The Möbius function of generalized subword order

Peter McNamara
Bucknell University

and

Bruce Sagan
Michigan State University

www.math.msu.edu/~sagan

May 10, 2012
The Möbius function of ordinary subword order

Pattern order and generalized subword order

The Möbius function of generalized subword order

Open Questions
Outline

The Möbius function of ordinary subword order

Pattern order and generalized subword order

The Möbius function of generalized subword order

Open Questions
Let P be a finite poset (partially ordered set). The set of closed intervals of P is

$$\text{Int } P = \{[x, y] : x \leq y\}.$$
Let P be a finite poset (partially ordered set). The set of closed intervals of P is

$$\text{Int } P = \{[x, y] : x \leq y\}.$$

The Möbius function of P, $\mu : \text{Int } P \to \mathbb{Z}$, is defined recursively by

$$\sum_{z \in [x, y]} \mu(x, z) = \delta_{x, y} = \begin{cases}
1 & \text{if } x = y, \\
0 & \text{else.}
\end{cases}$$
Let P be a finite poset (partially ordered set). The set of closed intervals of P is
\[\text{Int } P = \{ [x, y] : x \leq y \} \].

The Möbius function of P, $\mu : \text{Int } P \to \mathbb{Z}$, is defined recursively by
\[\sum_{z \in [x, y]} \mu(x, z) = \delta_{x,y} = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{else.} \end{cases} \]

The Möbius function is an important invariant of any poset.
Set A has a **Kleene closure** consisting of all finite words over A:

$$A^* = \{ w = w(1) \ldots w(n) : w(i) \in A \text{ for all } i, \ n \geq 0 \}.$$
Set A has a **Kleene closure** consisting of all finite words over A:

$$A^* = \{ w = w(1) \ldots w(n) : w(i) \in A \text{ for all } i, n \geq 0 \}.$$

A **subword** of w is $v = w(i_1) \ldots w(i_k)$ with $i_1 < \cdots < i_k$.

Ex. $w = aabba$ has subword $v = aba$.

Ex. $w = aabba$ has subword $v = aba$.

Subword order on A^* has $v \leq w$ iff v is a subword of w.

Suppose $0 \not\in A$. An embedding of v in w is $\eta \in (A \cup \{0\})^*$ gotten by zeroing out letters of w and leaving v.

∴ $v \leq w$ in A^* iff there is an embedding of v in w.

A run in w is a maximal consecutive subword with all elements equal.

Normal embeddings can only zero out a letter if it is first in a run (but not all such letters must be made zero).

Theorem (Björner) If $|w|$ denotes the length of w and $v \leq w$ in A^* then

$$\mu(v, w) = (-1)^{|w| - |v|} \cdot \# \text{ of normal embeddings of } v \text{ in } w.$$

Ex. $w = aabba$ has runs aa, bb, and a.

The only normal embedding of $v = aba$ is $0a0ba$.

∴ $\mu(v, w) = (-1)^5 - 3 \cdot 1 = 1$.

Set A has a **Kleene closure** consisting of all finite words over A:

$$A^* = \{ w = w(1) \ldots w(n) : w(i) \in A \text{ for all } i, \ n \geq 0 \}.$$

A **subword** of w is $v = w(i_1) \ldots w(i_k)$ with $i_1 < \cdots < i_k$.

Ex. $w = aabba$ has subword $v = aba$
Set A has a **Kleene closure** consisting of all finite words over A:

$$A^* = \{ w = w(1) \ldots w(n) : w(i) \in A \text{ for all } i, \ n \geq 0 \}. $$

A **subword** of w is $v = w(i_1) \ldots w(i_k)$ with $i_1 < \ldots < i_k$.

Ex. $w = \text{aabba}$ has subword $v = \text{aba}$
Set A has a **Kleene closure** consisting of all finite words over A:

$$A^* = \{ w = w(1) \ldots w(n) : w(i) \in A \text{ for all } i, \ n \geq 0 \}.$$

A **subword** of w is $v = w(i_1) \ldots w(i_k)$ with $i_1 < \ldots < i_k$.

Ex. $w = aabba$ has subword $v = aba$

Subword order on A^* has $v \leq w$ iff v is a subword of w.

Ex. $w = aabba$ has runs aa, bb, and a.

The only normal embedding of $v = aba$ is $0a0ba$.

∴ $\mu(v, w) = (−1)^{5−3} \cdot 1 = 1$.
Set A has a Kleene closure consisting of all finite words over A:

$$A^* = \{w = w(1) \ldots w(n) : w(i) \in A \text{ for all } i, n \geq 0\}.$$

A subword of w is $v = w(i_1) \ldots w(i_k)$ with $i_1 < \cdots < i_k$.

Ex. $w = aabba$ has subword $v = aba$

Subword order on A^* has $v \leq w$ iff v is a subword of w.

Suppose $0 \not\in A$.

Theorem (Bjöörner)

If $|w|$ denotes the length of w and $v \leq w$ in A^*, then

$$\mu(v, w) = (-1)^{|w| - |v|} \cdot \# \text{ of normal embeddings of } v \text{ in } w.$$

Ex. $w = aabba$ has runs aa, bb, and a.

The only normal embedding of $v = aba$ is $0a0ba$.

$\therefore \mu(v, w) = (-1)^5 - 3 \cdot 1 = 1$.
Set A has a **Kleene closure** consisting of all finite words over A:

$$A^* = \{ w = w(1) \ldots w(n) : w(i) \in A \text{ for all } i, \ n \geq 0 \}.$$

A **subword** of w is $v = w(i_1) \ldots w(i_k)$ with $i_1 < \cdots < i_k$.

Ex. $w = aabba$ has subword $v = aba$

Subword order on A^* has $v \leq w$ iff v is a subword of w.

Suppose $0 \not\in A$. An **embedding** of v in w is $\eta \in (A \cup 0)^*$ gotten by zeroing out letters of w and leaving v.
Set A has a **Kleene closure** consisting of all finite words over A:

$$A^* = \{ w = w(1) \ldots w(n) : w(i) \in A \text{ for all } i, \ n \geq 0 \}. $$

A **subword** of w is $v = w(i_1) \ldots w(i_k)$ with $i_1 < \ldots < i_k$.

