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All posets P will be finite and have a unique minimal element 0̂

All P will also be ranked meaning that for every x ∈ P, all
saturated 0̂–x chains will have the same length, ρ(x). We also
define the rank of P to be

ρ(P) = max
x∈P

ρ(x).

If µ is the Möbius function of P then the characteristic
polynomial of P is

χ(P) = χ(P; t) =
∑
x∈P

µ(x)tρ(P)−ρ(x).

Many ranked posets have characteristic polynomials whose
roots are nonnegative integers. Why? Reasons have been
given by Saito and Terao, Stanley, Zaslavsky, Blass and S, and
others.

Proposition
Let P,Q be ranked posets.
1. P ∼= Q =⇒ χ(P; t) = χ(Q; t).
2. P ×Q is ranked and χ(P ×Q; t) = χ(P; t)χ(Q; t).
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Let Πn be the lattice of set partitions of [n] = {1, . . . ,n} ordered
by refinement.

Theorem
χ(Πn, t) = (t − 1)(t − 2) · · · (t − n + 1).

Ex. Consider Π3.

123

12/3 13/2 1/23

1/2/3

Π3 =

1

−1 −1 −1

2

χ(Π3, t) = t2 − t − t − t + 2

= t2 − 3t + 2
= (t − 1)(t − 2).
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The claw , CLn, consists of a 0̂ together with n atoms.

CLn =

a1 a2 · · · an

0̂ 1

−1 −1 −1

Thus
χ(CLn) = t − n.

So the characteristic polynomial of CLn can give us any
positive integer root as n varies.
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Let us consider the product CL1 × CL2.
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a
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b c

× =

(0̂, 0̂)

(0̂,b) (0̂, c)(a, 0̂)

(a,b) (a, c)

We have

χ(CL1 × CL2) = χ(CL1)χ(CL2) = (t − 1)(t − 2) = χ(Π3).
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Clearly Π3 and CL1 × CL2 are not isomorphic.

What if we
identify the top two elements of CL1 × CL2?

123+2

12/3−1 13/2−1 1/23−1

1/2/3+1

Π3

(0̂, 0̂) +1

(0̂,b) −1 (0̂, c) −1(a, 0̂) −1

(a,b) +1 (a, c) +1

CL1 × CL2

(0̂, 0̂) +1

(0̂,b) −1 (0̂, c) −1(a, 0̂) −1

(a,b) ∼ (a, c) +2

CL1×CL2
after identification

Note that the Möbius values of (a,b) and (a, c) added to give
the Möbius value of (a,b) ∼ (a, c). So χ(CL1 × CL2) did not
change after the identification since characteristic polynomials
only record the sums of the Möbius values at each rank.



Clearly Π3 and CL1 × CL2 are not isomorphic.

What if we
identify the top two elements of CL1 × CL2?

123+2

12/3−1 13/2−1 1/23−1

1/2/3+1

Π3

(0̂, 0̂) +1

(0̂,b) −1 (0̂, c) −1(a, 0̂) −1

(a,b) +1 (a, c) +1

CL1 × CL2

(0̂, 0̂) +1

(0̂,b) −1 (0̂, c) −1(a, 0̂) −1

(a,b) ∼ (a, c) +2

CL1×CL2
after identification
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General Method.

Suppose P is a ranked poset and we wish to prove

χ(P) = (t − r1) . . . (t − rn)

where r1, . . . , rn are positive integers.
1. Construct the poset

Q = CLr1 × · · · × CLrn .

2. Identify elements of Q to form a poset Q/ ∼ in such a way
that
(a) χ(Q/ ∼) = χ(Q) = (t − r1) . . . (t − rn),
(b) (Q/ ∼) ∼= P.

3. If follows that

χ(P) = χ(Q/ ∼) = (t − r1) . . . (t − rn).
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= (t − r1) . . . (t − rn),
(b) (Q/ ∼) ∼= P.

3. If follows that

χ(P) = χ(Q/ ∼) = (t − r1) . . . (t − rn).
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Let P be a poset and let ∼ be an equivalence relation on P.

We
define the quotient , P/ ∼, to be the set of equivalence classes
with the binary relation ≤ defined by

X ≤ Y in P/ ∼ ⇐⇒ x ≤ y in P for some x ∈ X and some y ∈ Y .

Quotients of posets need not be posets.
Ex. Consider

0

1

2

C2 =

Put an equivalence relation on C2 with classes

X = {0,2}, Y = {1}.

Then X < Y since 0 < 1 and Y < X since 1 < 2.
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Let P be a poset and let ∼ be an equivalence relation on P.

We
say the quotient P/ ∼ is a homogeneous quotient if
(1) 0̂ is in an equivalence class by itself, and
(2) X ≤ Y in P/ ∼ implies that for all x ∈ X there is a y ∈ Y

with x ≤ y .

