Patterns and Statistics

Bruce Sagan Department of Mathematics Michigan State University East Lansing, MI 48824-1027 sagan@math.msu.edu

www.math.msu.edu/~sagan

July 7, 2014

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Generalities

Permutation patterns and the major index

maj-Wilf equivalence

Other properties

Outline

Generalities

Permutation patterns and the major index

maj-Wilf equivalence

Other properties

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The philosophy.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The philosophy.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

By combining the the theory of patterns with the theory of statistics, one opens up a whole realm of research problems waiting to be explored.

Let S_n , $n \ge 0$, be a sequence of sets admitting a notion of pattern containment and avoidance.

Let S_n , $n \ge 0$, be a sequence of sets admitting a notion of pattern containment and avoidance.

Ex. 1. S_n = the *n*th symmetric group.

Let S_n , $n \ge 0$, be a sequence of sets admitting a notion of pattern containment and avoidance.

Ex. 1. S_n = the *n*th symmetric group.

2. S_n = all set partions of an *n*-element set.

(日) (日) (日) (日) (日) (日) (日)

Let S_n , $n \ge 0$, be a sequence of sets admitting a notion of pattern containment and avoidance.

- **Ex.** 1. S_n = the *n*th symmetric group.
- 2. S_n = all set partions of an *n*-element set.
- 3. S_n = all words of length *n* over the positive integers.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Let S_n , $n \ge 0$, be a sequence of sets admitting a notion of pattern containment and avoidance.

- **Ex.** 1. S_n = the *n*th symmetric group.
- 2. S_n = all set partions of an *n*-element set.
- 3. S_n = all words of length *n* over the positive integers.
- 4. S_n = a relational structure on a set with *n* elements.

Let S_n , $n \ge 0$, be a sequence of sets admitting a notion of pattern containment and avoidance.

Ex. 1. S_n = the *n*th symmetric group.

2. S_n = all set partions of an *n*-element set.

3. S_n = all words of length *n* over the positive integers.

4. S_n = a relational structure on a set with *n* elements. Given $t \in S_k$ we let

 $S_n(t) = \{ s \in S_n : s \text{ avoids } t \}.$

(ロ) (同) (三) (三) (三) (○) (○)

Let S_n , $n \ge 0$, be a sequence of sets admitting a notion of pattern containment and avoidance.

Ex. 1. S_n = the *n*th symmetric group.

2. S_n = all set partions of an *n*-element set.

3. S_n = all words of length *n* over the positive integers.

4. S_n = a relational structure on a set with *n* elements. Given $t \in S_k$ we let

 $S_n(t) = \{s \in S_n : s \text{ avoids } t\}.$

(日) (日) (日) (日) (日) (日) (日)

Let st : $S_n \rightarrow \{0, 1, 2, ...\}$ be a statistic on S_n , $n \ge 0$.

Let S_n , $n \ge 0$, be a sequence of sets admitting a notion of pattern containment and avoidance.

Ex. 1. S_n = the *n*th symmetric group.

2. S_n = all set partions of an *n*-element set.

3. S_n = all words of length *n* over the positive integers.

4. S_n = a relational structure on a set with *n* elements. Given $t \in S_k$ we let

 $S_n(t) = \{ s \in S_n : s \text{ avoids } t \}.$

(日) (日) (日) (日) (日) (日) (日)

Let st : $S_n \rightarrow \{0, 1, 2, ...\}$ be a statistic on S_n , $n \ge 0$. **Ex.** 1. st = inv, the inversion number.

Let S_n , $n \ge 0$, be a sequence of sets admitting a notion of pattern containment and avoidance.

Ex. 1. S_n = the *n*th symmetric group.

2. S_n = all set partions of an *n*-element set.

3. S_n = all words of length *n* over the positive integers.

4. S_n = a relational structure on a set with *n* elements. Given $t \in S_k$ we let

 $S_n(t) = \{ s \in S_n : s \text{ avoids } t \}.$

Let st : $S_n \rightarrow \{0, 1, 2, ...\}$ be a statistic on S_n , $n \ge 0$. **Ex.** 1. st = inv, the inversion number. 2. st = maj, the major index.

・ロト・西ト・山田・山田・山口・

Let S_n , $n \ge 0$, be a sequence of sets admitting a notion of pattern containment and avoidance.

Ex. 1. S_n = the *n*th symmetric group.

2. S_n = all set partions of an *n*-element set.

3. S_n = all words of length *n* over the positive integers.

4. S_n = a relational structure on a set with *n* elements. Given $t \in S_k$ we let

 $S_n(t) = \{ s \in S_n : s \text{ avoids } t \}.$

Let st : $S_n \rightarrow \{0, 1, 2, ...\}$ be a statistic on S_n , $n \ge 0$. **Ex.** 1. st = inv, the inversion number. 2. st = maj, the major index. 3. st = exc, the number of excedences.

Let S_n , $n \ge 0$, be a sequence of sets admitting a notion of pattern containment and avoidance.

Ex. 1. S_n = the *n*th symmetric group.

