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The philosophy.

By combining the the theory of patterns with the theory of
statistics, one opens up a whole realm of research problems
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The method

Let Sn, n ≥ 0, be a sequence of sets admitting a notion of
pattern containment and avoidance.
Ex. 1. Sn = the nth symmetric group.
2. Sn = all set partions of an n-element set.
3. Sn = all words of length n over the positive integers.
4. Sn = a relational structure on a set with n elements.
Given t ∈ Sk we let

Sn(t) = {s ∈ Sn : s avoids t}.

Let st : Sn → {0,1,2, . . . } be a statistic on Sn, n ≥ 0.
Ex. 1. st = inv, the inversion number.
2. st = maj, the major index.
3. st = exc, the number of excedences.
4. st = lb, the left-bigger statistic.
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Study the generating functions

STn(t) = STn(t ; q) =
∑

s∈Sn(t)

qst(s).

Things to do.
1. Define t ,u to be st-Wilf equivalent if STn(t) = STn(u) for all
n ≥ 0. Note this implies ordinary Wilf equivalence since

|Sn(t)| = STn(t ; 1) = STn(u; 1) = |Sn(u)|.

Determine the st-Wilf equivalence classes.

2. The cardinalities |Sn(t)| give interesting sequences such as
Catalan numbers, Fibonacci numbers, and Schröder numbers.
These sequences have many interesting properties such as
recurrence relations, congruences, etc. Find analogous
properties of the STn(t ; q) reducing to the old results for q = 1.

3. Study properties of the STn(t ; q) which have no analogues
when q = 1 such as degree, coefficients, unimodality, log
concavity, real rootedness and so forth.
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These sequences have many interesting properties such as
recurrence relations, congruences, etc. Find analogous
properties of the STn(t ; q) reducing to the old results for q = 1.

3. Study properties of the STn(t ; q) which have no analogues
when q = 1 such as degree, coefficients, unimodality, log
concavity, real rootedness and so forth.



Study the generating functions

STn(t) = STn(t ; q) =
∑

s∈Sn(t)

qst(s).

Things to do.
1. Define t ,u to be st-Wilf equivalent if STn(t) = STn(u) for all
n ≥ 0. Note this implies ordinary Wilf equivalence since

|Sn(t)| = STn(t ; 1) = STn(u; 1) = |Sn(u)|.

Determine the st-Wilf equivalence classes.

2. The cardinalities |Sn(t)| give interesting sequences such as
Catalan numbers, Fibonacci numbers, and Schröder numbers.
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These sequences have many interesting properties such as
recurrence relations, congruences, etc. Find analogous
properties of the STn(t ; q) reducing to the old results for q = 1.

3. Study properties of the STn(t ; q) which have no analogues
when q = 1 such as degree, coefficients, unimodality, log
concavity, real rootedness and so forth.



Papers with work in this area Sn st
Bach, Remmel Sn des, lrm
Barnabei, Bonetti, Elizalde, Silimbani Sn maj
Baxter Sn maj,peak, valley
Bloom Sn maj
Bousquet-Mélou Pn level,min,minmax
Chan/Trongsiriwat Sn inv
Chen, Dai, Dokos, Dwyer, S Ascn asc, rlm
Chen, Elizalde, Kasraoui, S Sn inv,maj
Dahlberg, S In inv,maj
Dahlberg, Dorward, Gerhard, Grubb,

Purcell, Reppuhn, S Πn ls, lb, rs, rb
Dokos, Dwyer, Johnson, S, Selsor Sn inv,maj
Duncan, Steingrı́msson Ascn asc, rlm
Elizalde (also with Deutsch, Pak) Sn des,exc, fp,
Goyt (with Mathisen, S) Πn ls, rb
Killpatrick Sn ch,maj
Kitaev, Remmel Pn level,min
Stanton, Simion Πn ls, lb, rs, rb
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Let [n] = {1,2, . . . ,n},

Sn = {σ : σ is a permutaiton of [n]},

and S = ∪n≥0Sn.

Also, given π ∈ Sk , let

Sn(π) = {σ ∈ Sn : σ avoids π}.

Permutation σ = a1a2 . . . an has descent set/descent number

Desσ = {i ∈ [n − 1] : ai > ai+1}, desσ = |Desσ|.

It also has major index

majσ =
∑

i∈Desσ

i .