Ex. $w = aabba$ has subword $v = aba$ & embedding $\eta = a00ba$.

Subword order on A^* has $v \leq w$ iff v is a subword of w.

Suppose $0 \not\in A$. An **embedding** of v in w is $\eta \in (A \cup 0)^*$ gotten by zeroing out letters of w and leaving v.
Set A has a **Kleene closure** consisting of all finite words over A:

$$A^* = \{ w = w(1) \ldots w(n) : w(i) \in A \text{ for all } i, \ n \geq 0 \}.$$

A **subword** of w is $v = w(i_1) \ldots w(i_k)$ with $i_1 < \ldots < i_k$.

Ex. $w = aabba$ has subword $v = aba$ & embedding $\eta = a00ba$.

Subword order on A^* has $v \leq w$ iff v is a subword of w.

Suppose $0 \not\in A$. An **embedding** of v in w is $\eta \in (A \cup 0)^*$ gotten by zeroing out letters of w and leaving v.

$$\therefore v \leq w \text{ in } A^* \text{ iff there is an embedding of } v \text{ in } w.$$
Set A has a Kleene closure consisting of all finite words over A:

$$A^* = \{w = w(1) \ldots w(n) : w(i) \in A \text{ for all } i, n \geq 0\}.$$

A subword of w is $v = w(i_1) \ldots w(i_k)$ with $i_1 < \cdots < i_k$.

Ex. $w = aabba$ has subword $v = aba$ & embedding $\eta = a00ba$.

Subword order on A^* has $v \leq w$ iff v is a subword of w.

Suppose $0 \not\in A$. An embedding of v in w is $\eta \in (A \cup 0)^*$ gotten by zeroing out letters of w and leaving v.

$$\therefore v \leq w \text{ in } A^* \text{ iff there is an embedding of } v \text{ in } w.$$

A run in w is a maximal consecutive subword with all elements equal.
Set A has a **Kleene closure** consisting of all finite words over A:

$$A^* = \{ w = w(1) \ldots w(n) : w(i) \in A \text{ for all } i, \ n \geq 0 \}. $$

A **subword** of w is $v = w(i_1) \ldots w(i_k)$ with $i_1 < \cdots < i_k$.

Ex. $w = \text{aabba}$ has subword $v = \text{aba}$ & embedding $\eta = \text{a00ba}$.

Subword order on A^* has $v \leq w$ iff v is a subword of w.

Suppose $0 \notin A$. An **embedding** of v in w is $\eta \in (A \cup 0)^*$ gotten by zeroing out letters of w and leaving v.

$$\therefore v \leq w \text{ in } A^* \text{ iff there is an embedding of } v \text{ in } w.$$

A **run** in w is a maximal consecutive subword with all elements equal.

Ex. $w = \text{aabba}$ has runs aa, bb, and a.
Set A has a **Kleene closure** consisting of all finite words over A:

$$A^* = \{ w = w(1) \ldots w(n) : w(i) \in A \text{ for all } i, \ n \geq 0 \}.$$

A **subword** of w is $v = w(i_1) \ldots w(i_k)$ with $i_1 < \cdots < i_k$.

Ex. $w = aabba$ has subword $v = aba$ & embedding $\eta = a00ba$.

Subword order on A^* has $v \leq w$ iff v is a subword of w.

Suppose $0 \not\in A$. An **embedding** of v in w is $\eta \in (A \cup 0)^*$ gotten by zeroing out letters of w and leaving v.

$$\therefore v \leq w \text{ in } A^* \text{ iff there is an embedding of } v \text{ in } w.$$

A **run** in w is a maximal consecutive subword with all elements equal. **Normal** embeddings can only zero out a letter if it is first in a run (but not all such letters must be made zero).

Ex. $w = aabba$ has runs aa, bb, and a.
Set A has a **Kleene closure** consisting of all finite words over A:

$$A^* = \{ w = w(1) \ldots w(n) : w(i) \in A \text{ for all } i, \ n \geq 0 \}.$$

A **subword** of w is $v = w(i_1) \ldots w(i_k)$ with $i_1 < \cdots < i_k$.

Ex. $w = aabba$ has subword $v = aba$ & embedding $\eta = a00ba$.

Subword order on A^* has $v \leq w$ iff v is a subword of w.

Suppose $0 \not\in A$. An **embedding** of v in w is $\eta \in (A \cup 0)^*$ gotten by zeroing out letters of w and leaving v.

$$\therefore v \leq w \text{ in } A^* \text{ iff there is an embedding of } v \text{ in } w.$$

A **run** in w is a maximal consecutive subword with all elements equal. **Normal** embeddings can only zero out a letter if it is first in a run (but not all such letters must be made zero).

Ex. $w = aabba$ has runs aa, bb, and a. The only normal embedding of $v = aba$ is $0a0ba$.

Set A has a **Kleene closure** consisting of all finite words over A:

$$A^* = \{ w = w(1) \ldots w(n) : w(i) \in A \text{ for all } i, \ n \geq 0 \}.$$

A **subword** of w is $v = w(i_1) \ldots w(i_k)$ with $i_1 < \cdots < i_k$.

Ex. $w = aabba$ has subword $v = aba$ & embedding $\eta = a00ba$.

Subword order on A^* has $v \leq w$ iff v is a subword of w.

Suppose $0 \notin A$. An **embedding** of v in w is $\eta \in (A \cup 0)^*$ gotten by zeroing out letters of w and leaving v.

$$\therefore v \leq w \text{ in } A^* \text{ iff there is an embedding of } v \text{ in } w.$$

A **run** in w is a maximal consecutive subword with all elements equal. **Normal** embeddings can only zero out a letter if it is first in a run (but not all such letters must be made zero).

Theorem (Björner)

If $|w|$ denotes the length of w and $v \leq w$ in A^ then*

$$\mu(v, w) = (-1)^{|w|-|v|}(\# \text{ of normal embeddings of } v \text{ in } w).$$

Ex. $w = aabba$ has runs aa, bb, and a. The only normal embedding of $v = aba$ is $0a0ba$.