Lemma (Hallam-S)
If P/ ∼ is a homogeneous quotient then P/ ∼ a poset.
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How do we determine a suitable equivalence relation?

If P is a
lattice, then there is a canonical choice.

Let us revisit Π3. Label the atoms of CL1 ×CL2 with atoms from
Π3 as follows:

0̂

12/3

0̂

13/2 1/23

× =

(0̂, 0̂)

(0̂,13/2) (0̂,1/23)(12/3, 0̂)

(12/3,13/2) (12/3,1/23)
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Now relabel each element of the product with the join of its two
coordinates.
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(0̂,13/2) (0̂,1/23)(12/3, 0̂)

(12/3,13/2) (12/3,1/23)

∼=

0̂

13/2 1/2312/3

123 123

=

0̂

13/2 1/2312/3

123

Finally, identify elements with the same label to obtain the
same quotient we did before. Not only is the quotient
isomorphic to Π3, it even has the same labeling.
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An ordered partition of a set A is a sequence of subsets
(A1, . . . ,An) with ]iAi = A.

We write (A1, . . . ,An) ` A.

Let (A1, . . . ,An) ` A(L), where A(L) is the atom set of a lattice
L. Let CLAi be the claw with atom set Ai . The standard
equivalence relation on

∏
i CLAi is

t ∼ s in
n∏

i=1

CLAi ⇐⇒
∨

t =
∨

s in L.

The atomic transversals of x ∈ L are the elements of the
equivalence class

T a
x =

{
t ∈

n∏
i=1

CLAi :
∨

t = x

}
.

Ex. (A1,A2) ` A(Π3) with A1 = {12/3}, A2 = {13/2,1/23}.
Note that CLA1 and CLA2 were the claws used for Π3.
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We need a condition on the standard equivalence relation
which will make sure that the quotient is homogeneous and
ranked.

The support of t = (t1, . . . , tn) ∈
∏

i CLAi is

supp t = {i : ti 6= 0̂}.

Note that |supp t| = ρ(t) where the rank is taken in
∏

i CLAi .

Lemma (Hallam-S)
Let L be a lattice, (A1, . . . ,An) ` A(L) and Q =

∏
i CLAi .

Suppose that for all x ∈ L and all t ∈ T a
x we have

|supp t| = ρ(x).

Then the standard equivalence relation is homogeneous, Q/ ∼
is ranked, and

ρ(T a
x ) = ρ(x).
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We wish to make sure that when identifying the elements in an
equivalence class, the Möbius function of the class is the sum
of the Möbius functions of its elements so that χ does not
change.

Given x ∈ L, let

Ax = {a ∈ A(L) : a ≤ x}.

Lemma (Hallam-S)
Let lattice L, (A1, . . . ,An) ` A(L) and Q =

∏
i CLAi satisfy the

conditions of the previous lemma. Suppose, for each x 6= 0̂ in L,

there exists an index i such that |Ax ∩ Ai | = 1. (1)

Then for any T a
x ∈ Q/ ∼ we have

µ(T a
x ) =

∑
t∈T a

x

µ(t).
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equivalence class, the Möbius function of the class is the sum
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Our main theorem is as follows.

Theorem (Hallam-S)
Let L be a lattice, (A1, . . . ,An) ` A(L) and Q =

∏
i CLAi .

Suppose that the following three conditions hold.
(1) For all x ∈ L we have T a

x 6= ∅.
(2) If t ∈ T a

x then |supp t| = ρ(x).
(3) For each x 6= 0̂ in L, there is i such that |Ax ∩ Ai | = 1.

Then for the standard equivalence relation we can conclude the
following.
(a) (Q/ ∼) ∼= L.

(b) χ(L; t) =
n∏

i=1

(t − |Ai |).

Condition (1) is used to prove that the map (Q/ ∼)→ L by
T a

x 7→ x is surjective.



Our main theorem is as follows.

Theorem (Hallam-S)
Let L be a lattice, (A1, . . . ,An) ` A(L) and Q =

∏
i CLAi .

Suppose that the following three conditions hold.
(1) For all x ∈ L we have T a

x 6= ∅.
(2) If t ∈ T a

x then |supp t| = ρ(x).
(3) For each x 6= 0̂ in L, there is i such that |Ax ∩ Ai | = 1.

Then for the standard equivalence relation we can conclude the
following.
(a) (Q/ ∼) ∼= L.

(b) χ(L; t) =
n∏

i=1

(t − |Ai |).

Condition (1) is used to prove that the map (Q/ ∼)→ L by
T a

x 7→ x is surjective.



Our main theorem is as follows.