Ex. If σ = 4 6 1 3 7 2 8 5 then
i : 1 2 3 4 5 6 7 8
ai : 4 6 > 1 3 7 > 2 8 > 5.

So

Desσ = {2,5,7}, desσ = 3, majσ = 2 + 5 + 7 = 14.
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Diven π ∈ Sk and a variable q, define

Mn(π) = Mn(π; q) =
∑

σ∈Sn(π)

qmajσ.

Ex. Consider S3(321):

σ : 123 132 213 231 312

majσ : 0 2 1 2 1

M3(321) = q0 + q2 + q1 + q2 + q1.

So M3(321) = 1 + 2q + 2q2.

Dokos, Dwyer, Johnson, Selsor, and S (DDJSS) where the first
authors to comprehensively study Mn(π) for all π ∈ S3 as well
as similarly defined polynomials for multiple pattern avoidance
and for the inversion statistic.
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Call π, π′ maj-Wilf equivalent and write π ≡maj π
′ if

Mn(π; q) = Mn(π′; q) for all n ≥ 0.

Denote the maj-Wilf
equivalence class of π by [π]maj = {π′ : π′ ≡maj π}.

Theorem (DDJSS)
The maj-Wilf equivalence classes for π ∈ S3 are

[123]maj = {123},
[321]maj = {321},
[132]maj = {132,231},
[213]maj = {213,312}.

Proof. To show there are no other maj-Wilf equivalences,
compare the polynomials M3(π) for π ∈ S3. For σ = a1 . . . an let
σc = (n + 1− a1) . . . (n + 1− an). So Desσc = [n − 1]− Desσ

∴ majσc =

(
n
2

)
−majσ =⇒ Mn(312; q) = q(n

2)Mn(132; q−1).

Similarly Mn(213; q) = q(n
2)Mn(231; q−1). So to finish the proof

of the theorem it suffices to show that 132 ≡maj 231.
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Proof. (continued) 132 ≡maj 231.

We wish to define a map φ : Sn(132)→ Sn(231) such that

φ(σ) = σ′ =⇒ majσ = majσ′.

Define φ inductively by φ(1) = 1 and, for n ≥ 2,

σ =

σ1

σ2

k

n

φ7→ σ′ =

φ(σ1)

φ(σ2)

k

n

It is easy to verify that this is a well-defined bijection and that it
preserves the major index.

This map has also been used by Bouvel and Viennot.



Proof. (continued) 132 ≡maj 231.

We wish to define a map φ : Sn(132)→ Sn(231) such that

φ(σ) = σ′ =⇒ majσ = majσ′.

Define φ inductively by φ(1) = 1 and, for n ≥ 2,

σ =

σ1

σ2

k

n

φ7→ σ′ =

φ(σ1)

φ(σ2)

k

n

It is easy to verify that this is a well-defined bijection and that it
preserves the major index.

This map has also been used by Bouvel and Viennot.



Proof. (continued) 132 ≡maj 231.

We wish to define a map φ : Sn(132)→ Sn(231) such that

φ(σ) = σ′ =⇒ majσ = majσ′.

Define φ inductively by φ(1) = 1 and, for n ≥ 2,

σ =

σ1

σ2

k

n

φ7→ σ′ =

φ(σ1)

φ(σ2)

k

n

It is easy to verify that this is a well-defined bijection and that it
preserves the major index.

This map has also been used by Bouvel and Viennot.



Proof. (continued) 132 ≡maj 231.

We wish to define a map φ : Sn(132)→ Sn(231) such that

φ(σ) = σ′ =⇒ majσ = majσ′.

Define φ inductively by φ(1) = 1 and, for n ≥ 2,

σ =

σ1

σ2

k

n

φ7→ σ′ =

φ(σ1)

φ(σ2)

k

n

It is easy to verify that this is a well-defined bijection and that it
preserves the major index.

This map has also been used by Bouvel and Viennot.



Proof. (continued) 132 ≡maj 231.

We wish to define a map φ : Sn(132)→ Sn(231) such that

φ(σ) = σ′ =⇒ majσ = majσ′.

Define φ inductively by φ(1) = 1 and, for n ≥ 2,

σ =

σ1

σ2

k

n

φ7→ σ′ =

φ(σ1)

φ(σ2)

k

n

It is easy to verify that this is a well-defined bijection and that it
preserves the major index.

This map has also been used by Bouvel and Viennot.



Proof. (continued) 132 ≡maj 231.