Set A has a **Kleene closure** consisting of all finite words over A:

$$A^* = \{ w = w(1) \ldots w(n) : w(i) \in A \text{ for all } i, \ n \geq 0 \}.$$

A **subword** of w is $v = w(i_1) \ldots w(i_k)$ with $i_1 < \cdots < i_k$.

Ex. $w = \text{aabba}$ has subword $v = \text{aba}$ & embedding $\eta = a00ba$.

Subword order on A^* has $v \leq w$ iff v is a subword of w.

Suppose $0 \notin A$. An **embedding** of v in w is $\eta \in (A \cup 0)^*$ gotten by zeroing out letters of w and leaving v.

$$\therefore v \leq w \text{ in } A^* \text{ iff there is an embedding of } v \text{ in } w.$$

A **run** in w is a maximal consecutive subword with all elements equal. **Normal** embeddings can only zero out a letter if it is first in a run (but not all such letters must be made zero).

Theorem (Björner)

If $|w|$ denotes the length of w and $v \leq w$ in A^ then*

$$\mu(v, w) = (-1)^{|w| - |v|}(\# \text{ of normal embeddings of } v \text{ in } w).$$

Ex. $w = \text{aabba}$ has runs aa, bb, and a. The only normal embedding of $v = \text{aba}$ is $0a0ba$. $\therefore \mu(v, w) = (-1)^{5-3} \cdot 1 = 1.$
Outline

The Möbius function of ordinary subword order

Pattern order and generalized subword order

The Möbius function of generalized subword order

Open Questions
Call sequences of distinct integers \(\pi = \pi(1) \ldots \pi(k) \) and
\(\sigma = \sigma(1) \ldots \sigma(k) \) order isomorphic, \(\pi \cong \sigma \), if

\[
\pi(i) < \pi(j) \iff \sigma(i) < \sigma(j) \text{ for all } i, j.
\]
Call sequences of distinct integers $\pi = \pi(1)\ldots\pi(k)$ and $\sigma = \sigma(1)\ldots\sigma(k)$ order isomorphic, $\pi \cong \sigma$, if

$$\pi(i) < \pi(j) \iff \sigma(i) < \sigma(j) \text{ for all } i, j.$$

Ex. $132 \cong 475$
Call sequences of distinct integers $\pi = \pi(1) \ldots \pi(k)$ and $\sigma = \sigma(1) \ldots \sigma(k)$ order isomorphic, $\pi \cong \sigma$, if

$$\pi(i) < \pi(j) \iff \sigma(i) < \sigma(j) \text{ for all } i, j.$$

Ex. $132 \cong 475$

Let S_n be the symmetric group on $\{1, \ldots, n\}$ and let $S = \bigcup_n S_n$.
Call sequences of distinct integers \(\pi = \pi(1) \ldots \pi(k) \) and \(\sigma = \sigma(1) \ldots \sigma(k) \) order isomorphic, \(\pi \cong \sigma \), if

\[
\pi(i) < \pi(j) \iff \sigma(i) < \sigma(j)
\]

for all \(i, j \).

Ex. 132 \(\cong \) 475

Let \(\mathcal{S}_n \) be the symmetric group on \(\{1, \ldots, n\} \) and let \(\mathcal{S} = \bigcup_n \mathcal{S}_n \).

Say \(\sigma \in \mathcal{S}_n \) contains pattern \(\pi \in \mathcal{S}_k \) if \(\sigma \) has a subword \(\sigma' \cong \pi \).
Call sequences of distinct integers $\pi = \pi(1)\ldots\pi(k)$ and $\sigma = \sigma(1)\ldots\sigma(k)$ order isomorphic, $\pi \cong \sigma$, if

$$\pi(i) < \pi(j) \iff \sigma(i) < \sigma(j) \text{ for all } i, j.$$

Ex. $132 \cong 475$ so $\sigma = 6437125$ contains $\pi = 132$.

Let \mathcal{S}_n be the symmetric group on $\{1, \ldots, n\}$ and let $\mathcal{S} = \bigcup_n \mathcal{S}_n$.

Say $\sigma \in \mathcal{S}_n$ contains pattern $\pi \in \mathcal{S}_k$ if σ has a subword $\sigma' \cong \pi$.

Call sequences of distinct integers $\pi = \pi(1) \ldots \pi(k)$ and $\sigma = \sigma(1) \ldots \sigma(k)$ order isomorphic, $\pi \cong \sigma$, if

$$\pi(i) < \pi(j) \iff \sigma(i) < \sigma(j) \text{ for all } i, j.$$

Ex. $132 \cong 475$ so $\sigma = 6437125$ contains $\pi = 132$.

Let G_n be the symmetric group on $\{1, \ldots, n\}$ and let $G = \cup_n G_n$.
Say $\sigma \in G_n$ contains pattern $\pi \in G_k$ if σ has a subword $\sigma' \cong \pi$.
Pattern order on G is $\pi \leq \sigma$ iff σ contains π.

Call sequences of distinct integers $\pi = \pi(1) \ldots \pi(k)$ and $\sigma = \sigma(1) \ldots \sigma(k)$ order isomorphic, $\pi \cong \sigma$, if

$$\pi(i) < \pi(j) \iff \sigma(i) < \sigma(j)$$

for all i, j.

Ex. $132 \cong 475$ so $\sigma = 6437125$ contains $\pi = 132$.

Let \mathcal{S}_n be the symmetric group on $\{1, \ldots, n\}$ and let $\mathcal{S} = \bigcup_n \mathcal{S}_n$.

Say $\sigma \in \mathcal{S}_n$ contains pattern $\pi \in \mathcal{S}_k$ if σ has a subword $\sigma' \cong \pi$.

Pattern order on \mathcal{S} is $\pi \leq \sigma$ iff σ contains π.

Question (Wilf)

What is the Möbius function of \mathcal{S}?
Call sequences of distinct integers $\pi = \pi(1) \ldots \pi(k)$ and $\sigma = \sigma(1) \ldots \sigma(k)$ order isomorphic, $\pi \cong \sigma$, if

$$\pi(i) < \pi(j) \iff \sigma(i) < \sigma(j) \quad \text{for all } i, j.$$

Ex. $132 \cong 475$ so $\sigma = 6437125$ contains $\pi = 132$.

