
Partially Ordered Sets and their Möbius
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This work is joint with Joshua Hallam.

All posets will be ranked.
Many ranked posets have characteristic polynomials whose
roots are nonnegative integers. Why? Answers have been
given by Saito and Terao, Stanley, Zaslavsky, Blass and S, as
well as others. Recall that the characteristic polynomial of a
ranked poset P is

χ(P) = χ(P; t) =
∑
x∈P

µ(x)tρ(P)−ρ(x).

In some cases the factorization is easy to explain Recall:

Proposition
Let P,Q be ranked posets.
1. P ∼= Q =⇒ χ(P; t) = χ(Q; t).
2. P ×Q is ranked and χ(P ×Q; t) = χ(P; t)χ(Q; t).
Ex. We have

χ(C1) = µ(0)t + µ(1) = t − 1.

Now Bn ∼= Cn
1 . So by the previous theorem

χ(Bn) = χ(Cn
1 ) = χ(C1)n = (t − 1)n.
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Ex. Consider the partition lattice Π3.

123

12/3 13/2 1/23

1/2/3

Π3 =

1

−1 −1 −1

2

χ(Π3, t) = t2 − t − t − t + 2

= t2 − 3t + 2
= (t − 1)(t − 2).

Theorem
χ(Πn, t) = (t − 1)(t − 2) · · · (t − n + 1).

But Πn is not a product of smaller posets.
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The claw , CLn, consists of a 0̂ together with n atoms.

CLn =

a1 a2 · · · an

0̂ 1

−1 −1 −1

Thus
χ(CLn) = t − n.

So the characteristic polynomial of CLn can give us any
positive integer root as n varies.
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Clearly Π3 and CL1 × CL2 are not isomorphic.

What if we
identify the top two elements of CL1 × CL2?
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12/3−1 13/2−1 1/23−1

1/2/3+1

Π3
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(0̂,b) −1 (0̂, c) −1(a, 0̂) −1

(a,b) ∼ (a, c) +2

CL1×CL2
after identification

Note that the Möbius values of (a,b) and (a, c) added to give
the Möbius value of (a,b) ∼ (a, c). So χ(CL1 × CL2) did not
change after the identification since characteristic polynomials
only record the sums of the Möbius values at each rank.
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Note that the Möbius values of (a,b) and (a, c) added to give
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General Method.

Suppose P is a ranked poset and we wish to prove

χ(P) = (t − r1) . . . (t − rn)

where r1, . . . , rn are positive integers.
1. Construct the poset

Q = CLr1 × · · · × CLrn .

2. Identify elements of Q to form a poset Q/ ∼ in such a way
that
(a) χ(Q/ ∼) = χ(Q) = (t − r1) . . . (t − rn),
(b) (Q/ ∼) ∼= P.

3. If follows that

χ(P) = χ(Q/ ∼) = (t − r1) . . . (t − rn).
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Let P be a poset and let ∼ be an equivalence relation on P.

We
define the quotient , P/ ∼, to be the set of equivalence classes
with the binary relation ≤ defined by

X ≤ Y in P/ ∼ ⇐⇒ x ≤ y in P for some x ∈ X and some y ∈ Y .

Quotients of posets need not be posets.
Ex. Consider

0

1

2

C3 =

Put an equivalence relation on C3 with classes

X = {0,2}, Y = {1}.

Then X < Y since 0 < 1 and Y < X since 1 < 2.
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Let P be a poset and let ∼ be an equivalence relation on P.

We
say the quotient P/ ∼ is a homogeneous quotient if
(1) 0̂ is in an equivalence class by itself, and
(2) X ≤ Y in P/ ∼ implies that for all x ∈ X there is a y ∈ Y

with x ≤ y .

Lemma (Hallam-S)
If P/ ∼ is a homogeneous quotient then P/ ∼ a poset.
Proof. Reflexivity and transitivity in ≤ in P/ ∼ are easy. To
prove antisymmetry, suppose that X ≤ Y and Y ≤ X . By
definition, there is a x ∈ X and y ∈ Y with x ≤ y . Since Y ≤ X
there is a x ′ ∈ X with x ≤ y ≤ x ′. Since X ≤ Y there is a
y ′ ∈ Y with x ≤ y ≤ x ′ ≤ y ′. Continuing, we get a chain

x ≤ y ≤ x ′ ≤ y ′ ≤ . . .

