Pattern-avoiding polytopes and Bruhat orders I

Robert Davis
and
Bruce Sagan
Michigan State University
www.math.msu.edu/~sagan

January 8, 2017
Introduction to polytopes

Pattern-avoiding Birkhoff polytopes and weak Bruhat order

The dimension of $B_n(132, 312)$
A polytope is the convex hull of (smallest convex body containing) a set of points $v_1, \ldots, v_k \in \mathbb{R}^n$, written

$$P = \text{conv}\{v_1, \ldots, v_k\}.$$

All our polytopes will be integral, meaning $v_1, \ldots, v_k \in \mathbb{Z}^n$.

(1) Dimension. The affine span of P, $\text{aff } P$, is the smallest affine subspace containing P. The dimension of P is

$$\dim P = \dim \text{aff } P.$$

Ex. If $v_1 = (2, 0)$ and $v_2 = (0, 2)$ then $P_1 = \text{conv}\{v_1, v_2\}$ is

So $\dim P_1 = 1.$
(2) Volume. The \textit{(relative) volume} of polytope P is

$$\text{vol } P = \text{volume with respect to the lattice } \mathbb{Z}^n \cap \text{aff } P.$$

A \textit{simplex} is $\Sigma = \text{conv}\{v_1, \ldots, v_{k+1}\}$ with $\dim \Sigma = k$. Call Σ \textit{unimodular} if $\text{vol } \Sigma$ is minimum with respect to $\mathbb{Z}^n \cap \text{aff } \Sigma$. A unimodular simplex has volume $\text{vol } \Sigma = 1/(\text{dim } \Sigma)!$. The \textit{normalized volume} of polytope P is

$$\text{Vol } P = (\text{dim } P)! \text{vol } P.$$

\textbf{Ex.} Let P_1 be as before and $P_2 = \text{conv}\{(0, 0), (1, 0), (0, 1)\}$.

So $\text{vol } P_1 = 2$, and $\text{vol } P_2 = 1/2$. Both P_i are simplices with P_2 unimodular and P_1 not. Also $\text{Vol } P_1 = 2$ and $\text{Vol } P_2 = 1$.
(3) h^*-polynomials. The mth dilate of polytope P is

$$mP = \{mv \mid v \in P\}.$$

The *Ehrhart polynomial* of P is

$$\mathcal{L}_P(m) = |mP \cap \mathbb{Z}^n|.$$

Theorem (Ehrhart-Stanley)

*If P is integral then $\mathcal{L}_P(m)$ is a polynomial in m and for some d

$$
\sum_{m \geq 0} \mathcal{L}_P(m)t^m = \frac{\sum_{j=0}^{d} h_j^* t^j}{(1 - t)^{\dim P + 1}}
$$

where $\sum_j h_j^* t^j \in \mathbb{Z}_{\geq 0}[t]$ is called the h^*-polynomial of P, $h^*(P; t)$.

Ex. Let $P = \text{conv}\{(0,0), (1,0), (0,1), (1,1)\}$.

So $\mathcal{L}_P(m) = (m + 1)^2$.

![Diagram of P and 2P with counters]
Let \mathcal{S}_n be the nth symmetric group. If $\sigma = \sigma_1 \ldots \sigma_n \in \mathcal{S}_n$ and $\pi = \pi_1 \ldots \pi_k \in \mathcal{S}_k$ then σ contains the pattern π if there is a subsequence of σ order isomorphic to π. Otherwise σ avoids π.

Ex. $\sigma = 2415376$ contains $\pi = 312$ because of the subsequence 413 but avoids $\pi = 321$ since it has no subsequence $s_i > s_j > s_k$.

For any set of permutations Π, let

$$\text{Av}_n(\Pi) = \{ \sigma \in \mathcal{S}_n \mid \sigma \text{ avoids every } \pi \in \Pi \}.$$

If M_σ is the permutation matrix of σ then the Birkhoff polytope is

$$B_n = \text{conv}\{ M_\sigma \mid \sigma \in \mathcal{S}_n \} \subseteq \mathbb{R}^{n \times n}.$$

(1) dim $B_n = (n - 1)^2$,
(2) vol B_n has only been calculated for $n \leq 10$,
(3) $h^*(B_n; t)$ is symmetric and unimodal.

Define the Π-avoiding Birkhoff polytope by

$$B_n(\Pi) = \text{conv}\{ M_\sigma \mid \sigma \in \text{Av}_n(\Pi) \} \subseteq B_n.$$

Here we study $B_n(132, 312)$; other Π are in our paper.
Let $Q_n(132, 312)$ be $\text{Av}_n(132, 312)$ partially ordered by weak Bruhat order, that is, we have a cover $\pi \preceq \sigma$ if for some i,

$$\sigma = \pi(i, i + 1) \text{ where } \pi_i < \pi_{i+1}.$$

Let $M(n)$ be the poset of shifted Young diagrams contained in $(n, \ldots, 2, 1)$ ordered by inclusion.

Proposition

For all n we have

$$Q_n(132, 312) \cong M(n - 1).$$

Proof sketch. The map $\phi : Q_n(132, 312) \rightarrow M(n - 1)$ given by

$$\phi(\sigma) = \text{Des } \sigma$$

is an isomorphism where $\text{Des } \sigma$ is the descent set of σ. \qed
Ex.

$Q_4(132, 312)$ 3421

3241

3214 2341

3214 2314

2314 2341

2134

1234

$M(3)$
Let $\Delta(Q_n(132, 312))$ be the order complex of all chains Γ in $Q_n(132, 312)$. Since $Q_n(132, 312) \cong M(n - 1)$ which is a distributive lattice, $\Delta(Q_n(132, 312))$ is shellable. Consider the map $f : \Delta(Q_n(132, 312)) \rightarrow B_n(132, 312)$ defined by

$$f(\sigma_1 < \cdots < \sigma_k) = \text{conv}\{M_{\sigma_1}, \ldots, M_{\sigma_k}\}.$$

Proposition

$$\mathcal{T}_n(132, 312) = \{f(\Gamma) \mid \Gamma \in \Delta(Q_n(132, 312))\}$$

is a set of unimodular simplices in $B_n(132, 312)$.

Proof sketch. Induct on maximal chains using the shelling order. □

From the previous result, for Γ a maximal chain in $Q_n(132, 312)$,

$$\dim B_n(132, 312) \geq \dim \Gamma = |(n - 1, \ldots, 2, 1)| = \binom{n}{2}.$$

Theorem

$$\dim B_n(132, 312) = \binom{n}{2}. \quad \square$$
THANKS FOR LISTENING!

AND PLEASE STAY FOR THE NEXT TALK!