Let \mathcal{S}_n be the *symmetric group* on $\{1, \ldots, n\}$ and let $\mathcal{S} = \bigcup_n \mathcal{S}_n$. Say $\sigma \in \mathcal{S}_n$ contains pattern $\pi \in \mathcal{S}_k$ if σ has a subword $\sigma' \cong \pi$. Pattern order on \mathcal{S} is $\pi \leq \sigma$ iff σ contains π.

Question (Wilf)

What is the Möbius function of \mathcal{S}?

Call $\sigma \in \mathcal{S}$ *layered* with layer lengths $\ell(\sigma) = (k, l, \ldots)$ if

$$\sigma = k(k - 1) \ldots 1(k + l)(k + l - 1) \ldots k + 1 \ldots.$$
Call sequences of distinct integers $\pi = \pi(1) \ldots \pi(k)$ and $\sigma = \sigma(1) \ldots \sigma(k)$ order isomorphic, $\pi \cong \sigma$, if

$$\pi(i) < \pi(j) \iff \sigma(i) < \sigma(j) \quad \text{for all } i, j.$$

Ex. $132 \cong 475$ so $\sigma = 6437125$ contains $\pi = 132$.

Let \mathcal{S}_n be the symmetric group on $\{1, \ldots, n\}$ and let $\mathcal{S} = \bigcup_n \mathcal{S}_n$. Say $\sigma \in \mathcal{S}_n$ contains pattern $\pi \in \mathcal{S}_k$ if σ has a subword $\sigma' \cong \pi$. Pattern order on \mathcal{S} is $\pi \leq \sigma$ iff σ contains π.

Question (Wilf)

What is the Möbius function of \mathcal{S}?

Call $\sigma \in \mathcal{S}$ layered with layer lengths $\ell(\sigma) = (k, l, \ldots)$ if

$$\sigma = k(k - 1) \ldots 1(k + l)(k + l - 1) \ldots k + 1 \ldots.$$

Ex. We have that $\sigma = 321|4|65$ is layered with $\ell(\sigma) = (3, 1, 2)$.
Call sequences of distinct integers $\pi = \pi(1)\ldots \pi(k)$ and $\sigma = \sigma(1)\ldots \sigma(k)$ order isomorphic, $\pi \cong \sigma$, if

$$\pi(i) < \pi(j) \iff \sigma(i) < \sigma(j)$$

for all i, j.

Ex. $132 \cong 475$ so $\sigma = 6437125$ contains $\pi = 132$.

Let \mathcal{S}_n be the symmetric group on $\{1, \ldots, n\}$ and let $\mathcal{S} = \bigcup_n \mathcal{S}_n$. Say $\sigma \in \mathcal{S}_n$ contains pattern $\pi \in \mathcal{S}_k$ if σ has a subword $\sigma' \cong \pi$. Pattern order on \mathcal{S} is $\pi \leq \sigma$ iff σ contains π.

Question (Wilf)

What is the Möbius function of \mathcal{S}?

Call $\sigma \in \mathcal{S}$ layered with layer lengths $\ell(\sigma) = (k, l, \ldots)$ if

$$\sigma = k(k - 1)\ldots 1(k + l)(k + l - 1)\ldots k + 1\ldots$$

Let $\mathcal{L} \subset \mathcal{S}$ be the induced order on layered permutations.

Ex. We have that $\sigma = 321|4|65$ is layered with $\ell(\sigma) = (3, 1, 2)$.
Call sequences of distinct integers $\pi = \pi(1) \ldots \pi(k)$ and $\sigma = \sigma(1) \ldots \sigma(k)$ order isomorphic, $\pi \cong \sigma$, if

$$\pi(i) < \pi(j) \iff \sigma(i) < \sigma(j) \text{ for all } i, j.$$

Ex. $132 \cong 475$ so $\sigma = 6437125$ contains $\pi = 132$.

Let \mathcal{S}_n be the symmetric group on $\{1, \ldots, n\}$ and let $\mathcal{S} = \bigcup_n \mathcal{S}_n$.

Say $\sigma \in \mathcal{S}_n$ contains pattern $\pi \in \mathcal{S}_k$ if σ has a subword $\sigma' \cong \pi$.

Pattern order on \mathcal{S} is $\pi \leq \sigma$ iff σ contains π.

Question (Wilf)

What is the Möbius function of \mathcal{S}?

Call $\sigma \in \mathcal{S}$ layered with layer lengths $\ell(\sigma) = (k, l, \ldots)$ if

$$\sigma = k(k - 1) \ldots 1(k + l)(k + l - 1) \ldots k + 1 \ldots.$$

Let $\mathcal{L} \subset \mathcal{S}$ be the induced order on layered permutations.

Ex. We have that $\sigma = 321|4|65$ is layered with $\ell(\sigma) = (3, 1, 2)$.

Also $\pi = 21|43$ is layered and $\pi \leq \sigma$ since $\ell(\pi) = (2, 2)$ and $(2, 0, 2) \leq (3, 1, 2)$ component-wise.
Let P be any poset.
Let P be any poset. **Generalized subword order** on P^* has $v \leq w$ iff there is a subword $w(i_1) \ldots w(i_k)$ of length $|v|$ with

$$v(1) \leq_P w(i_1), \ldots, v(k) \leq_P w(i_k).$$
Let P be any poset. **Generalized subword order** on P^* has $v \leq w$ iff there is a subword $w(i_1)\ldots w(i_k)$ of length $|v|$ with

$v(1) \leq_P w(i_1), \ldots, v(k) \leq_P w(i_k)$.

Ex. 1. $P = A$ an antichain $\implies P^* \cong A^*$ (ordinary subword).
Let P be any poset. **Generalized subword order** on P^* has $v \leq w$ iff there is a subword $w(i_1) \ldots w(i_k)$ of length $|v|$ with

$$v(1) \leq_P w(i_1), \ldots, v(k) \leq_P w(i_k).$$

Ex.
1. $P = A$ an antichain $\implies P^* \cong A^*$ (ordinary subword).
2. $P = \mathbb{P}$ (positive integers) $\implies P^* \cong \mathcal{L}$ (layered).
Let P be any poset. **Generalized subword order** on P^* has $v \leq w$ iff there is a subword $w(i_1) \ldots w(i_k)$ of length $|v|$ with

$$v(1) \leq_P w(i_1), \ldots, v(k) \leq_P w(i_k).$$

Ex. 1. $P = A$ an antichain $\implies P^* \cong A^*$ (ordinary subword).