We wish to define a map φ : Sn(132)→ Sn(231) such that

φ(σ) = σ′ =⇒ majσ = majσ′.

Define φ inductively by φ(1) = 1 and, for n ≥ 2,

σ =

σ1

σ2

k

n

φ7→ σ′ =

φ(σ1)

φ(σ2)

k

n

It is easy to verify that this is a well-defined bijection and that it
preserves the major index.

This map has also been used by Bouvel and Viennot.



If π = a1 . . . an and σ1, . . . , σn ∈ S then the inflation of π by the
σi is the permutation π[σ1, . . . , σn] whose diagram is obtained
from that of π by replacing the i th dot with a copy of σi for all i .

Ex.

132 = 132[σ1, σ2, σ3] =

σ1

σ2

σ3

Conjecture (DDJSS)
For all m,n ≥ 0 we have:

132[ιm,1, δn] ≡maj 231[ιm,1, δn],

where ιm = 12 . . .m and δn = n(n − 1) . . . 1.



If π = a1 . . . an and σ1, . . . , σn ∈ S then the inflation of π by the
σi is the permutation π[σ1, . . . , σn] whose diagram is obtained
from that of π by replacing the i th dot with a copy of σi for all i .

Ex.

132 = 132[σ1, σ2, σ3] =

σ1

σ2

σ3

Conjecture (DDJSS)
For all m,n ≥ 0 we have:

132[ιm,1, δn] ≡maj 231[ιm,1, δn],

where ιm = 12 . . .m and δn = n(n − 1) . . . 1.



If π = a1 . . . an and σ1, . . . , σn ∈ S then the inflation of π by the
σi is the permutation π[σ1, . . . , σn] whose diagram is obtained
from that of π by replacing the i th dot with a copy of σi for all i .

Ex.

132 = 132[σ1, σ2, σ3] =

σ1

σ2

σ3

Conjecture (DDJSS)
For all m,n ≥ 0 we have:

132[ιm,1, δn] ≡maj 231[ιm,1, δn],

where ιm = 12 . . .m and δn = n(n − 1) . . . 1.



Outline

Generalities

Permutation patterns and the major index

maj-Wilf equivalence

Other properties



I. q-Catalan numbers

The Catalan numbers can be defined by C0 = 1 and, for n ≥ 1,

Cn = Cn−1C0 + Cn−2C1 + · · ·+ C0Cn−1.

If π ∈ S3 then Mn(π; q) is a q-Catalan number: Mn(π; 1) = Cn.
But these polynomials seem not to have been studied before.

Theorem (DDJSS)
Let

Mn(q, t) =
∑

σ∈Sn(312)

qmajσtdesσ.

Then, for n ≥ 1,

Mn(q, t) = Mn−1(q,qt) +
n−1∑
k=1

qk t Mk (q, t) Mn−k−1(q,qk+1t).

Cheng, Elizalde, Kasraoui, and S found a recursion for the
analogous polynomial when π = 321. The other two polynomial
recursions can be found by complementation.
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II. Arithmetic properties

Divisibility properties of Catalan numbers has been a topic of
recent interest: Eu, Liu, & Yeh; Kauers, Krattenthaler & Müller;
Konvalinka; Lin; Liu & Yeh; Postnikov & S; Xin & Xu; Yildiz.

Theorem
We have that Cn is odd if and only if n = 2k − 1 for some k ≥ 0.
One can also characterize the highest power of 2 dividing Cn
and a mostly combinatorial proof has been given by Deutsch
and S. The following result was conjectured by DDJSS.

Theorem (Killpatrick)
For all k ≥ 0, the power of qi in M2k−1(321; q) is{

1 if i = 0,
an even number if i ≥ 1.

Killpatrick’s proof uses the charge statistic of Lascoux and
Schützenberger.
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III. Multiple pattern avoidance

For Π ⊆ S define

Sn(Π) = {σ : σ avoids all π ∈ Π}, Mn(Π; q) =
∑

σ∈Sn(Π)

qmajσ.

For some Mn(Π; q), Π ⊆ S3, we could not give closed form
formulas but gave recursions or generating functions. Define

M(Π; q, x) =
∑
n≥0

Mn(Π; q)xn,

and

(x)k = (1− x)(1− qx)(1− q2x) . . . (1− qk−1x).

Theorem (DDJSS)

M(231,321; q, x) =
∑
k≥0

qk2
x2k

(x)k (x)k+1
.
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