The Möbius function of generalized subword order

Peter McNamara Bucknell University

and

Bruce Sagan Michigan State University www.math.msu.edu/~sagan

May 10, 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Möbius function of ordinary subword order

Pattern order and generalized subword order

The Möbius function of generalized subword order

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Open Questions

Outline

The Möbius function of ordinary subword order

Pattern order and generalized subword order

The Möbius function of generalized subword order

Open Questions

Let P be a finite poset (partially ordered set). The set of closed intervals of P is

Int
$$P = \{ [x, y] : x \le y \}.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Let P be a finite poset (partially ordered set). The set of closed intervals of P is

Int
$$P = \{ [x, y] : x \le y \}.$$

The Möbius function of P, μ : Int $P \rightarrow \mathbb{Z}$, is defined recursively by

$$\sum_{z \in [x,y]} \mu(x,z) = \delta_{x,y} = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{else.} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let P be a finite poset (partially ordered set). The set of closed intervals of P is

Int
$$P = \{ [x, y] : x \le y \}.$$

The Möbius function of P, μ : Int $P \rightarrow \mathbb{Z}$, is defined recursively by

$$\sum_{z \in [x,y]} \mu(x,z) = \delta_{x,y} = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{else.} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Möbius function is an important invariant of any poset.

$$A^* = \{w = w(1) \dots w(n) : w(i) \in A \text{ for all } i, n \ge 0\}.$$

<□ > < @ > < E > < E > E のQ @

$$A^* = \{w = w(1) \dots w(n) : w(i) \in A \text{ for all } i, n \ge 0\}.$$

(ロ)、(型)、(E)、(E)、 E) の(の)

A subword of w is $v = w(i_1) \dots w(i_k)$ with $i_1 < \dots < i_k$.

$$A^* = \{w = w(1) \dots w(n) : w(i) \in A \text{ for all } i, n \ge 0\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A subword of w is $v = w(i_1) \dots w(i_k)$ with $i_1 < \dots < i_k$. **Ex.** w = aabba has subword v = aba

$$A^* = \{w = w(1) \dots w(n) : w(i) \in A \text{ for all } i, n \ge 0\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A subword of w is $v = w(i_1) \dots w(i_k)$ with $i_1 < \dots < i_k$. Ex. w = aabba has subword v = aba

$$A^*=\{w=w(1)\ldots w(n) \ : \ w(i)\in A \text{ for all } i,\ n\geq 0\}.$$

・ロト・日本・モート モー うへぐ

A subword of w is $v = w(i_1) \dots w(i_k)$ with $i_1 < \dots < i_k$. **Ex.** w = aabba has subword v = abaSubword order on A^* has $v \le w$ iff v is a subword of w.

$$A^*=\{w=w(1)\ldots w(n)\ :\ w(i)\in A \text{ for all } i,\ n\geq 0\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A subword of w is $v = w(i_1) \dots w(i_k)$ with $i_1 < \dots < i_k$. **Ex.** w = aabba has subword v = abaSubword order on A^* has $v \le w$ iff v is a subword of w. Suppose $0 \notin A$.

$$A^*=\{w=w(1)\ldots w(n)\ :\ w(i)\in A \text{ for all } i,\ n\geq 0\}.$$

A subword of w is $v = w(i_1) \dots w(i_k)$ with $i_1 < \dots < i_k$. **Ex.** w = aabba has subword v = abaSubword order on A^* has $v \le w$ iff v is a subword of w. Suppose $0 \notin A$. An embedding of v in w is $\eta \in (A \cup 0)^*$ gotten by zeroing out letters of w and leaving v.

$$A^*=\{w=w(1)\ldots w(n)\ :\ w(i)\in A \text{ for all } i,\ n\geq 0\}.$$

A subword of w is $v = w(i_1) \dots w(i_k)$ with $i_1 < \dots < i_k$. **Ex.** w = aabba has subword v = aba & embedding $\eta = a00ba$. Subword order on A^* has $v \le w$ iff v is a subword of w. Suppose $0 \notin A$. An embedding of v in w is $\eta \in (A \cup 0)^*$ gotten by zeroing out letters of w and leaving v.

$$A^*=\{w=w(1)\ldots w(n)\ :\ w(i)\in A \text{ for all } i,\ n\geq 0\}.$$

A subword of w is $v = w(i_1) \dots w(i_k)$ with $i_1 < \dots < i_k$. **Ex.** w = aabba has subword v = aba & embedding $\eta = a00ba$. Subword order on A^* has $v \le w$ iff v is a subword of w. Suppose $0 \notin A$. An embedding of v in w is $\eta \in (A \cup 0)^*$ gotten by zeroing out letters of w and leaving v.