2. $P = \mathbb{P}$ (positive integers) $\implies P^* \cong \mathcal{L}$ (layered).

One can generalize embeddings and normal embeddings to P^*.

Theorem (S. and Vatter)

Let P be a rooted forest. If $v \leq w$ in P^* then

$$\mu(v, w) = \sum \eta(-1)^{d(\eta)}$$

where the sum is over all normal embeddings η of v in w, and $d(\eta)$ is the number of indices i where $w(i)$ covers $\eta(i)$.

Theorem (conjecture: S. and Vatter, proof: Tomie)

If $0 \leq i \leq j$, then in Λ^* we have

$$\mu(a_i, c_j) = \text{coefficient of } x^{j-i} \text{ in } T_{i+j}(x)$$

where $T_n(x)$ is the nth Tchebyshev polynomial of the 1st kind.
Let P be any poset. Generalized subword order on P^* has $v \leq w$ iff there is a subword $w(i_1) \ldots w(i_k)$ of length $|v|$ with

$$v(1) \leq_P w(i_1), \ldots, v(k) \leq_P w(i_k).$$

Ex. 1. $P = A$ an antichain $\implies P^* \cong A^*$ (ordinary subword).
2. $P = \mathbb{P}$ (positive integers) $\implies P^* \cong \mathcal{L}$ (layered).

One can generalize embeddings and normal embeddings to P^*.

Theorem (S. and Vatter)

Let P be a rooted forest. If $v \leq w$ in P^* then

$$\mu(v, w) = \sum_{\eta} (-1)^{d(\eta)}$$

where the sum is over all normal embeddings η of v in w, and $d(\eta)$ is the number of indices i where $w(i)$ covers $\eta(i)$.
Let P be any poset. Generalized subword order on P^* has $v \leq w$ iff there is a subword $w(i_1) \ldots w(i_k)$ of length $|v|$ with
\[v(1) \leq_P w(i_1), \ldots, v(k) \leq_P w(i_k).\]

Ex.
1. $P = A$ an antichain $\implies P^* \cong A^*$ (ordinary subword).
2. $P = \mathbb{P}$ (positive integers) $\implies P^* \cong \mathcal{L}$ (layered).

One can generalize embeddings and normal embeddings to P^*.

Theorem (S. and Vatter)

Let P be a rooted forest. If $v \leq w$ in P^* then
\[\mu(v, w) = \sum_{\eta} (-1)^{d(\eta)}\]
where the sum is over all normal embeddings η of v in w, and $d(\eta)$ is the number of indices i where $w(i)$ covers $\eta(i)$.

The smallest poset which is not a rooted forest is $\Lambda = \begin{array}{c} \text{c} \\
\text{a} \end{array} \quad \begin{array}{c} \text{b} \end{array}$
Let \(P \) be any poset. Generalized subword order on \(P^* \) has \(v \leq w \) iff there is a subword \(w(i_1) \ldots w(i_k) \) of length \(|v| \) with
\[
v(1) \leq_P w(i_1), \ldots, v(k) \leq_P w(i_k).
\]

Ex. 1. \(P = A \) an antichain \(\implies P^* \cong A^* \) (ordinary subword).
2. \(P = \mathbb{P} \) (positive integers) \(\implies P^* \cong \mathfrak{L} \) (layered).

One can generalize embeddings and normal embeddings to \(P^* \).

Theorem (S. and Vatter)

Let \(P \) be a rooted forest. If \(v \leq w \) in \(P^* \) then
\[
\mu(v, w) = \sum_\eta (-1)^{d(\eta)}
\]
where the sum is over all normal embeddings \(\eta \) of \(v \) in \(w \), and \(d(\eta) \) is the number of indices \(i \) where \(w(i) \) covers \(\eta(i) \).

The smallest poset which is not a rooted forest is \(\Lambda = a \bullet \overrightarrow{b} \).

Theorem (conjecture: S. and Vatter, proof: Tomie)

If \(0 \leq i \leq j \), then in \(\Lambda^* \) we have
\[
\mu(a^i, c^j) = \text{coefficient of } x^{j-i} \text{ in } T_{i+j}(x)
\]
where \(T_n(x) \) is the \(n \)th Tchebyshev polynomial of the 1st kind.
Outline

The Möbius function of ordinary subword order

Pattern order and generalized subword order

The Möbius function of generalized subword order

Open Questions
If P is any poset then let P_0 be P with a new minimum element 0.
If P is any poset then let P_0 be P with a new minimum element 0. Let μ_0 be the Möbius function of P_0.

The proof uses discrete Morse theory and classical results about μ.

If P is any poset then let P_0 be P with a new minimum element 0. Let μ_0 be the Möbius function of P_0. Call P locally finite if $\# [a, b]$ finite for all $a \leq b$ in P.

Theorem (McNamara and S.) Let P be a poset such that P_0 is locally finite. Then

$$
\mu(v, w) = \sum_{\eta \mid w} \prod_{i=1}^{\eta(0)} \left\{ \mu_0(\eta(i), w(i)) + 1 \text{ if } \eta(i) = 0 \text{ and } w(i-1) = w(i), \right. \\
\mu_0(\eta(i), w(i)) \text{ else,}
$$

where the sum is over all embeddings η of v in w.

The proof uses discrete Morse theory and classical results about μ,.
If P is any poset then let P_0 be P with a new minimum element 0. Let μ_0 be the Möbius function of P_0, Call P locally finite if $\#[a, b]$ finite for all $a \leq b$ in P. All the previous results are corollaries of:
If P is any poset then let P_0 be P with a new minimum element 0. Let μ_0 be the Möbius function of P_0, Call P locally finite if $\# [a, b]$ finite for all $a \leq b$ in P. All the previous results are corollaries of:

Theorem (McNamara and S.)

