}$.

A \textit{run} of k's in $w = k_1 \ldots k_t$ is a maximal interval $[r, s]$ with
$k_r = k_{r+1} = \ldots = k_s$.

\textbf{Ex.} runs in $w = a \ a \ b \ b \ b \ a \ b \ a \ a$
Suppose $0 \not\in A$. An \textit{expansion} of $u \in A^*$ is $\eta \in (A \cup \{0\})^*$ gotten by inserting zeros into u. An embedding I of u into w corresponds to an expansion η_u: put u in the positions of the I and zeros elsewhere. The \textit{support} of η_u is $\text{Supp} \eta_u = I$.

\textbf{Ex.} If $A = \{a, b\}$, $u = a \ b \ b \ a$ and $w = a \ a \ b \ b \ b \ a \ b \ a$ then $w = a \ a \ b \ b \ b \ a \ b \ a$ corresponds to $\eta_u = 0 \ a \ 0 \ 0 \ b \ 0 \ b \ a$ and $I = \text{Supp} \eta_u = \{2, 5, 7, 8\}$.

A \textit{run} of k's in $w = k_1 \ldots k_t$ is a maximal interval $[r, s]$ with $k_r = k_{r+1} = \ldots = k_s$. An embedding η_u in w is \textit{normal} if, for each k and every run $[r, s]$ of k's in w,

$$(r, s) \subseteq \text{Supp} \eta_u.$$

\textbf{Ex.} runs in $w = a \ a \ b \ b \ b \ a \ b \ a$
Suppose $0 \not\in A$. An **expansion** of $u \in A^*$ is $\eta \in (A \cup \{0\})^*$ gotten by inserting zeros into u. An embedding I of u into w corresponds to an expansion η_u: put u in the positions of the I and zeros elsewhere. The **support** of η_u is $\text{Supp} \eta_u = I$.

Ex. If $A = \{a, b\}$, $u = a \ b \ b \ a$ and $w = a \ a \ b \ b \ b \ a \ b \ a$ then $w = a \ a \ b \ b \ b \ a \ b \ a$ corresponds to $\eta_u = 0 \ a \ 0 \ 0 \ b \ 0 \ b \ a$ and $I = \text{Supp} \eta_u = \{2, 5, 7, 8\}$.

A **run** of k’s in $w = k_1 \ldots k_t$ is a maximal interval $[r, s]$ with $k_r = k_{r+1} = \ldots = k_s$. An embedding η_u in w is **normal** if, for each k and every run $[r, s]$ of k’s in w,

$$(r, s) \subseteq \text{Supp} \eta_u.$$
Suppose $0 \not\in A$. An expansion of $u \in A^*$ is $\eta \in (A \cup \{0\})^*$ gotten by inserting zeros into u. An embedding I of u into w corresponds to an expansion η_u: put u in the positions of the I and zeros elsewhere. The support of η_u is $\text{Supp } \eta_u = I$.

Ex. If $A = \{a, b\}$, $u = a\ b\ b\ a$ and $w = a\ a\ b\ b\ b\ a\ b\ a$ then $w = a\ a\ b\ b\ b\ a\ b\ a$ corresponds to $\eta_u = 0\ a\ 0\ 0\ b\ 0\ b\ a$ and $I = \text{Supp } \eta_u = \{2, 5, 7, 8\}$.

A run of k’s in $w = k_1 \ldots k_t$ is a maximal interval $[r, s]$ with $k_r = k_{r+1} = \ldots = k_s$. An embedding η_u in w is normal if, for each k and every run $[r, s]$ of k’s in w,

$$(r, s) \subseteq \text{Supp } \eta_u.$$
Suppose $0 \not\in A$. An **expansion** of $u \in A^*$ is $\eta \in (A \cup \{0\})^*$ gotten by inserting zeros into u. An embedding I of u into w corresponds to an expansion η_u: put u in the positions of the I and zeros elsewhere. The **support** of η_u is $\text{Supp} \eta_u = I$.

