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1. Complexes and chromatic polynomials

Let ∆ be a simplicial complex on a finite set E, so

∆ is a family of subsets of E satisfying

S ∈ ∆ and T ⊆ S implies T ∈ ∆.

The S ∈ ∆ are called faces. We assume ∆ is pure

of rank r meaning that |S| = r for all maximal faces

S ∈ ∆. For 0 ≤ i ≤ r, let

fi = fi(∆) = # of faces S ∈ ∆ with |S| = i.

The f-polynomial of ∆ is

f(x) = f0 + f1x + f2x2 + · · · + frx
r.

The h-polynomial of ∆ is

h(x) = (1 − x)rf

(

x

1 − x

)

= f0(1 − x)r + f1x(1 − x)r−1 + · · · + frx
r.

and let

hi = hi(∆) = coefficient of xi in h(x).
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Let G = (V, E) be a graph with |V | = p and |E| = q.

A proper coloring of G is c : V → {1,2, . . . , λ} such

that

vw ∈ E implies c(v) 6= c(w).

The chromatic polynomial of G is

P(G) = P(G;λ) = # of such proper colorings.

Example. Let

G =
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P(G) = # ways to color t, then u, then v, then w

= λ(λ − 1)(λ − 2)(λ − 2)

= λ4 − 5λ3 + 8λ2 − 4λ.

Proposition 1 Let Kp be the edgeless graph and

let T be a tree on p vertices. Then

P(Kp;λ) = λp and P(T ; λ) = λ(λ − 1)p−1.

3



Let G be a graph and e ∈ E. Let

G\e = G with e deleted,

G/e = G with e contracted.

Example. Let
G =
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Theorem 2 (Deletion-Contraction) For e ∈ E

P(G) = P(G\e) − P(G/e)

Proof. If e = vw then

P(G\e) = (# proper c for G\e s.t. c(v) 6= c(w))

+(# proper c for G\e s.t. c(v) = c(w))

= P(G) + P(G/e).

Corollary 3 For any graph G:

1. P(G;λ) is a monic polynomial in λ.

2. degP(G;λ) = p = |V |.

3. Coefficients of P(G;λ) alternate in sign.
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2. NBC complexes

Define coefficients fi by

P(G;λ) = f0λp − f1λp−1 + · · ·

and coefficients hi by

P(G;λ) = h0λ(λ − 1)p−1 − h1λ(λ − 1)p−2 + · · · .

Let

C = C(G) = set of cycles/circuits of G.

Let G be ordered meaning that E has been given

a total order e1 < e2 < . . . < eq. Then each C ∈ C

has broken circuit

C = C − minC.

The NBC complex of G is

∆ = ∆(G) = {S ⊆ E : S contains no C}.

Then ∆(G) is a pure simplicial complex.

Theorem 4 Let P(G;λ) have coefficients fi and hi

as defined above. Then for 0 ≤ i ≤ p

fi = fi(∆(G)) and hi = hi(∆(G)).
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C(G) =
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C̄(G) = {35,34,245}

∆(G) = {∅} ∪ {1,2,3,4,5}

∪{12,13,14,15,23,24,25,45}

∪{123,124,125,145}

(fi(∆)) = (1,5,8,4,0).

P(G;λ) = λ(λ − 1)(λ − 2)2 = λ4 − 5λ3 + 8λ2 − 4λ.
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+ P
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t
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= λ(λ − 1)3 − λ(λ − 1)2 − λ(λ − 1)2 + λ(λ − 1)

= λ(λ − 1)3 − 2λ(λ − 1)2 + λ(λ − 1)

(hi(∆)) = (1,2,1,0,0)
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3. Stanley-Reisner rings and hsop’s

Let F [x] be the polynomial ring over field F with

variables x = {x1, . . . , xq}. If E = {e1, . . . , eq} then

S ⊆ E has monomial

x
S =

∏

ei∈S

xi.

Simplicial complex ∆ has Stanley-Reisner ring

F(∆) = F [x]/(xS : S 6∈ ∆).

In particular, for an ordered graph G we let

F(G) = F(∆(G)) = F [x]/(xC : C ∈ C(G)).