Let P be a poset such that P_0 is locally finite. Then

$$
\mu(v, w) = \sum \prod_{\eta_i=1}^{\frac{|w|}{\eta}} \begin{cases}
\mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i - 1) = w(i), \\
\mu_0(\eta(i), w(i)) & \text{else},
\end{cases}
$$

*where the sum is over all embeddings η of v in w.***
If P is any poset then let P_0 be P with a new minimum element 0. Let μ_0 be the Möbius function of P_0, Call P locally finite if $\#[a, b]$ finite for all $a \leq b$ in P. All the previous results are corollaries of:

Theorem (McNamara and S.)

Let P be a poset such that P_0 is locally finite. Then

$$\mu(v, w) = \sum_{\eta} \prod_{i=1}^{|w|} \left\{ \begin{array}{ll} \mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i-1) = w(i), \\ \mu_0(\eta(i), w(i)) & \text{else,} \end{array} \right.$$

where the sum is over all embeddings η of v in w.

The proof uses discrete Morse theory and classical results about μ.
\[\mu(v, w) = \sum_{\eta} \prod_{i=1}^{\lvert w \rvert} \left\{ \begin{array}{ll} \mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i - 1) = w(i), \\
\mu_0(\eta(i), w(i)) & \text{else,} \end{array} \right. \]
\[\mu(v, w) = \sum \prod_{i=1}^{\lvert w \rvert} \begin{cases}
\mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i - 1) = w(i), \\
\mu_0(\eta(i), w(i)) & \text{else},
\end{cases} \]

Corollary

If A is an antichain then in A\(^*\)

\[\mu(v, w) = (-1)^{\lvert w \rvert - \lvert v \rvert} (\# \text{ of normal embeddings of } v \text{ in } w). \]
\[
\mu(v, w) = \sum \prod_{i=1}^{\lfloor w \rfloor} \begin{cases}
\mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i - 1) = w(i), \\
\mu_0(\eta(i), w(i)) & \text{else,}
\end{cases}
\]

Corollary

If \(A \) is an antichain then in \(A^* \)
\[
\mu(v, w) = (-1)^{|w| - |v|} (\# \text{ of normal embeddings of } v \text{ in } w).
\]

Proof Claim \(\eta \) not normal iff \((\exists i : \eta(i) = 0 \text{ and } w(i - 1) = w(i))\).
\[\mu(v, w) = \sum_{\eta} \prod_{i=1}^{|w|} \left\{ \begin{array}{ll}
\mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i-1) = w(i), \\
\mu_0(\eta(i), w(i)) & \text{else,}
\end{array} \right. \]

Corollary

If A is an antichain then in \(A^ \)*

\[\mu(v, w) = (-1)^{|w| - |v|} (\# \text{ of normal embeddings of } v \text{ in } w). \]

Proof Claim \(\eta \) not normal iff \((\exists i : \eta(i) = 0 \text{ and } w(i - 1) = w(i)) \).

Proof \((\exists i : \eta(i) = 0 \text{ and } w(i - 1) = w(i)) \) iff there exists a 0 in \(\eta \) not at the beginning of a run of \(w \).
\[\mu(v, w) = \sum_{\eta} \prod_{i=1}^{\|w\|} \left\{ \begin{array}{ll} \mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i - 1) = w(i), \\ \mu_0(\eta(i), w(i)) & \text{else,} \end{array} \right. \]

Corollary

If \(A \) is an antichain then in \(A^* \)

\[\mu(v, w) = (-1)^{\|w\| - \|v\|} (\# \text{ of normal embeddings of } v \text{ in } w).\]

Proof Claim \(\eta \) not normal iff (\(\exists i : \eta(i) = 0 \text{ and } w(i - 1) = w(i) \)).

Proof (\(\exists i : \eta(i) = 0 \text{ and } w(i - 1) = w(i) \)) iff there exists a 0 in \(\eta \) not at the beginning of a run of \(w \) iff \(\eta \) not normal. \(\square \) (Claim)
\[\mu(v, w) = \sum_{\eta} \prod_{i=1}^{\left| w \right|} \begin{cases} \mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i - 1) = w(i), \\ \mu_0(\eta(i), w(i)) & \text{else}, \end{cases} \]

Corollary

If \(A \) is an antichain then in \(A^ \)

\[\mu(v, w) = (-1)^{\left| w \right| - \left| v \right|} (\# \text{ of normal embeddings of } v \text{ in } w). \]

Proof
Claim
\(\eta \) not normal iff \((\exists i : \eta(i) = 0 \text{ and } w(i - 1) = w(i)) \).

Proof
\((\exists i : \eta(i) = 0 \text{ and } w(i - 1) = w(i)) \) iff there exists a 0 in \(\eta \) not at the beginning of a run of \(w \) iff \(\eta \) not normal. \(\square \) (Claim)

Now \(A_0 = \) [Diagram of a tree with nodes labeled a, b, c, ... and a root labeled 0]
\[
\mu(v, w) = \sum_{\eta} \prod_{i=1}^{\text{\mid w\mid}} \begin{cases}
\mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i-1) = w(i), \\
\mu_0(\eta(i), w(i)) & \text{else},
\end{cases}
\]

Corollary

If A is an antichain then in A \(A^* \)

\[
\mu(v, w) = (-1)^{\mid w \mid - \mid v \mid} (\# \text{ of normal embeddings of } v \text{ in } w).
\]

Proof
Claim \(\eta \) not normal iff (\(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i) \)).

Proof
(\(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i) \)) iff there exists a 0 in \(\eta \) not at the beginning of a run of \(w \) iff \(\eta \) not normal. \(\square \) (Claim)

Now \(A_0 = \begin{array}{c}
\text{a b c }\
\text{0}
\end{array} \implies \mu_0(\eta(i), w(i)) = \begin{cases}
+1 & \text{if } \eta(i) = w(i), \\
-1 & \text{if } \eta(i) = 0.
\end{cases}
\)
\[
\mu(v, w) = \sum_{\eta} \prod_{i=1}^{|w|} \left\{ \begin{array}{ll}
\mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i-1) = w(i), \\
\mu_0(\eta(i), w(i)) & \text{else},
\end{array} \right.
\]

Corollary

If A is an antichain then in \(A^ \)*

\[
\mu(v, w) = (-1)^{|w|-|v|} \left(\# \text{ of normal embeddings of } v \text{ in } w \right).
\]

Proof Claim \(\eta \) not normal iff \((\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))\).