Theorem (Hallam-S)
Let L be a lattice, (A1, . . . ,An) ` A(L) and Q =

∏
i CLAi .

Suppose that the following three conditions hold.

(1) For all x ∈ L we have T a
x 6= ∅.

(2) If t ∈ T a
x then |supp t| = ρ(x).

(3) For each x 6= 0̂ in L, there is i such that |Ax ∩ Ai | = 1.
Then for the standard equivalence relation we can conclude the
following.
(a) (Q/ ∼) ∼= L.

(b) χ(L; t) =
n∏

i=1

(t − |Ai |).

Condition (1) is used to prove that the map (Q/ ∼)→ L by
T a

x 7→ x is surjective.



Our main theorem is as follows.

Theorem (Hallam-S)
Let L be a lattice, (A1, . . . ,An) ` A(L) and Q =

∏
i CLAi .

Suppose that the following three conditions hold.
(1) For all x ∈ L we have T a

x 6= ∅.

(2) If t ∈ T a
x then |supp t| = ρ(x).

(3) For each x 6= 0̂ in L, there is i such that |Ax ∩ Ai | = 1.
Then for the standard equivalence relation we can conclude the
following.
(a) (Q/ ∼) ∼= L.

(b) χ(L; t) =
n∏

i=1

(t − |Ai |).

Condition (1) is used to prove that the map (Q/ ∼)→ L by
T a

x 7→ x is surjective.



Our main theorem is as follows.

Theorem (Hallam-S)
Let L be a lattice, (A1, . . . ,An) ` A(L) and Q =

∏
i CLAi .

Suppose that the following three conditions hold.
(1) For all x ∈ L we have T a

x 6= ∅.
(2) If t ∈ T a

x then |supp t| = ρ(x).

(3) For each x 6= 0̂ in L, there is i such that |Ax ∩ Ai | = 1.
Then for the standard equivalence relation we can conclude the
following.
(a) (Q/ ∼) ∼= L.

(b) χ(L; t) =
n∏

i=1

(t − |Ai |).

Condition (1) is used to prove that the map (Q/ ∼)→ L by
T a

x 7→ x is surjective.



Our main theorem is as follows.

Theorem (Hallam-S)
Let L be a lattice, (A1, . . . ,An) ` A(L) and Q =

∏
i CLAi .

Suppose that the following three conditions hold.
(1) For all x ∈ L we have T a

x 6= ∅.
(2) If t ∈ T a

x then |supp t| = ρ(x).
(3) For each x 6= 0̂ in L, there is i such that |Ax ∩ Ai | = 1.

Then for the standard equivalence relation we can conclude the
following.
(a) (Q/ ∼) ∼= L.

(b) χ(L; t) =
n∏

i=1

(t − |Ai |).

Condition (1) is used to prove that the map (Q/ ∼)→ L by
T a

x 7→ x is surjective.



Our main theorem is as follows.

Theorem (Hallam-S)
Let L be a lattice, (A1, . . . ,An) ` A(L) and Q =

∏
i CLAi .

Suppose that the following three conditions hold.
(1) For all x ∈ L we have T a

x 6= ∅.
(2) If t ∈ T a

x then |supp t| = ρ(x).
(3) For each x 6= 0̂ in L, there is i such that |Ax ∩ Ai | = 1.

Then for the standard equivalence relation we can conclude the
following.

(a) (Q/ ∼) ∼= L.

(b) χ(L; t) =
n∏

i=1

(t − |Ai |).

Condition (1) is used to prove that the map (Q/ ∼)→ L by
T a

x 7→ x is surjective.



Our main theorem is as follows.

Theorem (Hallam-S)
Let L be a lattice, (A1, . . . ,An) ` A(L) and Q =

∏
i CLAi .

Suppose that the following three conditions hold.
(1) For all x ∈ L we have T a

x 6= ∅.
(2) If t ∈ T a

x then |supp t| = ρ(x).
(3) For each x 6= 0̂ in L, there is i such that |Ax ∩ Ai | = 1.

Then for the standard equivalence relation we can conclude the
following.
(a) (Q/ ∼) ∼= L.

(b) χ(L; t) =
n∏

i=1

(t − |Ai |).

Condition (1) is used to prove that the map (Q/ ∼)→ L by
T a

x 7→ x is surjective.



Our main theorem is as follows.

Theorem (Hallam-S)
Let L be a lattice, (A1, . . . ,An) ` A(L) and Q =

∏
i CLAi .

Suppose that the following three conditions hold.
(1) For all x ∈ L we have T a

x 6= ∅.
(2) If t ∈ T a

x then |supp t| = ρ(x).
(3) For each x 6= 0̂ in L, there is i such that |Ax ∩ Ai | = 1.

Then for the standard equivalence relation we can conclude the
following.
(a) (Q/ ∼) ∼= L.