2. S_n = all set partions of an *n*-element set.

3. S_n = all words of length *n* over the positive integers.

4. S_n = a relational structure on a set with *n* elements. Given $t \in S_k$ we let

 $S_n(t) = \{ s \in S_n : s \text{ avoids } t \}.$

Let st : $S_n \rightarrow \{0, 1, 2, ...\}$ be a statistic on S_n , $n \ge 0$. **Ex.** 1. st = inv, the inversion number. 2. st = maj, the major index. 3. st = exc, the number of excedences. 4. st = lb, the left-bigger statistic.

$$\operatorname{ST}_n(t) = \operatorname{ST}_n(t; q) = \sum_{s \in S_n(t)} q^{\operatorname{st}(s)}.$$

$$\operatorname{ST}_n(t) = \operatorname{ST}_n(t; q) = \sum_{s \in S_n(t)} q^{\operatorname{st}(s)}.$$

Things to do.

$$\operatorname{ST}_n(t) = \operatorname{ST}_n(t;q) = \sum_{s \in S_n(t)} q^{\operatorname{st}(s)}.$$

Things to do.

1. Define *t*, *u* to be st-Wilf equivalent if $ST_n(t) = ST_n(u)$ for all $n \ge 0$.

$$\operatorname{ST}_n(t) = \operatorname{ST}_n(t;q) = \sum_{s \in S_n(t)} q^{\operatorname{st}(s)}.$$

Things to do.

1. Define *t*, *u* to be st-Wilf equivalent if $ST_n(t) = ST_n(u)$ for all $n \ge 0$. Note this implies ordinary Wilf equivalence since

$$|S_n(t)| = ST_n(t; 1) = ST_n(u; 1) = |S_n(u)|.$$

(ロ) (同) (三) (三) (三) (○) (○)

$$\operatorname{ST}_n(t) = \operatorname{ST}_n(t;q) = \sum_{s \in S_n(t)} q^{\operatorname{st}(s)}.$$

Things to do.

1. Define *t*, *u* to be st-Wilf equivalent if $ST_n(t) = ST_n(u)$ for all $n \ge 0$. Note this implies ordinary Wilf equivalence since

$$|S_n(t)| = ST_n(t; 1) = ST_n(u; 1) = |S_n(u)|.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Determine the st-Wilf equivalence classes.

$$\operatorname{ST}_n(t) = \operatorname{ST}_n(t;q) = \sum_{s \in S_n(t)} q^{\operatorname{st}(s)}.$$

Things to do.

1. Define *t*, *u* to be st-Wilf equivalent if $ST_n(t) = ST_n(u)$ for all $n \ge 0$. Note this implies ordinary Wilf equivalence since

$$|S_n(t)| = ST_n(t; 1) = ST_n(u; 1) = |S_n(u)|.$$

Determine the st-Wilf equivalence classes.

2. The cardinalities $|S_n(t)|$ give interesting sequences such as Catalan numbers, Fibonacci numbers, and Schröder numbers.

$$\operatorname{ST}_n(t) = \operatorname{ST}_n(t;q) = \sum_{s \in S_n(t)} q^{\operatorname{st}(s)}.$$

Things to do.

1. Define *t*, *u* to be st-Wilf equivalent if $ST_n(t) = ST_n(u)$ for all $n \ge 0$. Note this implies ordinary Wilf equivalence since

$$|S_n(t)| = ST_n(t; 1) = ST_n(u; 1) = |S_n(u)|.$$

Determine the st-Wilf equivalence classes.

2. The cardinalities $|S_n(t)|$ give interesting sequences such as Catalan numbers, Fibonacci numbers, and Schröder numbers. These sequences have many interesting properties such as recurrence relations, congruences, etc.

$$\operatorname{ST}_n(t) = \operatorname{ST}_n(t;q) = \sum_{s \in S_n(t)} q^{\operatorname{st}(s)}.$$

Things to do.

1. Define *t*, *u* to be st-Wilf equivalent if $ST_n(t) = ST_n(u)$ for all $n \ge 0$. Note this implies ordinary Wilf equivalence since

$$|S_n(t)| = ST_n(t; 1) = ST_n(u; 1) = |S_n(u)|.$$

Determine the st-Wilf equivalence classes.

2. The cardinalities $|S_n(t)|$ give interesting sequences such as Catalan numbers, Fibonacci numbers, and Schröder numbers. These sequences have many interesting properties such as recurrence relations, congruences, etc. Find analogous properties of the ST_n(t; q) reducing to the old results for q = 1.

$$\operatorname{ST}_n(t) = \operatorname{ST}_n(t;q) = \sum_{s \in S_n(t)} q^{\operatorname{st}(s)}.$$

Things to do.

1. Define *t*, *u* to be st-Wilf equivalent if $ST_n(t) = ST_n(u)$ for all $n \ge 0$. Note this implies ordinary Wilf equivalence since

$$|S_n(t)| = ST_n(t; 1) = ST_n(u; 1) = |S_n(u)|.$$

Determine the st-Wilf equivalence classes.

2. The cardinalities $|S_n(t)|$ give interesting sequences such as Catalan numbers, Fibonacci numbers, and Schröder numbers. These sequences have many interesting properties such as recurrence relations, congruences, etc. Find analogous properties of the ST_n(t; q) reducing to the old results for q = 1.

3. Study properties of the $ST_n(t; q)$ which have no analogues when q = 1 such as degree, coefficients, unimodality, log concavity, real rootedness and so forth.