Proof \((\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))\) iff there exists a 0 in \(\eta \) not at the beginning of a run of \(w \) iff \(\eta \) not normal. \(\square \) (Claim)

Now \(A_0 = \)

Now \(A_0 = \)

\[
\mu_0(\eta(i), w(i)) = \left\{ \begin{array}{ll}
+1 & \text{if } \eta(i) = w(i), \\
-1 & \text{if } \eta(i) = 0.
\end{array} \right.
\]

If \(\eta \) not normal then, by the claim, there is a factor in the product equal to \(\mu_0(\eta(i), w(i)) + 1 \)
\[\mu(v, w) = \sum_{\eta} \prod_{i=1}^{\lvert w \rvert} \begin{cases} \mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i-1) = w(i), \\ \mu_0(\eta(i), w(i)) & \text{else}, \end{cases} \]

Corollary

If A is an antichain then in A:

\[\mu(v, w) = (-1)^{|w|-|v|}(\# \text{ of normal embeddings of } v \text{ in } w). \]

Proof Claim \(\eta \) not normal iff \((\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i)) \).

Proof \((\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i)) \) iff there exists a 0 in \(\eta \) not at the beginning of a run of \(w \) iff \(\eta \) not normal. \(\square \) (Claim)

Now \(A_0 = \begin{array}{c}
0 \\
\bullet \\
\bullet \\
\bullet \\
a \\
b \\
c \\
\cdots
\end{array} \iff \mu_0(\eta(i), w(i)) = \begin{cases} +1 & \text{if } \eta(i) = w(i), \\ -1 & \text{if } \eta(i) = 0. \end{cases} \]

If \(\eta \) not normal then, by the claim, there is a factor in the product equal to \(\mu_0(\eta(i), w(i)) + 1 = \mu_0(0, w(i)) + 1 \).
\[\mu(v, w) = \sum_{\eta} \prod_{i=1}^{\lvert w \rvert} \begin{cases}
\mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i-1) = w(i), \\
\mu_0(\eta(i), w(i)) & \text{else,}
\end{cases} \]

Corollary

If A is an antichain then in \(A^ \)*

\[\mu(v, w) = (-1)^{|w| - |v|} \left(\text{\# of normal embeddings of } v \text{ in } w \right). \]

Proof
Claim \(\eta \) not normal iff \((\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i)) \).
Proof \((\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i)) \) iff there exists a 0 in \(\eta \) not at the beginning of a run of \(w \) iff \(\eta \) not normal. \(\Box \) (Claim)

Now \(A_0 = \begin{array}{c}
\begin{array}{ccc}
a & b & c \\
\cdot & \cdot & \cdot \\
\end{array}
\end{array} \)
\Rightarrow \mu_0(\eta(i), w(i)) = \begin{cases}
+1 & \text{if } \eta(i) = w(i), \\
-1 & \text{if } \eta(i) = 0.
\end{cases}

If \(\eta \) not normal then, by the claim, there is a factor in the product equal to \(\mu_0(\eta(i), w(i)) + 1 = \mu_0(0, w(i)) + 1 = -1 + 1 = 0. \)
\[
\mu(v, w) = \sum_{\eta} \prod_{i=1}^{\left|w\right|} \left\{ \begin{array}{ll}
\mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i-1) = w(i), \\
\mu_0(\eta(i), w(i)) & \text{else,}
\end{array} \right.
\]

Corollary

If A is an antichain then in A^

\[
\mu(v, w) = (-1)^{|w| - |v|} (\# \text{ of normal embeddings of } v \text{ in } w).
\]

Proof Claim
\(\eta\) not normal iff \(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i)\).

Proof
\(\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i)\) iff there exists a 0 in \(\eta\) not at the beginning of a run of \(w\) iff \(\eta\) not normal. \(\square\) (Claim)

Now \(A_0 = \begin{array}{c}
a \quad b \quad c \\
0 & \quad \bullet & \quad \bullet & \quad \cdots
\end{array}\)
\(\implies \mu_0(\eta(i), w(i)) = \left\{ \begin{array}{ll} +1 & \text{if } \eta(i) = w(i), \\
-1 & \text{if } \eta(i) = 0. \end{array} \right.\)

If \(\eta\) not normal then, by the claim, there is a factor in the product equal to \(\mu_0(\eta(i), w(i)) + 1 = \mu_0(0, w(i)) + 1 = -1 + 1 = 0.\)

If \(\eta\) is normal then, by the claim, every factor of the product is from the “else” case
\[
\mu(v, w) = \sum_{\eta} \prod_{i=1}^{\vert w \vert} \left\{ \begin{array}{ll}
\mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i - 1) = w(i), \\
\mu_0(\eta(i), w(i)) & \text{else,}
\end{array} \right.
\]

Corollary

If \(A \) is an antichain then in \(A^* \)

\[
\mu(v, w) = (-1)^{\vert w \vert - \vert v \vert} (\# \text{ of normal embeddings of } v \text{ in } w).
\]

Proof Claim \(\eta \) not normal iff \((\exists i : \eta(i) = 0 \text{ and } w(i - 1) = w(i)) \).

Proof \((\exists i : \eta(i) = 0 \text{ and } w(i - 1) = w(i)) \) iff there exists a 0 in \(\eta \) not at the beginning of a run of \(w \) iff \(\eta \) not normal. \(\square \) (Claim)

Now \(A_0 = \begin{array}{c}
\bullet \\
0
\end{array} \quad \Longrightarrow \quad \mu_0(\eta(i), w(i)) = \left\{ \begin{array}{ll}
+1 & \text{if } \eta(i) = w(i), \\
-1 & \text{if } \eta(i) = 0.
\end{array} \right.
\]

If \(\eta \) not normal then, by the claim, there is a factor in the product equal to \(\mu_0(\eta(i), w(i)) + 1 = \mu_0(0, w(i)) + 1 = -1 + 1 = 0. \)
If \(\eta \) is normal then, by the claim, every factor of the product is from the “else” case giving \((-1)^{\# \text{ of } \eta(i) = 0} = \)
\[\mu(v, w) = \sum_{\eta} \prod_{i=1}^{|w|} \left\{ \begin{array}{ll}
\mu_0(\eta(i), w(i)) + 1 & \text{if } \eta(i) = 0 \text{ and } w(i-1) = w(i), \\
\mu_0(\eta(i), w(i)) & \text{else,}
\end{array} \right. \]

Corollary

If A is an antichain then in A

\[\mu(v, w) = (-1)^{|w|-|v|} (\# \text{ of normal embeddings of } v \text{ in } w). \]

Proof **Claim** \(\eta \) not normal iff \((\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))\).