If some inequality is an equality, then we have a common
element of X and Y which implies X = Y . If all are strict, then
we would have an infinite chain in P. But this contradicts the
fact that P is finite, so this case can not happen.
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How do we determine a suitable equivalence relation?

If P is a
lattice, then there is a canonical choice.

Let us revisit Π3. Label the atoms of CL1 ×CL2 with atoms from
Π3 as follows:

0̂

12/3

0̂

13/2 1/23

× =

(0̂, 0̂)

(0̂,13/2) (0̂,1/23)(12/3, 0̂)

(12/3,13/2) (12/3,1/23)
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Finally, identify elements with the same label to obtain the
same quotient we did before. Not only is the quotient
isomorphic to Π3, it even has the same labeling.
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An ordered partition of a set A is a sequence of subsets
(A1, . . . ,An) with ]iAi = A.

We write (A1, . . . ,An) ` A.

Let (A1, . . . ,An) ` A(L) for a lattice L. Let CLAi be the claw with
atom set Ai . The standard equivalence relation on

∏
i CLAi is

t ∼ s in
n∏

i=1

CLAi ⇐⇒
∨

t =
∨

s in L.

The atomic transversals of x ∈ L are the elements of the
equivalence class

T a
x =

{
t ∈

n∏
i=1

CLAi :
∨

t = x

}
.

Ex. (A1,A2) ` A(Π3) where A1 = {12/3}, A2 = {13/2,1/23}.
Note that CLA1 and CLA2 were the claws used for Π3.

x ∈ Π3 t ∈ T a
x

0̂ (0̂, 0̂)

12/3 (12/3, 0̂)
123 (12/3,13/2), (12/3,1/23).
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We need a condition on the standard equivalence relation
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We wish to make sure that when identifying the elements in an
equivalence class, the Möbius function of the class is the sum
of the Möbius functions of its elements so that χ does not
change.

Given x ∈ L, let

Ax = {a ∈ A(L) : a ≤ x}.

Lemma (Hallam-S)
Let lattice L, (A1, . . . ,An) ` A(L) and Q =

∏
i CLAi satisfy the

conditions of the previous lemma. Suppose, for each x 6= 0̂ in L,

there exists an index i such that |Ax ∩ Ai | = 1. (1)

Then for any T a
x ∈ Q/ ∼ we have

µ(T a
x ) =

∑
t∈T a

x

µ(t).

Ex. Π3 with A1 = {12/3} and A2 = {13/2,1/23}. If x ∈ A(Π3),
then Ax = {x} and (1) is clear. If x = 123 then |Ax ∩ A1| = 1.
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equivalence class, the Möbius function of the class is the sum
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of the Möbius functions of its elements so that χ does not
change. Given x ∈ L, let

Ax = {a ∈ A(L) : a ≤ x}.

Lemma (Hallam-S)
Let lattice L, (A1, . . . ,An) ` A(L) and Q =

∏
i CLAi satisfy the

conditions of the previous lemma. Suppose, for each x 6= 0̂ in L,

there exists an index i such that |Ax ∩ Ai | = 1. (1)

Then for any T a
x ∈ Q/ ∼ we have

µ(T a
x ) =

∑
t∈T a

x

µ(t).

Ex. Π3 with A1 = {12/3} and A2 = {13/2,1/23}. If x ∈ A(Π3),
then Ax = {x} and (1) is clear. If x = 123

then |Ax ∩ A1| = 1.



We wish to make sure that when identifying the elements in an
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Our main theorem is as follows.

Theorem (Hallam-S)
Let L be a lattice, (A1, . . . ,An) ` A(L) and Q =

∏
i CLAi .

Suppose that the following three conditions hold.
(1) For all x ∈ L we have T a

x 6= ∅.
(2) If t ∈ T a

x then | supp t| = ρ(x).
(3) For each x 6= 0̂ in L, there is i such that |Ax ∩ Ai | = 1.