Papers with work in this area	Sn	st
Bach, Remmel	Sn	des, Irm
Barnabei, Bonetti, Elizalde, Silimbani	Sn	maj
Baxter	\mathfrak{S}_n	maj, peak, valley
Bloom	Sn	maj
Bousquet-Mélou	Pn	level, min, minmax
Chan/Trongsiriwat	Sn	inv
Chen, Dai, Dokos, Dwyer, S	Asc _n	asc, rlm
Chen, Elizalde, Kasraoui, S	Sn	inv, maj
Dahlberg, S	In	inv, maj
Dahlberg, Dorward, Gerhard, Grubb,		
Purcell, Reppuhn, S	Πn	ls, lb, rs, rb
Dokos, Dwyer, Johnson, S, Selsor	Sn	inv, maj
Duncan, Steingrímsson	Asc _n	asc, rlm
Elizalde (also with Deutsch, Pak)	Sn	des, exc, fp,
Goyt (with Mathisen, S)	Πn	ls, rb
Killpatrick	Sn	ch, maj
Kitaev, Remmel	Pn	level, min
Stanton, Simion	Π _n	ls,lb,rs,rb ₽

Generalities

Permutation patterns and the major index

maj-Wilf equivalence

Other properties

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Let $[n] = \{1, 2, ..., n\},$ $\mathfrak{S}_n = \{\sigma : \sigma \text{ is a permutation of } [n]\},$

and $\mathfrak{S} = \cup_{n \geq 0} \mathfrak{S}_n$.

Let $[n] = \{1, 2, ..., n\},$ $\mathfrak{S}_n = \{\sigma : \sigma \text{ is a permutation of } [n]\},$ and $\mathfrak{S} = \bigcup_{n \ge 0} \mathfrak{S}_n$. Also, given $\pi \in \mathfrak{S}_k$, let

 $\mathfrak{S}_n(\pi) = \{ \sigma \in \mathfrak{S}_n : \sigma \text{ avoids } \pi \}.$

 $\mathfrak{S}_n = \{ \sigma : \sigma \text{ is a permutation of } [n] \},\$

and $\mathfrak{S} = \bigcup_{n \geq 0} \mathfrak{S}_n$. Also, given $\pi \in \mathfrak{S}_k$, let

 $\mathfrak{S}_n(\pi) = \{ \sigma \in \mathfrak{S}_n : \sigma \text{ avoids } \pi \}.$

Permutation $\sigma = a_1 a_2 \dots a_n$ has *descent set/descent number*

 $\mathsf{Des}\,\sigma = \{i \in [n-1] : a_i > a_{i+1}\}, \qquad \mathsf{des}\,\sigma = |\operatorname{Des}\sigma|.$

 $\mathfrak{S}_n = \{ \sigma : \sigma \text{ is a permutation of } [n] \},\$

and $\mathfrak{S} = \bigcup_{n \geq 0} \mathfrak{S}_n$. Also, given $\pi \in \mathfrak{S}_k$, let

 $\mathfrak{S}_n(\pi) = \{ \sigma \in \mathfrak{S}_n : \sigma \text{ avoids } \pi \}.$

Permutation $\sigma = a_1 a_2 \dots a_n$ has *descent set/descent number*

 $\mathsf{Des}\,\sigma=\{i\in[n-1]\ :\ a_i>a_{i+1}\},\qquad \mathsf{des}\,\sigma=|\,\mathsf{Des}\,\sigma|.$

It also has *major index*

$$\operatorname{maj} \sigma = \sum_{i \in \operatorname{Des} \sigma} i.$$

A D F A 同 F A E F A E F A Q A

 $\mathfrak{S}_n = \{ \sigma : \sigma \text{ is a permutation of } [n] \},\$

and $\mathfrak{S} = \bigcup_{n \geq 0} \mathfrak{S}_n$. Also, given $\pi \in \mathfrak{S}_k$, let

 $\mathfrak{S}_n(\pi) = \{ \sigma \in \mathfrak{S}_n : \sigma \text{ avoids } \pi \}.$

Permutation $\sigma = a_1 a_2 \dots a_n$ has *descent set/descent number*

 $\mathsf{Des}\,\sigma=\{i\in[n-1]\ :\ a_i>a_{i+1}\},\qquad \mathsf{des}\,\sigma=|\,\mathsf{Des}\,\sigma|.$

It also has *major index*

$$\operatorname{maj} \sigma = \sum_{i \in \operatorname{Des} \sigma} i.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Ex. If $\sigma = 46137285$

 $\mathfrak{S}_n = \{ \sigma : \sigma \text{ is a permutation of } [n] \},\$

and $\mathfrak{S} = \bigcup_{n \geq 0} \mathfrak{S}_n$. Also, given $\pi \in \mathfrak{S}_k$, let

 $\mathfrak{S}_n(\pi) = \{ \sigma \in \mathfrak{S}_n : \sigma \text{ avoids } \pi \}.$

Permutation $\sigma = a_1 a_2 \dots a_n$ has *descent set/descent number*

 $\mathsf{Des}\,\sigma = \{i \in [n-1] : a_i > a_{i+1}\}, \qquad \mathsf{des}\,\sigma = |\,\mathsf{Des}\,\sigma|.$

It also has *major index*

$$\operatorname{maj} \sigma = \sum_{i \in \operatorname{Des} \sigma} i.$$

A D F A 同 F A E F A E F A Q A

Ex. If $\sigma = 46137285$ then i: 1 2 3 4 5 6 7 8 $a_i: 4 6 > 1 3 7 > 2 8 5$.

 $\mathfrak{S}_n = \{ \sigma : \sigma \text{ is a permutation of } [n] \},\$

and $\mathfrak{S} = \bigcup_{n \geq 0} \mathfrak{S}_n$. Also, given $\pi \in \mathfrak{S}_k$, let

 $\mathfrak{S}_n(\pi) = \{ \sigma \in \mathfrak{S}_n : \sigma \text{ avoids } \pi \}.$

Permutation $\sigma = a_1 a_2 \dots a_n$ has *descent set/descent number*

 $\mathsf{Des}\,\sigma = \{i \in [n-1] : a_i > a_{i+1}\}, \qquad \mathsf{des}\,\sigma = |\,\mathsf{Des}\,\sigma|.$

It also has *major index*

$$\operatorname{maj} \sigma = \sum_{i \in \operatorname{Des} \sigma} i.$$

Ex. If $\sigma = 46137285$ then

$$i:$$
 1 2 3 4 5 6 7 8
 $a_i:$ 4 6 > 1 3 7 > 2 8 > 5.