Proof \((\exists i : \eta(i) = 0 \text{ and } w(i-1) = w(i))\) iff there exists a 0 in \(\eta \) not at the beginning of a run of \(w \) iff \(\eta \) not normal. \(\square \) (Claim)

Now \(A_0 = \begin{array}{c}
\bullet \\
0
\end{array} \implies \mu_0(\eta(i), w(i)) = \left\{ \begin{array}{ll}
+1 & \text{if } \eta(i) = w(i), \\
-1 & \text{if } \eta(i) = 0.
\end{array} \right. \]

If \(\eta \) not normal then, by the claim, there is a factor in the product equal to \(\mu_0(\eta(i), w(i)) + 1 = \mu_0(0, w(i)) + 1 = -1 + 1 = 0. \)

If \(\eta \) is normal then, by the claim, every factor of the product is from the “else” case giving \((-1)^{\# \text{ of } \eta(i) = 0} = (-1)^{|w|-|v|}. \)
Elements $x < y$ in a poset P determine the order complex $\Delta(x, y)$ consisting of all chains in the open interval (x, y).
Elements $x < y$ in a poset P determine the order complex $\Delta(x, y)$ consisting of all chains in the open interval (x, y).

Proposition

If (x, y) is finite then

$$
\mu(x, y) = \tilde{\chi}(\Delta(x, y))
$$

where $\tilde{\chi}$ is the reduced Euler characteristic.
Elements $x < y$ in a poset P determine the order complex $\Delta(x, y)$ consisting of all chains in the open interval (x, y).

Proposition

If (x, y) is finite then

$$\mu(x, y) = \tilde{\chi}(\Delta(x, y))$$

where $\tilde{\chi}$ is the reduced Euler characteristic.

If P is finite then $x \in P$ has rank $\text{rk} \ x$ which is that length of a longest chain from a minimal element of P to x.
Elements $x < y$ in a poset P determine the order complex $\Delta(x, y)$ consisting of all chains in the open interval (x, y).

Proposition

If (x, y) is finite then

$$\mu(x, y) = \tilde{\chi}(\Delta(x, y))$$

where $\tilde{\chi}$ is the reduced Euler characteristic.

If P is finite then $x \in P$ has rank $\text{rk } x$ which is that length of a longest chain from a minimal element of P to x. The rank of P is

$$\text{rk } P = \max_{x \in P} (\text{rk } x).$$
Elements $x < y$ in a poset P determine the order complex $\Delta(x, y)$ consisting of all chains in the open interval (x, y).

Proposition

If (x, y) is finite then

$$\mu(x, y) = \tilde{\chi}(\Delta(x, y))$$

where $\tilde{\chi}$ is the reduced Euler characteristic.

If P is finite then $x \in P$ has rank $\text{rk } x$ which is that length of a longest chain from a minimal element of P to x. The rank of P is

$$\text{rk } P = \max_{x \in P} (\text{rk } x).$$

For example, an antichain has rank 0.
Elements $x < y$ in a poset P determine the order complex $\Delta(x, y)$ consisting of all chains in the open interval (x, y).

Proposition

If (x, y) is finite then

$$\mu(x, y) = \tilde{\chi}(\Delta(x, y))$$

where $\tilde{\chi}$ is the reduced Euler characteristic.

If P is finite then $x \in P$ has rank $\text{rk} x$ which is that length of a longest chain from a minimal element of P to x. The rank of P is

$$\text{rk} P = \max_{x \in P} (\text{rk} x).$$

For example, an antichain has rank 0.

Theorem (McNamara and S)

Let P be a poset with $\text{rk} P \leq 1$. If $v < w$ then $\Delta(v, w)$ is homotopic to a wedge of $|\mu(v, w)|$ spheres all of dimension $|w| - |v| - 2$.
Outline

The Möbius function of ordinary subword order

Pattern order and generalized subword order

The Möbius function of generalized subword order

Open Questions
1. What can be said about the Möbius function of other intervals in \mathcal{G} (pattern order)?
1. What can be said about the Möbius function of other intervals in \mathcal{G} (pattern order)? There has been recent work by Tenner-Steingrímsson and by Burstein-Jelínek-Jelínkova-Steingrímsson.
1. What can be said about the Möbius function of other intervals in \mathcal{G} (pattern order)? There has been recent work by Tenner-Steingrímsson and by Burstein-Jelínek-Jelínkova-Steingrímsson.

2. **Ordinary factor order** is given by $v \leq w$ if v is a subword of consecutive letters in w. Björner determined the Möbius function of ordinary factor order.
1. What can be said about the Möbius function of other intervals in \mathcal{S} (pattern order)? There has been recent work by Tenner-Steingrímsson and by Burstein-Jelínek-Jelínková-Steingrímsson.

2. Ordinary factor order is given by $v \leq w$ if v is a subword of consecutive letters in w. Björner determined the Möbius function of ordinary factor order. Generalized factor order on P^* for any poset P can be defined analogously. Willenbring generalized Björner’s result to rooted trees. Is there a formula for any P?
1. What can be said about the Möbius function of other intervals in S (pattern order)? There has been recent work by Tenner-Steingrímsson and by Burstein-Jelínek-Jelínkova-Steingrímsson.

2. **Ordinary factor order** is given by $v \leq w$ if v is a subword of consecutive letters in w. Björner determined the Möbius function of ordinary factor order. **Generalized factor order** on P^* for any poset P can be defined analogously. Willenbring generalized Björner’s result to rooted trees. Is there a formula for any P? Note that Bernini-Ferrari-Steingrímsson determined the Möbius function of the consecutive pattern poset and S-Willenbring showed that there is an intimate connection between this poset and ordinary factor order.
THANKS FOR LISTENING!