 $\therefore v \leq w$ in A^* iff there is an embedding of v in w.

$$A^*=\{w=w(1)\ldots w(n)\ :\ w(i)\in A \text{ for all } i,\ n\geq 0\}.$$

A subword of w is $v = w(i_1) \dots w(i_k)$ with $i_1 < \dots < i_k$. **Ex.** w = aabba has subword v = aba & embedding $\eta = a00ba$. Subword order on A^* has $v \le w$ iff v is a subword of w. Suppose $0 \notin A$. An embedding of v in w is $\eta \in (A \cup 0)^*$ gotten by zeroing out letters of w and leaving v.

 $\therefore v \leq w$ in A^* iff there is an embedding of v in w.

A run in w is a maximal consecutive subword with all elements equal.

$$A^*=\{w=w(1)\ldots w(n)\ :\ w(i)\in A \text{ for all } i,\ n\geq 0\}.$$

A subword of w is $v = w(i_1) \dots w(i_k)$ with $i_1 < \dots < i_k$. **Ex.** w = aabba has subword v = aba & embedding $\eta = a00ba$. Subword order on A^* has $v \le w$ iff v is a subword of w. Suppose $0 \notin A$. An embedding of v in w is $\eta \in (A \cup 0)^*$ gotten by zeroing out letters of w and leaving v.

 $\therefore v \leq w$ in A^* iff there is an embedding of v in w.

A run in w is a maximal consecutive subword with all elements equal.

Ex.
$$w = aabba$$
 has runs aa , bb , and $abba$

$$A^*=\{w=w(1)\ldots w(n)\ :\ w(i)\in A \text{ for all } i,\ n\geq 0\}.$$

A subword of w is $v = w(i_1) \dots w(i_k)$ with $i_1 < \dots < i_k$. **Ex.** w = aabba has subword v = aba & embedding $\eta = a00ba$. Subword order on A^* has $v \le w$ iff v is a subword of w. Suppose $0 \notin A$. An embedding of v in w is $\eta \in (A \cup 0)^*$ gotten by zeroing out letters of w and leaving v.

$\therefore v \leq w$ in A^* iff there is an embedding of v in w.

A run in *w* is a maximal consecutive subword with all elements equal. Normal embeddings can only zero out a letter if it is first in a run (but not all such letters must be made zero).

Ex. w = aabba has runs aa, bb, and a.

$$A^*=\{w=w(1)\ldots w(n)\ :\ w(i)\in A \text{ for all } i,\ n\geq 0\}.$$

A subword of w is $v = w(i_1) \dots w(i_k)$ with $i_1 < \dots < i_k$. **Ex.** w = aabba has subword v = aba & embedding $\eta = a00ba$. Subword order on A^* has $v \le w$ iff v is a subword of w. Suppose $0 \notin A$. An embedding of v in w is $\eta \in (A \cup 0)^*$ gotten by zeroing out letters of w and leaving v.

$\therefore v \leq w$ in A^* iff there is an embedding of v in w.

A run in *w* is a maximal consecutive subword with all elements equal. Normal embeddings can only zero out a letter if it is first in a run (but not all such letters must be made zero).

Ex. w = aabba has runs aa, bb, and a. The only normal embedding of v = aba is 0a0ba.

$$A^*=\{w=w(1)\ldots w(n)\ :\ w(i)\in A \text{ for all } i,\ n\geq 0\}.$$

A subword of w is $v = w(i_1) \dots w(i_k)$ with $i_1 < \dots < i_k$. **Ex.** w = aabba has subword v = aba & embedding $\eta = a00ba$. Subword order on A^* has $v \le w$ iff v is a subword of w. Suppose $0 \notin A$. An embedding of v in w is $\eta \in (A \cup 0)^*$ gotten by zeroing out letters of w and leaving v.

$\therefore v \leq w$ in A^* iff there is an embedding of v in w.

A run in *w* is a maximal consecutive subword with all elements equal. Normal embeddings can only zero out a letter if it is first in a run (but not all such letters must be made zero).

Theorem (Björner)

If |w| denotes the length of w and $v \leq w$ in A^* then

 $\mu(v, w) = (-1)^{|w| - |v|} (\# \text{ of normal embeddings of } v \text{ in } w).$

Ex. w = aabba has runs aa, bb, and a. The only normal embedding of v = aba is 0a0ba.

$$A^*=\{w=w(1)\ldots w(n)\ :\ w(i)\in A \text{ for all } i,\ n\geq 0\}.$$

A subword of w is $v = w(i_1) \dots w(i_k)$ with $i_1 < \dots < i_k$. **Ex.** w = aabba has subword v = aba & embedding $\eta = a00ba$. Subword order on A^* has $v \le w$ iff v is a subword of w. Suppose $0 \notin A$. An embedding of v in w is $\eta \in (A \cup 0)^*$ gotten by zeroing out letters of w and leaving v.

$\therefore v \leq w$ in A^* iff there is an embedding of v in w.