Ex. If $A = \{a, b\}$, $u = a \ b \ b \ a$ and $w = a \ a \ b \ b \ b \ a \ b \ a$ then $w = a \ a \ b \ b \ b \ a \ b \ a$ corresponds to $\eta_u = 0 \ a \ 0 \ 0 \ b \ 0 \ b \ a$ and $I = \text{Supp} \eta_u = \{2, 5, 7, 8\}$.

A **run** of k’s in $w = k_1 \ldots k_t$ is a maximal interval $[r, s]$ with $k_r = k_{r+1} = \ldots = k_s$. An embedding η_u in w is **normal** if, for each k and every run $[r, s]$ of k’s in w,

$$(r, s) \subseteq \text{Supp} \eta_u.$$

Theorem (Björner)

In A^*: $\mu(u, w) = (-1)^{\#w-\#u} (\# \text{ of normal } \eta_u \text{ in } w)$. ■

Ex. runs in $w = a \ a \ b \ b \ b \ a \ b \ a$

normal $\eta_u : 0 \ a \ 0 \ b \ b \ a \ 0 \ 0$$

$0 \ a \ 0 \ b \ b \ 0 \ 0 \ a$.
Suppose $0 \not\in A$. An **expansion** of $u \in A^*$ is $\eta \in (A \cup \{0\})^*$ gotten by inserting zeros into u. An embedding I of u into w corresponds to an expansion η_u: put u in the positions of the I and zeros elsewhere. The **support** of η_u is $\text{Supp} \eta_u = I$.

Ex. If $A = \{a, b\}$, $u = a \ b \ b \ a$ and $w = a \ a \ b \ b \ b \ a \ b \ a$ then $w = a \ a \ b \ b \ b \ a \ b \ a$ corresponds to $\eta_u = 0 \ a \ 0 \ 0 \ b \ 0 \ b \ a$ and $I = \text{Supp} \eta_u = \{2, 5, 7, 8\}$.

A **run** of k's in $w = k_1 \ldots k_t$ is a maximal interval $[r, s]$ with $k_r = k_{r+1} = \ldots = k_s$. An embedding η_u in w is **normal** if, for each k and every run $[r, s]$ of k's in w,

$$(r, s) \subseteq \text{Supp} \eta_u.$$

Theorem (Björner)

In A^*: $\mu(u, w) = (-1)^{\#w - \#u}(\# \text{ of normal } \eta_u \text{ in } w)$. \blacksquare

Ex. runs in $w = \ a \ a \ b \ b \ b \ a \ b \ a$

normal $\eta_u : \ 0 \ a \ 0 \ b \ b \ a \ 0 \ 0$,

$0 \ a \ 0 \ b \ b \ 0 \ 0 \ a$.

So $\mu(u, w) = (-1)^{8-4} 2 = 2$.

In \mathbb{P}^*, embedding $\eta_u = l_1 \ldots l_t$ of u into $w = k_1 \ldots k_t$ is *normal* if

1. $l_i = k_i$, $k_i - 1$, or 0 for all i.

\[\sum_{\eta_u} (-1)^{d(\eta_u)} \] where the sum is over all normal embeddings η_u into w.

Ex. Suppose $u = 2 1 1 1 3$ and $w = 2 2 1 1 1 3 3$ abnormal η_u:

$$
\begin{array}{cccccccc}
2 & 0 & 0 & 1 & 1 & 1 & 3 & 0 \\
2 & 0 & 1 & 1 & 1 & 3 & 0
\end{array}
$$

normal η_u:

$$
\begin{array}{cccccccc}
2 & 1 & 0 & 1 & 1 & 3 & 0
\end{array}
$$

So $\mu(u, w) = (-1)^2 + (-1)^0 = 2$.
In \(\mathbb{P}^* \), embedding \(\eta_u = l_1 \ldots l_t \) of \(u \) into \(w = k_1 \ldots k_t \) is \textit{normal} if

1. \(l_i = k_i, k_i - 1, \) or 0 for all \(i. \)

\[\eta_u = 2 1 1 1 3\]

\[w = 2 2 1 1 1 3 3\]
In \mathbb{P}^*, embedding $\eta_u = l_1 \ldots l_t$ of u into $w = k_1 \ldots k_t$ is *normal* if
1. $l_i = k_i$, $k_i - 1$, or 0 for all i.