A D F A 同 F A E F A E F A Q A

So

Des $\sigma = \{2, 5, 7\},\$

 $\mathfrak{S}_n = \{ \sigma : \sigma \text{ is a permutation of } [n] \},\$

and $\mathfrak{S} = \bigcup_{n \geq 0} \mathfrak{S}_n$. Also, given $\pi \in \mathfrak{S}_k$, let

 $\mathfrak{S}_n(\pi) = \{ \sigma \in \mathfrak{S}_n : \sigma \text{ avoids } \pi \}.$

Permutation $\sigma = a_1 a_2 \dots a_n$ has *descent set/descent number*

 $\mathsf{Des}\,\sigma = \{i \in [n-1] : a_i > a_{i+1}\}, \qquad \mathsf{des}\,\sigma = |\,\mathsf{Des}\,\sigma|.$

It also has *major index*

$$\operatorname{maj} \sigma = \sum_{i \in \operatorname{Des} \sigma} i.$$

Ex. If $\sigma = 46137285$ then

$$i:$$
 1 2 3 4 5 6 7 8
 $a_i:$ 4 6 > 1 3 7 > 2 8 > 5.

So

Des $\sigma = \{2, 5, 7\},$ des $\sigma = 3,$

Let $[n] = \{1, 2, ..., n\},\$

 $\mathfrak{S}_n = \{ \sigma : \sigma \text{ is a permutation of } [n] \},\$

and $\mathfrak{S} = \bigcup_{n \geq 0} \mathfrak{S}_n$. Also, given $\pi \in \mathfrak{S}_k$, let

 $\mathfrak{S}_n(\pi) = \{ \sigma \in \mathfrak{S}_n : \sigma \text{ avoids } \pi \}.$

Permutation $\sigma = a_1 a_2 \dots a_n$ has *descent set/descent number*

 $\mathsf{Des}\,\sigma = \{i \in [n-1] : a_i > a_{i+1}\}, \qquad \mathsf{des}\,\sigma = |\,\mathsf{Des}\,\sigma|.$

It also has *major index*

$$\operatorname{maj} \sigma = \sum_{i \in \operatorname{Des} \sigma} i.$$

Ex. If $\sigma = 46137285$ then

$$i:$$
 1 2 3 4 5 6 7 8
 $a_i:$ 4 6 > 1 3 7 > 2 8 > 5.

So

Des $\sigma = \{2, 5, 7\}$, des $\sigma = 3$, maj $\sigma = 2 + 5 + 7 = 14$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

$$M_n(\pi) = M_n(\pi; q) = \sum_{\sigma \in \mathfrak{S}_n(\pi)} q^{\operatorname{maj} \sigma}.$$

$$M_n(\pi) = M_n(\pi; q) = \sum_{\sigma \in \mathfrak{S}_n(\pi)} q^{\operatorname{maj} \sigma}.$$

Ex. Consider $\mathfrak{S}_3(321)$:

$$M_n(\pi) = M_n(\pi; q) = \sum_{\sigma \in \mathfrak{S}_n(\pi)} q^{\operatorname{maj} \sigma}.$$

Ex. Consider $\mathfrak{S}_3(321)$:

 σ : 123 132 213 231 312

$$M_n(\pi) = M_n(\pi; q) = \sum_{\sigma \in \mathfrak{S}_n(\pi)} q^{\operatorname{maj} \sigma}.$$

Ex. Consider $\mathfrak{S}_3(321)$:

σ	1	123	132	213	231	312
maj σ	:	0	2	1	2	1

$$M_n(\pi) = M_n(\pi; q) = \sum_{\sigma \in \mathfrak{S}_n(\pi)} q^{\operatorname{maj} \sigma}.$$

Ex. Consider $\mathfrak{S}_3(321)$:

 σ : 123 132 213 231 312 maj σ : 0 2 1 2 1 $M_3(321) = q^0 + q^2 + q^1 + q^2 + q^1.$

$$M_n(\pi) = M_n(\pi; q) = \sum_{\sigma \in \mathfrak{S}_n(\pi)} q^{\operatorname{maj} \sigma}.$$

Ex. Consider $\mathfrak{S}_3(321)$:

 $\sigma : 123 \quad 132 \quad 213 \quad 231 \quad 312$ maj $\sigma : 0 \quad 2 \quad 1 \quad 2 \quad 1$ $M_3(321) = q^0 + q^2 + q^1 + q^2 + q^1.$ So $M_3(321) = 1 + 2q + 2q^2.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

$$M_n(\pi) = M_n(\pi; q) = \sum_{\sigma \in \mathfrak{S}_n(\pi)} q^{\operatorname{maj} \sigma}.$$

Ex. Consider $\mathfrak{S}_3(321)$:

 σ : 123 132 213 231 312 maj σ : 0 2 1 2 1 $M_3(321) = q^0 + q^2 + q^1 + q^2 + q^1.$

So $M_3(321) = 1 + 2q + 2q^2$.