(b) χ(L; t) =
n∏

i=1

(t − |Ai |).

Condition (1) is used to prove that the map (Q/ ∼)→ L by
T a

x 7→ x is surjective.



Our main theorem is as follows.

Theorem (Hallam-S)
Let L be a lattice, (A1, . . . ,An) ` A(L) and Q =

∏
i CLAi .

Suppose that the following three conditions hold.
(1) For all x ∈ L we have T a

x 6= ∅.
(2) If t ∈ T a

x then |supp t| = ρ(x).
(3) For each x 6= 0̂ in L, there is i such that |Ax ∩ Ai | = 1.

Then for the standard equivalence relation we can conclude the
following.
(a) (Q/ ∼) ∼= L.

(b) χ(L; t) =
n∏

i=1

(t − |Ai |).

Condition (1) is used to prove that the map (Q/ ∼)→ L by
T a

x 7→ x is surjective.



Corollary
χ(Πn; t) = (t − 1)(t − 2) . . . (t − n + 1).

Proof. If i < j let {i , j} be the atom of Πn having this set as its
unique non-singleton block. Let (A1, . . . ,An−1) ` A(Πn) where

Ai = {{1, i + 1}, {2, i + 1}, . . . , {i , i + 1}}.
We will verify the three conditions for x = 1̂.
(1) ({1,2}, {2,3}, . . . , {n − 1,n}) ∈ T a

1̂
.

(2) With any t ∈ Q, associate a graph G t with V = [n] and

ij ∈ E ⇐⇒ {i , j} ∈ t.

I claim G t is a forest. If C : . . . i ,m.j , . . . is a cycle with
m = max C, then {i ,m}, {j ,m} ∈ t. But {i ,m}, {j ,m} ∈ Am−1.
Also, the vertices of the components of G t are the blocks of

∨
t.

∴ t ∈ T a
1̂

=⇒ G t a tree =⇒ |supp t| = n − 1 = ρ(1̂).

(3) A1 = {{1,2}} so |A1̂ ∩ A1| = 1.

∴ χ(Πn; t) = (t −|A1|) . . . (t −|An−1|) = (t −1) . . . (t −n + 1).
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How do we find an appropriate atom partition?

We say
(A1, . . . ,An) ` A(L) is induced by a chain if there is a chain
C : 0̂ = x0 < x1 < x2 < · · · < xn = 1̂ such that

Ai = {a ∈ A(L) : a ≤ xi and a 6≤ xi−1}.

Ex. In Πn, our partition is induced by 0̂ < [2] < [3] < · · · < 1̂
where [i] is the partition having this set as its only non-trivial
block.
When will the partition induced by such a chain give the roots of
a factorization? For x ∈ L with x 6= 0̂, let i be the index with
x ≤ xi and x 6≤ xi−1. Say that C satisfies the meet condition if,
for every x ∈ L of rank at least 2,

x ∧ xi−1 6= 0̂.
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Our second main theorem is as follows.

Theorem (Hallam-S)
Let L be a lattice and (A1, . . . ,An) induced by a chain C.
Suppose that for all x ∈ L and t ∈ T a

x we have

|supp t| = ρ(x).

Under these conditions, the following are equivalent.
1. For each x 6= 0̂ in L, there is i such that |Ax ∩ Ai | = 1.
2. Chain C satisfies the meet condition.
3. The characteristic polynomial of L factors as

χ(L, t) = tρ(L)−n
n∏

i=1

(t − |Ai |).
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Any lattice L satisfies: for all x , y , z ∈ L with y ≤ z

y ∨ (x ∧ z) ≤ (y ∨ x) ∧ z (modular inequality). (2)

Call x ∈ L left-modular if, together with any y ≤ z, we have
equality in (2). A lattice is supersolvable if it has a saturated
0̂–1̂ chain of left-modular elements.

Lemma (Hallam-S)
Let L be a lattice and C a 0̂–1̂ chain in L inducing (A1, . . . ,An).

1. If C is saturated and consists of left-modular elements,
then C satisfies the meet condition.

2. If L is semimodular then for any x ∈ L and t ∈ T a
x we have

|supp t| = ρ(x).

Corollary (Stanley, 1972)
Let L be a semimodular, supersolvable lattice and (A1, . . . ,An)
be induced by a saturated chain of left-modular elements. Then

χ(L; t) =
n∏

i=1

(t − |Ai |).
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2. If L is semimodular then for any x ∈ L and t ∈ T a
x we have

|supp t| = ρ(x).

Corollary (Stanley, 1972)
Let L be a semimodular, supersolvable lattice and (A1, . . . ,An)
be induced by a saturated chain of left-modular elements. Then

χ(L; t) =
n∏

i=1

(t − |Ai |).
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