A run in *w* is a maximal consecutive subword with all elements equal. Normal embeddings can only zero out a letter if it is first in a run (but not all such letters must be made zero).

Theorem (Björner)

If |w| denotes the length of w and $v \leq w$ in A^* then

 $\mu(v, w) = (-1)^{|w| - |v|} (\# \text{ of normal embeddings of } v \text{ in } w).$

Ex. w = aabba has runs aa, bb, and a. The only normal embedding of v = aba is 0a0ba. $\therefore \mu(v, w) \equiv (-1)^{5-3} ; 1 \equiv 1 = 0$

The Möbius function of ordinary subword order

Pattern order and generalized subword order

The Möbius function of generalized subword order

Open Questions

 $\pi(i) < \pi(j) \iff \sigma(i) < \sigma(j) \text{ for all } i, j.$

$$\pi(i) < \pi(j) \iff \sigma(i) < \sigma(j) \text{ for all } i, j.$$

Ex. 132 ≅ 475

$$\pi(i) < \pi(j) \iff \sigma(i) < \sigma(j) \text{ for all } i, j.$$

Ex. 132 ≅ 475

Let \mathfrak{S}_n be the symmetric group on $\{1, \ldots, n\}$ and let $\mathfrak{S} = \bigcup_n \mathfrak{S}_n$.

$$\pi(i) < \pi(j) \iff \sigma(i) < \sigma(j) \text{ for all } i, j.$$

Ex. 132 ≅ 475

Let \mathfrak{S}_n be the symmetric group on $\{1, \ldots, n\}$ and let $\mathfrak{S} = \bigcup_n \mathfrak{S}_n$. Say $\sigma \in \mathfrak{S}_n$ contains pattern $\pi \in \mathfrak{S}_k$ if σ has a subword $\sigma' \cong \pi$.

$$\pi(i) < \pi(j) \iff \sigma(i) < \sigma(j) \text{ for all } i, j.$$

Ex. 132 \cong 475 so $\sigma = 6437125$ contains $\pi = 132$. Let \mathfrak{S}_n be the symmetric group on $\{1, \ldots, n\}$ and let $\mathfrak{S} = \bigcup_n \mathfrak{S}_n$. Say $\sigma \in \mathfrak{S}_n$ contains pattern $\pi \in \mathfrak{S}_k$ if σ has a subword $\sigma' \cong \pi$.

$$\pi(i) < \pi(j) \iff \sigma(i) < \sigma(j) \text{ for all } i, j.$$

Ex. 132 \cong 475 so $\sigma = 6437125$ contains $\pi = 132$. Let \mathfrak{S}_n be the symmetric group on $\{1, \ldots, n\}$ and let $\mathfrak{S} = \bigcup_n \mathfrak{S}_n$. Say $\sigma \in \mathfrak{S}_n$ contains pattern $\pi \in \mathfrak{S}_k$ if σ has a subword $\sigma' \cong \pi$. Pattern order on \mathfrak{S} is $\pi \leq \sigma$ iff σ contains π .

$$\pi(i) < \pi(j) \iff \sigma(i) < \sigma(j) \text{ for all } i, j.$$

Ex. 132 \cong 475 so $\sigma = 6437125$ contains $\pi = 132$. Let \mathfrak{S}_n be the symmetric group on $\{1, \ldots, n\}$ and let $\mathfrak{S} = \bigcup_n \mathfrak{S}_n$. Say $\sigma \in \mathfrak{S}_n$ contains pattern $\pi \in \mathfrak{S}_k$ if σ has a subword $\sigma' \cong \pi$. Pattern order on \mathfrak{S} is $\pi \leq \sigma$ iff σ contains π .

Question (Wilf) What is the Möbius function of ©?

$$\pi(i) < \pi(j) \iff \sigma(i) < \sigma(j)$$
 for all i, j .

Ex. 132 \cong 475 so $\sigma = 6437125$ contains $\pi = 132$. Let \mathfrak{S}_n be the symmetric group on $\{1, \ldots, n\}$ and let $\mathfrak{S} = \bigcup_n \mathfrak{S}_n$. Say $\sigma \in \mathfrak{S}_n$ contains pattern $\pi \in \mathfrak{S}_k$ if σ has a subword $\sigma' \cong \pi$. Pattern order on \mathfrak{S} is $\pi \leq \sigma$ iff σ contains π .

Question (Wilf)

What is the Möbius function of \mathfrak{S} ?