Now F(G) has a homogeneous system of parame-

ters (hsop) of degree one θ1, . . . , θt, i.e.,

1. θi is linear without constant term for all i,

2. θ1, . . . , θt are algebraically independent,

3. F(G)/(θ1, . . . , θt) is finite dim. over F .

Brown gave an explicit hsop for F(G). WLOG G

is connected and let T be a spanning tree of G. If

e ∈ E(T) then e has fundamental disconnecting set

De = De(G) = {f ∈ E(G) : T − e + f connected}

and hsop element (when F = Z2)

θe =
∑

ei∈De

xi.
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C(G) = {13467,2345,12567}

Z2(G) = Z2[x1, . . . , x7]/(x3x4x6x7, x3x4x5, x2x5x6x7)
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θ3 = x3 + x1 + x2
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θ4 = x4 + x1 + x2
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θ5 = x5 + x2
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θ6 = x6 + x1

u

u u u

u u

1

�
�

�
�

3 Q
Q

Q
Q

Q
Q

4�
�

�
�

�
�5

6

@
@

@
@

7

θ7 = x7 + x1
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4. Monomial ideals

If F(∆) has an hsop θ1, . . . , θt we let

R(∆) = F(∆)/(θ1, . . . , θt).

Consider

Mon(k) = set of monomials in F [x1, . . . , xk].

A subset L ⊆ Mon(k) is a lower order ideal if

m ∈ L and n|m imples n ∈ L.

The lower order ideal generated by S ⊆ Mon(k) is

L(S) = {m ∈ Mon(k) : m|n for some n ∈ S}.

Upper ideal and U(S) are defined dually.

Theorem 5 (Macaulay, Stanley) Suppose ∆ is a

simplicial complex and that the ring F(∆) is Cohen-

Macaulay. Then R(∆) has a basis, L, which is a

lower order ideal of monomials and

hi(∆) = # of monomials of total degree i in L.
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For a graph G, F(G) is Cohen-Macaulay. We have

a conjectured construction of a basis for R(G).

An ordering e1 < . . . < eq is standard if the last p−1

edges form a tree. Let k = |E(G)−E(T)|. We can

pick the monomial basis for R(G) inside Mon(k)

since Brown’s θi can be used to eliminate the other

variables, replacing each x
C by a polynomial pC.

Example. In our running example, k = 2 and

Z2(G) = Z2[x1, . . . , x7]/(x3x4x6x7, x3x4x5, x2x5x6x7).
θ3 = x3 + x1 + x2, θ4 = x4 + x1 + x2, θ5 = x5 + x2.

So, picking one of the broken circuit monomials

x
C = x3x4x5 becomes pC = (x1 + x2)

2x2.

For 1 ≤ i ≤ k, the graph T + ei has a unique fun-

damental circuit Ci.

Conjecture 6 Let G be connected. Then there is

a standard ordering of E such that R(G) has basis

L(G) = Mon(k) − U(mC : C ∈ C(G))

where

mC =







x
#Ci
i if C = Ci fundamental,

min pC else.

Here min p picks out the lexicographically smallest

monomial in p.
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Fundamental cycles:
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C1 = {1,3,4,6,7} mC1
= x4
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C2 = {2,3,4,5} mC2
= x3
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Nonfundamental cycle:
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7 C3 = {1,2,5,6,7}

x
C3 = x2x5x6x7

pC3
= x2x2x1x1

mC3
= x2

1x2
2

So R(G) has basis

L(G) = Mon(2) − U(x4
1, x3

2, x2
1x2

2).
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5. Comments

A graph with a standard ordering satisfying the

conjecture is said to have a broken circuit basis.

a. (Generalized) theta graphs and phi graphs have

broken circuit bases.

b. By only considering the fundamental circuits:

Proposition 7 If G has a broken circuit basis and

ci = |Ci| for 1 ≤ i ≤ k, then R(G) is spanned by

L





∏

1≤i≤k

x
ci−2
i



 .

Stanley showed that the number of acyclic orien-

tations of G is given by P(G;−1). So one can use

this proposition to estimate their number.

c. The results we have about broken circuit bases

are proved by deletion/contraction. It is hoped that

together with the ear decomposition of a block we

will be able to prove the full conjecture.

d. The conjecture may even be true for repre-

sentable matroids.
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