Dokos, Dwyer, Johnson, Selsor, and S (DDJSS) where the first authors to comprehensively study $M_n(\pi)$ for all $\pi \in \mathfrak{S}_3$ as well as similarly defined polynomials for multiple pattern avoidance and for the inversion statistic.

Outline

Generalities

Permutation patterns and the major index

maj-Wilf equivalence

Other properties

Call π, π' maj-*Wilf equivalent* and write $\pi \equiv_{maj} \pi'$ if $M_n(\pi; q) = M_n(\pi'; q)$ for all $n \ge 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

<□▶ <圖▶ < 差▶ < 差▶ = 差 = のへで

Theorem (DDJSS)

The maj-Wilf equivalence classes for $\pi \in \mathfrak{S}_3$ are

[123] _{maj}	=	{ 123 },
[321] _{maj}	=	{321 },
[132] _{maj}	=	$\{132, 231\},$
[213] _{maj}	=	$\{213, 312\}.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem (DDJSS)

The maj-Wilf equivalence classes for $\pi \in \mathfrak{S}_3$ are

(ロ) (同) (三) (三) (三) (○) (○)

Proof. To show there are no other maj-Wilf equivalences, compare the polynomials $M_3(\pi)$ for $\pi \in \mathfrak{S}_3$.

Theorem (DDJSS)

The maj-Wilf equivalence classes for $\pi \in \mathfrak{S}_3$ are

Proof. To show there are no other maj-Wilf equivalences, compare the polynomials $M_3(\pi)$ for $\pi \in \mathfrak{S}_3$. For $\sigma = a_1 \dots a_n$ let $\sigma^c = (n+1-a_1) \dots (n+1-a_n)$.

(ロ) (同) (三) (三) (三) (○) (○)

Theorem (DDJSS)

The maj-Wilf equivalence classes for $\pi \in \mathfrak{S}_3$ are

$$\begin{split} & [123]_{maj} &= \ \{123\}, \\ & [321]_{maj} &= \ \{321\}, \\ & [132]_{maj} &= \ \{132,231\}, \\ & [213]_{maj} &= \ \{213,312\}. \end{split}$$

Proof. To show there are no other maj-Wilf equivalences, compare the polynomials $M_3(\pi)$ for $\pi \in \mathfrak{S}_3$. For $\sigma = a_1 \dots a_n$ let $\sigma^c = (n+1-a_1) \dots (n+1-a_n)$. So Des $\sigma^c = [n-1]$ – Des σ

(ロ) (同) (三) (三) (三) (○) (○)

Theorem (DDJSS)

The maj-Wilf equivalence classes for $\pi \in \mathfrak{S}_3$ are

$$\begin{split} & [123]_{maj} &= \ \{123\}, \\ & [321]_{maj} &= \ \{321\}, \\ & [132]_{maj} &= \ \{132,231\}, \\ & [213]_{maj} &= \ \{213,312\}. \end{split}$$

Proof. To show there are no other maj-Wilf equivalences, compare the polynomials $M_3(\pi)$ for $\pi \in \mathfrak{S}_3$. For $\sigma = a_1 \dots a_n$ let $\sigma^c = (n+1-a_1) \dots (n+1-a_n)$. So Des $\sigma^c = [n-1] - \text{Des } \sigma$ \therefore maj $\sigma^c = \binom{n}{2} - \text{maj } \sigma$

(ロ) (同) (三) (三) (三) (○) (○)

Theorem (DDJSS)

The maj-Wilf equivalence classes for $\pi \in \mathfrak{S}_3$ are

$$\begin{split} & [123]_{maj} &= & \{123\}, \\ & [321]_{maj} &= & \{321\}, \\ & [132]_{maj} &= & \{132,231\}, \\ & [213]_{maj} &= & \{213,312\}. \end{split}$$

Proof. To show there are no other maj-Wilf equivalences, compare the polynomials $M_3(\pi)$ for $\pi \in \mathfrak{S}_3$. For $\sigma = a_1 \dots a_n$ let $\sigma^c = (n+1-a_1) \dots (n+1-a_n)$. So Des $\sigma^c = [n-1]$ – Des σ \therefore maj $\sigma^c = {n \choose 2}$ – maj $\sigma \implies M_n(312; q) = q^{\binom{n}{2}}M_n(132; q^{-1})$.

Theorem (DDJSS)

The maj-Wilf equivalence classes for $\pi \in \mathfrak{S}_3$ are

$$\begin{split} & [123]_{maj} &= \ \{123\}, \\ & [321]_{maj} &= \ \{321\}, \\ & [132]_{maj} &= \ \{132, 231\}, \\ & [213]_{maj} &= \ \{213, 312\}. \end{split}$$

Proof. To show there are no other maj-Wilf equivalences, compare the polynomials $M_3(\pi)$ for $\pi \in \mathfrak{S}_3$. For $\sigma = a_1 \dots a_n$ let $\sigma^c = (n+1-a_1) \dots (n+1-a_n)$. So Des $\sigma^c = [n-1] - \text{Des } \sigma$

$$\therefore \operatorname{maj} \sigma^{c} = \binom{n}{2} - \operatorname{maj} \sigma \implies M_{n}(312; q) = q^{\binom{n}{2}} M_{n}(132; q^{-1}).$$

Similarly $M_n(213; q) = q^{\binom{n}{2}} M_n(231; q^{-1}).$

Theorem (DDJSS)

The maj-Wilf equivalence classes for $\pi \in \mathfrak{S}_3$ are

$$\begin{split} & [123]_{maj} &= \ \{123\}, \\ & [321]_{maj} &= \ \{321\}, \\ & [132]_{maj} &= \ \{132,231\}, \\ & [213]_{maj} &= \ \{213,312\}. \end{split}$$