Call $\sigma \in \mathfrak{S}$ layered with layer lengths $\ell(\sigma) = (k, l, ...)$ if

$$\sigma = k(k-1)\ldots 1(k+l)(k+l-1)\ldots k+1\ldots$$

$$\pi(i) < \pi(j) \iff \sigma(i) < \sigma(j) \text{ for all } i, j.$$

Ex. $132 \cong 475$ so $\sigma = 6437125$ contains $\pi = 132$. Let \mathfrak{S}_n be the symmetric group on $\{1, \ldots, n\}$ and let $\mathfrak{S} = \bigcup_n \mathfrak{S}_n$. Say $\sigma \in \mathfrak{S}_n$ contains pattern $\pi \in \mathfrak{S}_k$ if σ has a subword $\sigma' \cong \pi$. Pattern order on \mathfrak{S} is $\pi \leq \sigma$ iff σ contains π .

Question (Wilf)

What is the Möbius function of S?

Call $\sigma \in \mathfrak{S}$ layered with layer lengths $\ell(\sigma) = (k, l, \ldots)$ if

$$\sigma = k(k-1)\ldots 1(k+l)(k+l-1)\ldots k+1\ldots$$

Ex. We have that $\sigma = 321|4|65$ is layered with $\ell(\sigma) = (3, 1, 2)$.

$$\pi(i) < \pi(j) \iff \sigma(i) < \sigma(j) \text{ for all } i, j.$$

Ex. 132 \cong 475 so $\sigma = 6437125$ contains $\pi = 132$. Let \mathfrak{S}_n be the symmetric group on $\{1, \ldots, n\}$ and let $\mathfrak{S} = \bigcup_n \mathfrak{S}_n$. Say $\sigma \in \mathfrak{S}_n$ contains pattern $\pi \in \mathfrak{S}_k$ if σ has a subword $\sigma' \cong \pi$. Pattern order on \mathfrak{S} is $\pi \leq \sigma$ iff σ contains π .

Question (Wilf)

What is the Möbius function of \mathfrak{S} ?

Call $\sigma \in \mathfrak{S}$ layered with layer lengths $\ell(\sigma) = (k, l, ...)$ if

$$\sigma = k(k-1)\dots 1(k+l)(k+l-1)\dots k+1\dots$$

Let $\mathfrak{L} \subset \mathfrak{S}$ be the induced order on layered permutations. **Ex.** We have that $\sigma = 321|4|65$ is layered with $\ell(\sigma) = (3, 1, 2)$.

$$\pi(i) < \pi(j) \iff \sigma(i) < \sigma(j) \text{ for all } i, j.$$

Ex. 132 \cong 475 so $\sigma = 6437125$ contains $\pi = 132$. Let \mathfrak{S}_n be the symmetric group on $\{1, \ldots, n\}$ and let $\mathfrak{S} = \bigcup_n \mathfrak{S}_n$. Say $\sigma \in \mathfrak{S}_n$ contains pattern $\pi \in \mathfrak{S}_k$ if σ has a subword $\sigma' \cong \pi$. Pattern order on \mathfrak{S} is $\pi \leq \sigma$ iff σ contains π .

Question (Wilf)

What is the Möbius function of \mathfrak{S} ?

Call $\sigma \in \mathfrak{S}$ layered with layer lengths $\ell(\sigma) = (k, l, ...)$ if

$$\sigma = k(k-1)\dots 1(k+l)(k+l-1)\dots k+1\dots$$

Let $\mathfrak{L} \subset \mathfrak{S}$ be the induced order on layered permutations. **Ex.** We have that $\sigma = 321|4|65$ is layered with $\ell(\sigma) = (3, 1, 2)$. Also $\pi = 21|43$ is layered and $\pi \leq \sigma$ since $\ell(\pi) = (2, 2)$ and $(2, 0, 2) \leq (3, 1, 2)$ component-wise.

Let P be any poset.

Let P be any poset. Generalized subword order on P^* has $v \le w$ iff there is a subword $w(i_1) \dots w(i_k)$ of length |v| with

$$v(1) \leq_P w(i_1), \ldots, v(k) \leq_P w(i_k).$$

Let *P* be any poset. Generalized subword order on P^* has $v \le w$ iff there is a subword $w(i_1) \dots w(i_k)$ of length |v| with

$$v(1) \leq_P w(i_1), \ldots, v(k) \leq_P w(i_k).$$

Ex. 1. P = A an antichain $\implies P^* \cong A^*$ (ordinary subword).

$$v(1) \leq_P w(i_1), \ldots, v(k) \leq_P w(i_k).$$

・ロト・日本・モート モー うへぐ

Ex. 1. P = A an antichain $\implies P^* \cong A^*$ (ordinary subword). 2. $P = \mathbb{P}$ (positive integers) $\implies P^* \cong \mathfrak{L}$ (layered).

$$v(1) \leq_P w(i_1), \ldots, v(k) \leq_P w(i_k).$$

Ex. 1. P = A an antichain $\implies P^* \cong A^*$ (ordinary subword). 2. $P = \mathbb{P}$ (positive integers) $\implies P^* \cong \mathfrak{L}$ (layered). One can generalize embeddings and normal embeddings to P^* .