Ex. Suppose $u = 2 1 1 1 3$ and

\[
\begin{align*}
\text{abnormal } \eta_u &: 2 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 3 \\
\text{normal } \eta_u &: 2 \ 1 \ 1 \ 1 \ 3 \ 3
\end{align*}
\]
In \mathbb{P}^*, embedding $\eta_u = l_1 \ldots l_t$ of u into $w = k_1 \ldots k_t$ is \textit{normal} if

1. $l_i = k_i$, $k_i - 1$, or 0 for all i.

2. $\forall k$ and runs $[r, s]$ of k's in w \begin{align*}
(r, t] &\subseteq \text{Supp} \eta_u & \text{if } k = 1, \\
 r &\in \text{Supp} \eta_u & \text{if } k \geq 2.
\end{align*}

\textbf{Ex.} Suppose $u = 2 \ 1 \ 1 \ 1 \ 3$ and

$w = 2 \ 2 \ 1 \ 1 \ 1 \ 3 \ 3$

abnormal $\eta_u : 2 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 3$
In \mathbb{P}^*, embedding $\eta_u = l_1 \ldots l_t$ of u into $w = k_1 \ldots k_t$ is \textit{normal} if

1. $l_i = k_i, k_i - 1,$ or 0 for all i.

2. $\forall k$ and runs $[r, s]$ of k's in w \begin{align*}
(\mathbf{r}, \mathbf{t}) \subseteq \text{Supp} \eta_u & \quad \text{if } k = 1, \\
r \in \text{Supp} \eta_u & \quad \text{if } k \geq 2.
\end{align*}

\textbf{Ex.} Suppose $u = 2 \ 1 \ 1 \ 1 \ 3$ and $w = 2 \ 2 \ 1 \ 1 \ 1 \ 3 \ 3$

abnormal $\eta_u : 2 \ 0 \ 0 \ 1 \ 1 \ 1 \ 3$
In \mathbb{P}^*, embedding $\eta_u = l_1 \ldots l_t$ of u into $w = k_1 \ldots k_t$ is normal if

1. $l_i = k_i$, $k_i - 1$, or 0 for all i.

2. $\forall k$ and runs $[r, s]$ of k's in w \((r, t] \subseteq \text{Supp} \eta_u \) if $k = 1$, \(r \in \text{Supp} \eta_u \) if $k \geq 2$.

Ex. Suppose $u = 2\ 1\ 1\ 1\ 3$ and $w = 2\ 2\ 1\ 1\ 1\ 3\ 3$

abnormal $\eta_u : 2\ 0\ 0\ 1\ 1\ 1\ 3$

$0\ 2\ 1\ 1\ 1\ 3\ 0$
In \mathbb{P}^*, embedding $\eta_u = l_1 \ldots l_t$ of u into $w = k_1 \ldots k_t$ is normal if
1. $l_i = k_i$, $k_i - 1$, or 0 for all i.
2. $\forall k$ and runs $[r, s]$ of k's in w \begin{align*}
 \{(r, t) \subseteq \text{Supp} \eta_u & \quad \text{if } k = 1, \\
 r \in \text{Supp} \eta_u & \quad \text{if } k \geq 2.
\end{align*}

Ex. Suppose $u = 2 \ 1 \ 1 \ 1 \ 3$ and

\[
 w = \begin{array}{cccccccc}
 2 & 2 & 1 & 1 & 1 & 3 & 3 \\
 \end{array}
\]

abnormal $\eta_u : 2 \ 0 \ 0 \ 1 \ 1 \ 1 \ 3 \\
0 \ 2 \ 1 \ 1 \ 1 \ 3 \ 0$

normal $\eta_u : 2 \ 1 \ 0 \ 1 \ 1 \ 3 \ 0 \\
2 \ 0 \ 1 \ 1 \ 1 \ 3 \ 0$
In \mathbb{P}^*, embedding $\eta_u = l_1 \ldots l_t$ of u into $w = k_1 \ldots k_t$ is **normal** if

1. $l_i = k_i$, $k_i - 1$, or 0 for all i.