Proof. To show there are no other maj-Wilf equivalences, compare the polynomials $M_3(\pi)$ for $\pi \in \mathfrak{S}_3$. For $\sigma = a_1 \dots a_n$ let $\sigma^c = (n+1-a_1) \dots (n+1-a_n)$. So Des $\sigma^c = [n-1]$ – Des σ

$$\therefore \operatorname{maj} \sigma^{c} = \binom{n}{2} - \operatorname{maj} \sigma \implies M_{n}(312; q) = q^{\binom{n}{2}} M_{n}(132; q^{-1}).$$

Similarly $M_n(213; q) = q^{\binom{n}{2}} M_n(231; q^{-1})$. So to finish the proof of the theorem it suffices to show that $132 \equiv_{maj} 231$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

We wish to define a map $\phi : \mathfrak{S}_n(132) \to \mathfrak{S}_n(231)$ such that

$$\phi(\sigma) = \sigma' \implies \operatorname{maj} \sigma = \operatorname{maj} \sigma'.$$

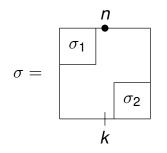
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

We wish to define a map $\phi : \mathfrak{S}_n(132) \to \mathfrak{S}_n(231)$ such that

$$\phi(\sigma) = \sigma' \implies \operatorname{maj} \sigma = \operatorname{maj} \sigma'.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

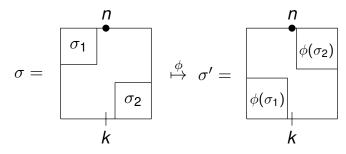
Define ϕ inductively by $\phi(1) = 1$ and, for $n \ge 2$,



We wish to define a map $\phi : \mathfrak{S}_n(132) \to \mathfrak{S}_n(231)$ such that

$$\phi(\sigma) = \sigma' \implies \operatorname{maj} \sigma = \operatorname{maj} \sigma'.$$

Define ϕ inductively by $\phi(1) = 1$ and, for $n \ge 2$,

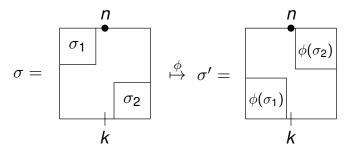


◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

We wish to define a map $\phi : \mathfrak{S}_n(132) \to \mathfrak{S}_n(231)$ such that

$$\phi(\sigma) = \sigma' \implies \operatorname{maj} \sigma = \operatorname{maj} \sigma'.$$

Define ϕ inductively by $\phi(1) = 1$ and, for $n \ge 2$,

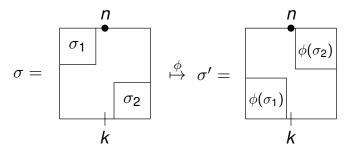


It is easy to verify that this is a well-defined bijection and that it preserves the major index.

We wish to define a map $\phi : \mathfrak{S}_n(132) \to \mathfrak{S}_n(231)$ such that

$$\phi(\sigma) = \sigma' \implies \operatorname{maj} \sigma = \operatorname{maj} \sigma'.$$

Define ϕ inductively by $\phi(1) = 1$ and, for $n \ge 2$,



It is easy to verify that this is a well-defined bijection and that it preserves the major index.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

This map has also been used by Bouvel and Viennot.

If $\pi = a_1 \dots a_n$ and $\sigma_1, \dots, \sigma_n \in \mathfrak{S}$ then the *inflation* of π by the σ_i is the permutation $\pi[\sigma_1, \dots, \sigma_n]$ whose diagram is obtained from that of π by replacing the *i*th dot with a copy of σ_i for all *i*.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

If $\pi = a_1 \dots a_n$ and $\sigma_1, \dots, \sigma_n \in \mathfrak{S}$ then the *inflation* of π by the σ_i is the permutation $\pi[\sigma_1, \dots, \sigma_n]$ whose diagram is obtained from that of π by replacing the *i*th dot with a copy of σ_i for all *i*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

If $\pi = a_1 \dots a_n$ and $\sigma_1, \dots, \sigma_n \in \mathfrak{S}$ then the *inflation* of π by the σ_i is the permutation $\pi[\sigma_1, \dots, \sigma_n]$ whose diagram is obtained from that of π by replacing the *i*th dot with a copy of σ_i for all *i*.

Conjecture (DDJSS) For all $m, n \ge 0$ we have:

 $132[\iota_m, 1, \delta_n] \equiv_{maj} 231[\iota_m, 1, \delta_n],$

(日) (日) (日) (日) (日) (日) (日)

where $\iota_m = 12...m$ and $\delta_n = n(n-1)...1$.

Outline

Generalities

Permutation patterns and the major index

maj-Wilf equivalence

Other properties

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めぬぐ

The *Catalan numbers* can be defined by $C_0 = 1$ and, for $n \ge 1$,

$$C_n = C_{n-1}C_0 + C_{n-2}C_1 + \cdots + C_0C_{n-1}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

The *Catalan numbers* can be defined by $C_0 = 1$ and, for $n \ge 1$,

$$C_n = C_{n-1}C_0 + C_{n-2}C_1 + \cdots + C_0C_{n-1}$$

If $\pi \in \mathfrak{S}_3$ then $M_n(\pi; q)$ is a *q*-Catalan number: $M_n(\pi; 1) = C_n$.