 $v(1) \leq_P w(i_1), \ldots, v(k) \leq_P w(i_k).$

Ex. 1. P = A an antichain $\implies P^* \cong A^*$ (ordinary subword). 2. $P = \mathbb{P}$ (positive integers) $\implies P^* \cong \mathfrak{L}$ (layered). One can generalize embeddings and normal embeddings to P^* .

Theorem (S. and Vatter)

Let P be a rooted forest. If $v \leq w$ in P^{*} then

$$\mu(\mathbf{v},\mathbf{w}) = \sum_{\eta} (-1)^{d(\eta)}$$

where the sum is over all normal embeddings η of v in w, and $d(\eta)$ is the number of indices i where w(i) covers $\eta(i)$.

 $v(1) \leq_P w(i_1), \ldots, v(k) \leq_P w(i_k).$

Ex. 1. P = A an antichain $\implies P^* \cong A^*$ (ordinary subword). 2. $P = \mathbb{P}$ (positive integers) $\implies P^* \cong \mathfrak{L}$ (layered). One can generalize embeddings and normal embeddings to P^* .

Theorem (S. and Vatter)

Let P be a rooted forest. If $v \leq w$ in P^{*} then

$$\mu(\mathbf{v},\mathbf{w}) = \sum_{\eta} (-1)^{d(\eta)}$$

where the sum is over all normal embeddings η of v in w, and $d(\eta)$ is the number of indices i where w(i) covers $\eta(i)$.

The smallest poset which is not a rooted forest is $\Lambda = a \bullet$

 $v(1) \leq_P w(i_1), \ldots, v(k) \leq_P w(i_k).$

Ex. 1. P = A an antichain $\implies P^* \cong A^*$ (ordinary subword). 2. $P = \mathbb{P}$ (positive integers) $\implies P^* \cong \mathfrak{L}$ (layered). One can generalize embeddings and normal embeddings to P^* .

Theorem (S. and Vatter)

Let P be a rooted forest. If $v \leq w$ in P^{*} then

$$\mu(\mathbf{v},\mathbf{w}) = \sum_{\eta} (-1)^{d(\eta)}$$

h

where the sum is over all normal embeddings η of v in w, and $d(\eta)$ is the number of indices i where w(i) covers $\eta(i)$.

The smallest poset which is not a rooted forest is $\Lambda = a$. Theorem (conjecture: S. and Vatter, proof: Tomie) If $0 \le i \le j$, then in Λ^* we have $\mu(a^i, c^j) = \text{coefficient of } x^{j-i} \text{ in } T_{i+j}(x)$ where $T_n(x)$ is the nth Tchebyshev polynomial of the 1st kind.

The Möbius function of ordinary subword order

Pattern order and generalized subword order

The Möbius function of generalized subword order

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Open Questions

If P is any poset then let P_0 be P with a new minimum element 0.

If P is any poset then let P_0 be P with a new minimum element 0. Let μ_0 be the Möbius function of P_0 ,

If P is any poset then let P_0 be P with a new minimum element 0. Let μ_0 be the Möbius function of P_0 , Call P locally finite if #[a, b] finite for all $a \leq b$ in P.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

If P is any poset then let P_0 be P with a new minimum element 0. Let μ_0 be the Möbius function of P_0 , Call P locally finite if #[a, b] finite for all $a \leq b$ in P. All the previous results are corollaries of:

(日) (日) (日) (日) (日) (日) (日) (日)

If P is any poset then let P_0 be P with a new minimum element 0. Let μ_0 be the Möbius function of P_0 , Call P locally finite if #[a, b] finite for all $a \leq b$ in P. All the previous results are corollaries of:

Theorem (McNamara and S.) Let P be a poset such that P_0 is locally finite. Then

$$\mu(v,w) = \sum_{\eta} \prod_{i=1}^{|w|} \left\{ \begin{array}{ll} \mu_0(\eta(i),w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i-1) = w(i), \\ \mu_0(\eta(i),w(i)) & \text{else,} \end{array} \right.$$

where the sum is over all embeddings η of v in w.

If P is any poset then let P_0 be P with a new minimum element 0. Let μ_0 be the Möbius function of P_0 , Call P locally finite if #[a, b] finite for all $a \leq b$ in P. All the previous results are corollaries of:

Theorem (McNamara and S.) Let P be a poset such that P_0 is locally finite. Then

$$\mu(v,w) = \sum_{\eta} \prod_{i=1}^{|w|} \left\{ egin{array}{l} \mu_0(\eta(i),w(i)) + 1 & \textit{if } \eta(i) = 0 \textit{ and } w(i-1) = w(i), \ \mu_0(\eta(i),w(i)) & \textit{else}, \end{array}
ight.$$

where the sum is over all embeddings η of v in w.