2. $\forall k$ and runs $[r, s]$ of k’s in w \begin{align*}
 (r, t] &\subseteq \text{Supp } \eta_u & \text{if } k = 1, \\
 r &\in \text{Supp } \eta_u & \text{if } k \geq 2.
\end{align*}

Given $\eta_u = k_1 \ldots k_t$ normal in $w = l_1 \ldots l_t$, it’s **defect** is

$$d(\eta_u) = \#\{ i \mid k_i = l_i - 1 \}.$$

Ex. Suppose $u = 21113$ and $w = 22111133$ and

<table>
<thead>
<tr>
<th>Abnormal η_u</th>
<th>Normal η_u</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 0 0 1 1 1 3 3</td>
<td>2 1 0 1 1 3 0</td>
</tr>
<tr>
<td>0 2 1 1 1 3 0</td>
<td>2 0 1 1 3 0</td>
</tr>
</tbody>
</table>
In \mathbb{P}^*, embedding $\eta_u = l_1 \ldots l_t$ of u into $w = k_1 \ldots k_t$ is *normal* if

1. $l_i = k_i, k_i - 1$, or 0 for all i.
2. $\forall k$ and runs $[r, s]$ of k's in w \begin{equation*} \left\{ \begin{array}{ll} (r, t) \subseteq \text{Supp} \eta_u & \text{if } k = 1, \\ r \in \text{Supp} \eta_u & \text{if } k \geq 2. \end{array} \right. \end{equation*}

Given $\eta_u = k_1 \ldots k_t$ normal in $w = l_1 \ldots l_t$, it’s *defect* is

$$d(\eta_u) = \# \{ i \mid k_i = l_i - 1 \}.$$

Theorem (S & Vatter)

In \mathbb{P}^* we have

$$\mu(u, w) = \sum_{\eta_u} (-1)^{d(\eta_u)}$$

where the sum is over all normal embeddings η_u into w.

Ex. Suppose $u = 2 \ 1 \ 1 \ 1 \ 3$ and

$$w = \begin{array}{cccccccc} 2 & 2 & 1 & 1 & 1 & 3 & 3 \\ \end{array}$$

abnormal $\eta_u : \begin{array}{cccccccc} 2 & 0 & 0 & 1 & 1 & 1 & 3 \\ 0 & 2 & 1 & 1 & 1 & 3 & 0 \\ \end{array}$

normal $\eta_u : \begin{array}{cccccccc} 2 & 1 & 0 & 1 & 1 & 3 & 0 \\ 2 & 0 & 1 & 1 & 1 & 3 & 0 \\ \end{array}$
In \mathbb{P}^*, embedding $\eta_u = l_1 \ldots l_t$ of u into $w = k_1 \ldots k_t$ is **normal** if

1. $l_i = k_i$, $k_i - 1$, or 0 for all i.
2. $\forall k$ and runs $[r, s]$ of k’s in w \(\begin{cases} (r, t) \subseteq \text{Supp} \eta_u & \text{if } k = 1, \\ r \in \text{Supp} \eta_u & \text{if } k \geq 2. \end{cases} \)

Given $\eta_u = k_1 \ldots k_t$ normal in $w = l_1 \ldots l_t$, it’s **defect** is

\[
d(\eta_u) = \# \{i \mid k_i = l_i - 1\}.
\]

Theorem (S & Vatter)

In \mathbb{P}^* we have

\[
\mu(u, w) = \sum_{\eta_u} (-1)^{d(\eta_u)}
\]

where the sum is over all normal embeddings η_u into w. □

Ex. Suppose $u = 2 1 1 1 3$ and

- abnormal η_u : 2 0 0 1 1 1 3
 0 2 1 1 1 3 0
- normal η_u : 2 1 0 1 1 3 0
 2 0 1 1 1 3 0

So $\mu(u, w) = (-1)^2 + (-1)^0 = 2$.
Theorem (S & Vatter)

In \mathbb{P}^* we have

$$
\mu(u, w) = \sum_{\eta_u} (-1)^{d(\eta_u)}
$$

where the sum is over all normal embeddings η_u into w.

\[\blacksquare \]
Theorem (S & Vatter)

In \mathbb{P}^* we have

$$\mu(u, w) = \sum_{\eta_u} (-1)^{d(\eta_u)}$$

where the sum is over all normal embeddings η_u into w.