The *Catalan numbers* can be defined by $C_0 = 1$ and, for $n \ge 1$,

$$C_n = C_{n-1}C_0 + C_{n-2}C_1 + \cdots + C_0C_{n-1}$$

If $\pi \in \mathfrak{S}_3$ then $M_n(\pi; q)$ is a *q*-Catalan number: $M_n(\pi; 1) = C_n$. But these polynomials seem not to have been studied before.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

The *Catalan numbers* can be defined by $C_0 = 1$ and, for $n \ge 1$,

$$C_n = C_{n-1}C_0 + C_{n-2}C_1 + \cdots + C_0C_{n-1}$$

If $\pi \in \mathfrak{S}_3$ then $M_n(\pi; q)$ is a *q*-Catalan number: $M_n(\pi; 1) = C_n$. But these polynomials seem not to have been studied before. Theorem (DDJSS) Let

$$M_n(q,t) = \sum_{\sigma \in \mathfrak{S}_n(312)} q^{\operatorname{maj}\sigma} t^{\operatorname{des}\sigma}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The *Catalan numbers* can be defined by $C_0 = 1$ and, for $n \ge 1$,

$$C_n = C_{n-1}C_0 + C_{n-2}C_1 + \cdots + C_0C_{n-1}$$

If $\pi \in \mathfrak{S}_3$ then $M_n(\pi; q)$ is a *q*-Catalan number: $M_n(\pi; 1) = C_n$. But these polynomials seem not to have been studied before. Theorem (DDJSS)

Let

$$M_n(q,t) = \sum_{\sigma \in \mathfrak{S}_n(312)} q^{\operatorname{maj}\sigma} t^{\operatorname{des}\sigma}.$$

Then, for $n \ge 1$,

$$M_n(q,t) = M_{n-1}(q,qt) + \sum_{k=1}^{n-1} q^k t M_k(q,t) M_{n-k-1}(q,q^{k+1}t).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The *Catalan numbers* can be defined by $C_0 = 1$ and, for $n \ge 1$,

$$C_n = C_{n-1}C_0 + C_{n-2}C_1 + \cdots + C_0C_{n-1}$$

If $\pi \in \mathfrak{S}_3$ then $M_n(\pi; q)$ is a *q*-Catalan number: $M_n(\pi; 1) = C_n$. But these polynomials seem not to have been studied before. Theorem (DDJSS)

Let

$$M_n(q,t) = \sum_{\sigma \in \mathfrak{S}_n(\mathfrak{Z})} q^{\operatorname{maj}\sigma} t^{\operatorname{des}\sigma}.$$

Then, for $n \ge 1$,

$$M_n(q,t) = M_{n-1}(q,qt) + \sum_{k=1}^{n-1} q^k t M_k(q,t) M_{n-k-1}(q,q^{k+1}t).$$

Cheng, Elizalde, Kasraoui, and S found a recursion for the analogous polynomial when $\pi = 321$.

I. *q*-Catalan numbers

The *Catalan numbers* can be defined by $C_0 = 1$ and, for $n \ge 1$,

$$C_n = C_{n-1}C_0 + C_{n-2}C_1 + \cdots + C_0C_{n-1}$$

If $\pi \in \mathfrak{S}_3$ then $M_n(\pi; q)$ is a *q*-Catalan number: $M_n(\pi; 1) = C_n$. But these polynomials seem not to have been studied before. Theorem (DDJSS)

Let

$$M_n(q,t) = \sum_{\sigma \in \mathfrak{S}_n(\mathfrak{Z})} q^{\operatorname{maj}\sigma} t^{\operatorname{des}\sigma}.$$

Then, for $n \ge 1$,

$$M_n(q,t) = M_{n-1}(q,qt) + \sum_{k=1}^{n-1} q^k t M_k(q,t) M_{n-k-1}(q,q^{k+1}t).$$

Cheng, Elizalde, Kasraoui, and S found a recursion for the analogous polynomial when $\pi = 321$. The other two polynomial recursions can be found by complementation.

<ロ> <個> < 国> < 国> < 国> < 国> < 国</p>

Divisibility properties of Catalan numbers has been a topic of recent interest: Eu, Liu, & Yeh; Kauers, Krattenthaler & Müller; Konvalinka; Lin; Liu & Yeh; Postnikov & S; Xin & Xu; Yildiz.

Divisibility properties of Catalan numbers has been a topic of recent interest: Eu, Liu, & Yeh; Kauers, Krattenthaler & Müller; Konvalinka; Lin; Liu & Yeh; Postnikov & S; Xin & Xu; Yildiz.

Theorem

We have that C_n is odd if and only if $n = 2^k - 1$ for some $k \ge 0$.

Divisibility properties of Catalan numbers has been a topic of recent interest: Eu, Liu, & Yeh; Kauers, Krattenthaler & Müller; Konvalinka; Lin; Liu & Yeh; Postnikov & S; Xin & Xu; Yildiz.

Theorem

We have that C_n is odd if and only if $n = 2^k - 1$ for some $k \ge 0$.

One can also characterize the highest power of 2 dividing C_n and a mostly combinatorial proof has been given by Deutsch and S.

Divisibility properties of Catalan numbers has been a topic of recent interest: Eu, Liu, & Yeh; Kauers, Krattenthaler & Müller; Konvalinka; Lin; Liu & Yeh; Postnikov & S; Xin & Xu; Yildiz.

Theorem

We have that C_n is odd if and only if $n = 2^k - 1$ for some $k \ge 0$.

One can also characterize the highest power of 2 dividing C_n and a mostly combinatorial proof has been given by Deutsch and S. The following result was conjectured by DDJSS.