The proof uses discrete Morse theory and classical results about μ ,

$$\mu(v, w) = \sum_{\eta} \prod_{i=1}^{|w|} \left\{ \begin{array}{ll} \mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i-1) = w(i), \\ \mu_0(\eta(i), w(i)) & \text{else,} \end{array} \right.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

$$\mu(v, w) = \sum_{\eta} \prod_{i=1}^{|w|} \begin{cases} \mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i-1) = w(i), \\ \mu_0(\eta(i), w(i)) & \text{else,} \end{cases}$$

If A is an antichain then in A*

 $\mu(v, w) = (-1)^{|w|-|v|} (\# \text{ of normal embeddings of } v \text{ in } w).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\mu(v, w) = \sum_{\eta} \prod_{i=1}^{|w|} \begin{cases} \mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i-1) = w(i), \\ \mu_0(\eta(i), w(i)) & \text{else,} \end{cases}$$

If A is an antichain then in A*

 $\mu(v, w) = (-1)^{|w|-|v|} (\# \text{ of normal embeddings of } v \text{ in } w).$

Proof Claim η not normal iff $(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))$.

$$\mu(v, w) = \sum_{\eta} \prod_{i=1}^{|w|} \begin{cases} \mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i-1) = w(i), \\ \mu_0(\eta(i), w(i)) & \text{else,} \end{cases}$$

If A is an antichain then in A*

 $\mu(v, w) = (-1)^{|w|-|v|} (\# \text{ of normal embeddings of } v \text{ in } w).$

Proof Claim η not normal iff $(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))$. **Proof** $(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))$ iff there exists a 0 in η not at the beginning of a run of w

$$\mu(v, w) = \sum_{\eta} \prod_{i=1}^{|w|} \begin{cases} \mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i-1) = w(i), \\ \mu_0(\eta(i), w(i)) & \text{else,} \end{cases}$$

If A is an antichain then in A*

 $\mu(v, w) = (-1)^{|w|-|v|} (\# \text{ of normal embeddings of } v \text{ in } w).$

Proof Claim η not normal iff $(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))$. **Proof** $(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))$ iff there exists a 0 in η not at the beginning of a run of w iff η not normal. \Box (Claim)

$$\mu(v, w) = \sum_{\eta} \prod_{i=1}^{|w|} \begin{cases} \mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i-1) = w(i), \\ \mu_0(\eta(i), w(i)) & \text{else,} \end{cases}$$

If A is an antichain then in A*

 $\mu(v, w) = (-1)^{|w|-|v|} (\# \text{ of normal embeddings of } v \text{ in } w).$

Proof Claim η not normal iff $(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))$. **Proof** $(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))$ iff there exists a 0 in η not at the beginning of a run of w iff η not normal. \Box (Claim)

Now
$$A_0 = \bigcup_{i=1}^{a} \bigcup_{j=1}^{b} \bigcup_{i=1}^{c} \bigcup_{j=1}^{c} \bigcup_{j=1}^{c} \bigcup_{j=1}^{c} \bigcup_{i=1}^{c} \bigcup_{j=1}^{c} \bigcup_{i=1}^{c} \bigcup_{j=1}^{c} \bigcup_{j=1$$

$$\mu(v, w) = \sum_{\eta} \prod_{i=1}^{|w|} \begin{cases} \mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i-1) = w(i), \\ \mu_0(\eta(i), w(i)) & \text{else,} \end{cases}$$

If A is an antichain then in A*

 $\mu(v, w) = (-1)^{|w|-|v|} (\# \text{ of normal embeddings of } v \text{ in } w).$

Proof Claim η not normal iff $(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))$. **Proof** $(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))$ iff there exists a 0 in η not at the beginning of a run of w iff η not normal. \Box (Claim)

Now
$$A_0 =$$
 $\bigoplus_{i=1}^{a} \bigoplus_{i=1}^{b} \bigoplus_{i=1}^{c} \bigoplus_{i=1}^{c} \mu_0(\eta(i), w(i)) = \begin{cases} +1 & \text{if } \eta(i) = w(i), \\ -1 & \text{if } \eta(i) = 0. \end{cases}$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

$$\mu(v, w) = \sum_{\eta} \prod_{i=1}^{|w|} \begin{cases} \mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i-1) = w(i), \\ \mu_0(\eta(i), w(i)) & \text{else,} \end{cases}$$

If A is an antichain then in A*

 $\mu(v, w) = (-1)^{|w|-|v|} (\# \text{ of normal embeddings of } v \text{ in } w).$

Proof Claim η not normal iff $(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))$. **Proof** $(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))$ iff there exists a 0 in η not at the beginning of a run of w iff η not normal. \Box (Claim)