There are three proofs of this theorem:

1. (S & Vatter) using a sign-reversing involution.
Theorem (S & Vatter)

In \mathbb{P}^* we have

$$\mu(u, w) = \sum_{\eta_u} (-1)^{d(\eta_u)}$$

where the sum is over all normal embeddings η_u into w.

There are three proofs of this theorem:

1. (S & Vatter) using a sign-reversing involution.
2. (S & Vatter) using Forman’s discrete Morse theory as applied to the order complex by Babson and Hersh. Note that intervals in \mathbb{P}^* are not shellable, in general. Also, the critical chains are in bijective correspondence with normal embeddings.
Theorem (S & Vatter)

In \mathbb{P}^* we have

$$\mu(u, w) = \sum_{\eta_u} (-1)^{d(\eta_u)}$$

where the sum is over all normal embeddings η_u into w.

There are three proofs of this theorem:

1. (S & Vatter) using a sign-reversing involution.
2. (S & Vatter) using Forman’s discrete Morse theory as applied to the order complex by Babson and Hersh. Note that intervals in \mathbb{P}^* are not shellable, in general. Also, the critical chains are in bijective correspondence with normal embeddings.
3. (Björner & S) using formal power series in noncommuting variables.
Outline

Compositions

Rational generating functions

Commuting variables

The zeta and Möbius functions

Comments and open problems
1. Is there a bijective proof that the norm generating function for compositions only depends on type? That is, given $u, u' \in \mathbb{P}^*$ with $t(u) = t(u')$, find a norm-preserving bijection

$$\{ w : w \geq u \} \leftrightarrow \{ w : w \geq u' \}.$$
1. Is there a bijective proof that the norm generating function for compositions only depends on type? That is, given $u, u' \in \mathbb{P}^*$ with $t(u) = t(u')$, find a norm-preserving bijection

$$\{ w : w \geq u \} \leftrightarrow \{ w : w \geq u' \}.$$

2. Björner and Reutenauer gave generating functions for the powers ζ^m for $m \geq 1$ in subword order on A^*. Björner and S were only able to do this for composition order on $[2]^*$, and the proof involved hypergeometric series identities. What can be said for $[n]^*$?
3. What can be said about μ in P^* for an arbitrary poset P?
3. What can be said about μ in P^* for an arbitrary poset P? Call P a *rooted forest* if each component of its Hasse diagram is a tree with a unique minimal element.
3. What can be said about μ in P^* for an arbitrary poset P? Call P a *rooted forest* if each component of its Hasse diagram is a tree with a unique minimal element. In this case, S & Vatter give a formula for μ in P^* similar to the one in P^* with minimal elements acting like $k = 1$ and nonminimal elements acting like the positive integers $k \geq 2$. This theorem has the results for composition order and subword order as special cases.
3. What can be said about μ in P^* for an arbitrary poset P? Call P a **rooted forest** if each component of its Hasse diagram is a tree with a unique minimal element. In this case, S & Vatter give a formula for μ in P^* similar to the one in P^* with minimal elements acting like $k = 1$ and nonminimal elements acting like the positive integers $k \geq 2$. This theorem has the results for composition order and subword order as special cases. The smallest poset which is not a rooted forest is

$$\Lambda = \begin{array}{c} c \\
\ \ \ \ \ \ / \\
\ a \ \ b \end{array}$$
3. What can be said about μ in P^* for an arbitrary poset P? Call P a rooted forest if each component of its Hasse diagram is a tree with a unique minimal element. In this case, S & Vatter give a formula for μ in P^* similar to the one in P^* with minimal elements acting like $k = 1$ and nonminimal elements acting like the positive integers $k \geq 2$. This theorem has the results for composition order and subword order as special cases. The smallest poset which is not a rooted forest is

\[\Lambda = \begin{array}{c} c \\ \downarrow \\ a \\ \downarrow \\ \downarrow \\ b \end{array} \]

Conjecture (Sagan & V)

For all $i \leq j$, the value $\mu(a^i, c^j)$ is the coefficient of x^{j-i} in $T_{i+j}(x)$, the Tchebyshev polynomial of the first kind.
THANKS FOR LISTENING!