Divisibility properties of Catalan numbers has been a topic of recent interest: Eu, Liu, & Yeh; Kauers, Krattenthaler & Müller; Konvalinka; Lin; Liu & Yeh; Postnikov & S; Xin & Xu; Yildiz.

Theorem

We have that C_n is odd if and only if $n = 2^k - 1$ for some $k \ge 0$.

One can also characterize the highest power of 2 dividing C_n and a mostly combinatorial proof has been given by Deutsch and S. The following result was conjectured by DDJSS.

Theorem (Killpatrick)

For all $k \ge 0$, the power of q^i in $M_{2^k-1}(321; q)$ is

 $\begin{cases} 1 & \text{if } i = 0, \\ an \text{ even number } & \text{if } i \ge 1. \end{cases}$

Divisibility properties of Catalan numbers has been a topic of recent interest: Eu, Liu, & Yeh; Kauers, Krattenthaler & Müller; Konvalinka; Lin; Liu & Yeh; Postnikov & S; Xin & Xu; Yildiz.

Theorem

We have that C_n is odd if and only if $n = 2^k - 1$ for some $k \ge 0$.

One can also characterize the highest power of 2 dividing C_n and a mostly combinatorial proof has been given by Deutsch and S. The following result was conjectured by DDJSS.

Theorem (Killpatrick)

For all $k \ge 0$, the power of q^i in $M_{2^k-1}(321; q)$ is

 $\begin{cases} 1 & \text{if } i = 0, \\ an \text{ even number } & \text{if } i \ge 1. \end{cases}$

Killpatrick's proof uses the charge statistic of Lascoux and Schützenberger.

III. Multiple pattern avoidance

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

 $\mathfrak{S}_n(\Pi) = \{ \sigma : \sigma \text{ avoids all } \pi \in \Pi \},\$

 $\mathfrak{S}_n(\Pi) = \{ \sigma : \sigma \text{ avoids all } \pi \in \Pi \}, \quad M_n(\Pi; q) = \sum_{\sigma \in \mathfrak{S}_n(\Pi)} q^{\operatorname{maj} \sigma}.$

 $\mathfrak{S}_n(\Pi) = \{ \sigma : \sigma \text{ avoids all } \pi \in \Pi \}, \quad M_n(\Pi; q) = \sum_{\sigma \in \mathfrak{S}_n(\Pi)} q^{\operatorname{maj} \sigma}.$

(ロ) (同) (三) (三) (三) (○) (○)

For some $M_n(\Pi; q)$, $\Pi \subseteq \mathfrak{S}_3$, we could not give closed form formulas but gave recursions or generating functions.

 $\mathfrak{S}_n(\Pi) = \{ \sigma : \sigma \text{ avoids all } \pi \in \Pi \}, \quad M_n(\Pi; q) = \sum_{\sigma \in \mathfrak{S}_n(\Pi)} q^{\operatorname{maj} \sigma}.$

For some $M_n(\Pi; q)$, $\Pi \subseteq \mathfrak{S}_3$, we could not give closed form formulas but gave recursions or generating functions. Define

$$M(\Pi; q, x) = \sum_{n \ge 0} M_n(\Pi; q) x^n,$$

 $\mathfrak{S}_n(\Pi) = \{ \sigma : \sigma \text{ avoids all } \pi \in \Pi \}, \quad M_n(\Pi; q) = \sum_{\sigma \in \mathfrak{S}_n(\Pi)} q^{\operatorname{maj} \sigma}.$

For some $M_n(\Pi; q)$, $\Pi \subseteq \mathfrak{S}_3$, we could not give closed form formulas but gave recursions or generating functions. Define

$$M(\Pi; q, x) = \sum_{n \ge 0} M_n(\Pi; q) x^n,$$

and

$$(x)_k = (1-x)(1-qx)(1-q^2x)\dots(1-q^{k-1}x).$$

 $\mathfrak{S}_n(\Pi) = \{ \sigma : \sigma \text{ avoids all } \pi \in \Pi \}, \quad M_n(\Pi; q) = \sum_{\sigma \in \mathfrak{S}_n(\Pi)} q^{\operatorname{maj} \sigma}.$

For some $M_n(\Pi; q)$, $\Pi \subseteq \mathfrak{S}_3$, we could not give closed form formulas but gave recursions or generating functions. Define

$$M(\Pi; q, x) = \sum_{n \ge 0} M_n(\Pi; q) x^n,$$

and

$$(x)_k = (1-x)(1-qx)(1-q^2x)\dots(1-q^{k-1}x).$$

Theorem (DDJSS)

$$M(231, 321; q, x) = \sum_{k \ge 0} \frac{q^{k^2} x^{2k}}{(x)_k (x)_{k+1}}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

IV. References

- 1. S.-E. Cheng, S. Elizalde, A. Kasraoui, and B. Sagan, Inversion polynomials for 321-avoiding permutations, *Discrete Math.*, **313** (2013), 2552–2565.
- T. Dokos, T. Dwyer, B. P. Johnson, B Sagan, and K. Selsor Permutation Patterns and Statistics, *Discrete Math.*, **312** (2012), 2760–2775.
- K. Killpatrick, On the parity of certain coefficients for a q-analogue of the Catalan numbers, *Electron. J. Combin.* 19 (2012), no. 4, Paper 27, 7 pp.

Pick your favorite pattern avoidance notion and favorite statistic and have them play together!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Pick your favorite pattern avoidance notion and favorite statistic and have them play together!

THANKS FOR LISTENING!

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@