Now
$$A_0 = \bigcup_{i=0}^{a} \bigoplus_{i=0}^{b} \bigoplus_{i=0}^{c} \bigoplus_{i=0}^{c} \mu_0(\eta(i), w(i)) = \begin{cases} +1 & \text{if } \eta(i) = w(i), \\ -1 & \text{if } \eta(i) = 0. \end{cases}$$

If η not normal then, by the claim, there is a factor in the product equal to $\mu_0(\eta(i), w(i)) + 1$

$$\mu(v, w) = \sum_{\eta} \prod_{i=1}^{|w|} \begin{cases} \mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i-1) = w(i), \\ \mu_0(\eta(i), w(i)) & \text{else,} \end{cases}$$

If A is an antichain then in A*

 $\mu(v, w) = (-1)^{|w|-|v|} (\# \text{ of normal embeddings of } v \text{ in } w).$

Proof Claim η not normal iff $(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))$. **Proof** $(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))$ iff there exists a 0 in η not at the beginning of a run of w iff η not normal. \Box (Claim)

Now
$$A_0 = \bigcup_{i=0}^{a} \bigoplus_{i=0}^{b} \bigoplus_{i=0}^{c} \bigoplus_{i=0}^{c} \mu_0(\eta(i), w(i)) = \begin{cases} +1 & \text{if } \eta(i) = w(i), \\ -1 & \text{if } \eta(i) = 0. \end{cases}$$

If η not normal then, by the claim, there is a factor in the product

If η not normal then, by the claim, there is a factor in the product equal to $\mu_0(\eta(i), w(i)) + 1 = \mu_0(0, w(i)) + 1$

$$\mu(v, w) = \sum_{\eta} \prod_{i=1}^{|w|} \begin{cases} \mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i-1) = w(i), \\ \mu_0(\eta(i), w(i)) & \text{else,} \end{cases}$$

If A is an antichain then in A*

 $\mu(v, w) = (-1)^{|w|-|v|} (\# \text{ of normal embeddings of } v \text{ in } w).$

Proof Claim η not normal iff $(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))$. **Proof** $(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))$ iff there exists a 0 in η not at the beginning of a run of w iff η not normal. \Box (Claim)

Now
$$A_0 = \bigcup_{i=0}^{a} \bigoplus_{i=0}^{b} \bigoplus_{i=0}^{c} \bigoplus_{i=0}^{c} \mu_0(\eta(i), w(i)) = \begin{cases} +1 & \text{if } \eta(i) = w(i), \\ -1 & \text{if } \eta(i) = 0. \end{cases}$$

If η not normal then, by the claim, there is a factor in the product

equal to $\mu_0(\eta(i), w(i)) + 1 = \mu_0(0, w(i)) + 1 = -1 + 1 = 0.$

$$\mu(v, w) = \sum_{\eta} \prod_{i=1}^{|w|} \begin{cases} \mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i-1) = w(i), \\ \mu_0(\eta(i), w(i)) & \text{else,} \end{cases}$$

If A is an antichain then in A*

 $\mu(v, w) = (-1)^{|w|-|v|} (\# \text{ of normal embeddings of } v \text{ in } w).$

Proof Claim η not normal iff $(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))$. **Proof** $(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))$ iff there exists a 0 in η not at the beginning of a run of w iff η not normal. \Box (Claim)

Now
$$A_0 =$$
 $\bigoplus_{i=1}^{a} \bigoplus_{j=1}^{b} \bigoplus_{i=1}^{c} \bigoplus_{j=1}^{c} \mu_0(\eta(i), w(i)) = \begin{cases} +1 & \text{if } \eta(i) = w(i), \\ -1 & \text{if } \eta(i) = 0. \end{cases}$

If η not normal then, by the claim, there is a factor in the product equal to $\mu_0(\eta(i), w(i)) + 1 = \mu_0(0, w(i)) + 1 = -1 + 1 = 0$. If η is normal then, by the claim, every factor of the product is from the "else" case

$$\mu(v, w) = \sum_{\eta} \prod_{i=1}^{|w|} \begin{cases} \mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i-1) = w(i), \\ \mu_0(\eta(i), w(i)) & \text{else,} \end{cases}$$

If A is an antichain then in A*

 $\mu(v, w) = (-1)^{|w|-|v|} (\# \text{ of normal embeddings of } v \text{ in } w).$

Proof Claim η not normal iff $(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))$. **Proof** $(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))$ iff there exists a 0 in η not at the beginning of a run of w iff η not normal. \Box (Claim)

Now
$$A_0 = \bigcup_{i=0}^{a} \bigoplus_{j=0}^{b} \bigoplus_{i=0}^{c} \bigoplus_{j=0}^{c} \mu_0(\eta(i), w(i)) = \begin{cases} +1 & \text{if } \eta(i) = w(i), \\ -1 & \text{if } \eta(i) = 0. \end{cases}$$

If η not normal then, by the claim, there is a factor in the product equal to $\mu_0(\eta(i), w(i)) + 1 = \mu_0(0, w(i)) + 1 = -1 + 1 = 0$. If η is normal then, by the claim, every factor of the product is from the "else" case giving $(-1)^{\# \text{ of } \eta(i) = 0} =$

$$\mu(v, w) = \sum_{\eta} \prod_{i=1}^{|w|} \begin{cases} \mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i-1) = w(i), \\ \mu_0(\eta(i), w(i)) & \text{else,} \end{cases}$$

If A is an antichain then in A*

 $\mu(v, w) = (-1)^{|w|-|v|} (\# \text{ of normal embeddings of } v \text{ in } w).$

Proof Claim η not normal iff $(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))$. **Proof** $(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))$ iff there exists a 0 in η not at the beginning of a run of w iff η not normal. \Box (Claim)

Now
$$A_0 =$$
 $\bigoplus_{i=1}^{a} \bigoplus_{j=1}^{b} \bigoplus_{i=1}^{c} \bigoplus_{j=1}^{c} \mu_0(\eta(i), w(i)) = \begin{cases} +1 & \text{if } \eta(i) = w(i), \\ -1 & \text{if } \eta(i) = 0. \end{cases}$

If η not normal then, by the claim, there is a factor in the product equal to $\mu_0(\eta(i), w(i)) + 1 = \mu_0(0, w(i)) + 1 = -1 + 1 = 0$. If η is normal then, by the claim, every factor of the product is from the "else" case giving $(-1)^{\# \text{ of } \eta(i) = 0} = (-1)^{|w| - |v|}$.

Proposition If (x, y) is finite then

 $\mu(x,y) = \tilde{\chi}(\Delta(x,y))$

where $\tilde{\chi}$ is the reduced Euler characteristic.

Proposition If (x, y) is finite then

 $\mu(x,y) = \tilde{\chi}(\Delta(x,y))$

where $\tilde{\chi}$ is the reduced Euler characteristic.

If P is finite then $x \in P$ has rank $\operatorname{rk} x$ which is that length of a longest chain from a minimal element of P to x.

Proposition If (x, y) is finite then

 $\mu(x,y) = \tilde{\chi}(\Delta(x,y))$

where $\tilde{\chi}$ is the reduced Euler characteristic.

If *P* is finite then $x \in P$ has rank $\operatorname{rk} x$ which is that length of a longest chain from a minimal element of *P* to *x*. The rank of *P* is

 $\operatorname{rk} P = \max_{x \in P} (\operatorname{rk} x).$

Proposition If (x, y) is finite then

 $\mu(x,y) = \tilde{\chi}(\Delta(x,y))$

where $\tilde{\chi}$ is the reduced Euler characteristic.

If *P* is finite then $x \in P$ has rank $\operatorname{rk} x$ which is that length of a longest chain from a minimal element of *P* to *x*. The rank of *P* is

 $\operatorname{rk} P = \max_{x \in P} (\operatorname{rk} x).$

For example, an antichain has rank 0.

Proposition If (x, y) is finite then

 $\mu(x,y) = \tilde{\chi}(\Delta(x,y))$

where $\tilde{\chi}$ is the reduced Euler characteristic.

If *P* is finite then $x \in P$ has rank $\operatorname{rk} x$ which is that length of a longest chain from a minimal element of *P* to *x*. The rank of *P* is

 $\operatorname{rk} P = \max_{x \in P} (\operatorname{rk} x).$

For example, an antichain has rank 0.

Theorem (McNamara and S) Let P be a poset with $\operatorname{rk} P \leq 1$. If v < w then $\Delta(v, w)$ is homotopic to a wedge of $|\mu(v, w)|$ spheres all of dimension |w| - |v| - 2.

Outline

The Möbius function of ordinary subword order

Pattern order and generalized subword order

The Möbius function of generalized subword order

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Open Questions

1. What can be said about the Möbius function of other intervals in \mathfrak{S} (pattern order)?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

2. Ordinary factor order is given by $v \le w$ if v is a subword of consecutive letters in w. Björner determined the Möbius function of ordinary factor order.

2. Ordinary factor order is given by $v \le w$ if v is a subword of consecutive letters in w. Björner determined the Möbius function of ordinary factor order. Generalized factor order on P^* for any poset P can be defined analogously. Willenbring generalized Björner's result to rooted trees. Is there a formula for any P?

2. Ordinary factor order is given by $v \le w$ if v is a subword of consecutive letters in w. Björner determined the Möbius function of ordinary factor order. Generalized factor order on P^* for any poset P can be defined analogously. Willenbring generalized Björner's result to rooted trees. Is there a formula for any P? Note that Bernini-Ferrari-Steingrímsson determined the Möbius function of the consecutive pattern poset and S-Willenbring showed that there is an intimate connection between this poset and ordinary factor order.

THANKS FOR LISTENING!