Then we can conclude the following.
(a) (Q/ ∼) ∼= L.

(b) χ(L; t) =
n∏

i=1

(t − |Ai |).

Condition (1) is used to prove that the map (Q/ ∼)→ L by
T a

x 7→ x is surjective.
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Corollary
χ(Πn; t) = (t − 1)(t − 2) . . . (t − n + 1).

Proof. If i < j let {i , j} be the atom of Πn having this set as its
unique non-singleton block. Let (A1, . . . ,An−1) ` A(Πn) where

Ai = {{1, i + 1}, {2, i + 1}, . . . , {i , i + 1}}.
We will verify the three conditions for x = 1̂.
(1) ({1,2}, {2,3}, . . . , {n − 1,n}) ∈ T a

1̂
.

(2) With any t ∈ Q, associate a graph Gt with V = [n] and

ij ∈ E ⇐⇒ {i , j} ∈ t.

I claim Gt is a forest. If C : . . . i ,m.j , . . . is a cycle with
m = max C, then {i ,m}, {j ,m} ∈ t. But {i ,m}, {j ,m} ∈ Am−1.
Also, the vertices of the components of Gt are the blocks of

∨
t.

∴ t ∈ T a
1̂

=⇒ Gt a tree =⇒ | supp t| = n − 1 = ρ(1̂).

(3) A1 = {{1,2}} so |A1̂ ∩ A1| = 1.

∴ χ(Πn; t) = (t −|A1|) . . . (t −|An−1|) = (t −1) . . . (t −n + 1).
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How do we find an appropriate atom partition?

We say
(A1, . . . ,An) ` A(L) is induced by a chain if there is a chain
C : 0̂ = x0 < x1 < x2 < · · · < xn = 1̂ such that

Ai = {a ∈ A(L) : a ≤ xi and a 6≤ xi−1}.

In Π3, the partition with A1 = {12/3} and A2 = {13/2,1/23} is
induced by the chain C : 1/2/3 < 12/3 < 123.

1/2/3

12/3 13/2 1/23

123

12/3A1 =

123

13/2 1/23 = A2

In Πn, our partition is induced by 0̂ < [2] < [3] < · · · < 1̂ where
[i] is the partition having this set as its only non-trivial block
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Let L be a lattice and C : 0̂ = x0 < x1 < x2 < · · · < xn = 1̂.

For
x ∈ L let i be the index with x ≤ xi and x 6≤ xi−1. Say that C
satisfies the meet condition if, for every x ∈ L of rank at least 2,

x ∧ xi−1 6= 0̂.

Theorem (Hallam-S)
Let L be a lattice and (A1, . . . ,An) induced by a chain C.
Suppose that for all x ∈ L and t ∈ T a

x we have

| supp t| = ρ(x).

Under these conditions, the following are equivalent.
1. For each x 6= 0̂ in L, there is i such that |Ax ∩ Ai | = 1.
2. Chain C satisfies the meet condition.
3. The characteristic polynomial of L factors as

χ(L, t) = tρ(L)−n
n∏

i=1

(t − |Ai |).
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Any lattice L satisfies: for all x , y , z ∈ L with y < z

y ∨ (x ∧ z) ≤ (y ∨ x) ∧ z (modular inequality). (2)

Call x ∈ L left-modular if, together with any y < z, we have
equality in (2). A lattice is supersolvable if it has a saturated
chain of left-modular elements.

Lemma (Hallam-S)
Let L be a lattice and C a 0̂–1̂ chain in L inducing (A1, . . . ,An).

1. If C is saturated and consists of left-modular elements,
then C satisfies the meet condition.

2. If L is semimodular then for any x ∈ L and t ∈ T a
x we have

| supp t| = ρ(x).

Corollary (Stanley, 1972)
Let L be a semimodular, supersolvable lattice and (A1, . . . ,An)
be induced by a saturated chain of left-modular elements. Then

χ(L; t) =
n∏

i=1

(t − |Ai |).
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Let G be a graph with V = [n] and F be a spanning forest.

Then
F is increasing if the vertices in any path of F starting at the
minimum vertex of its component form an increasing sequence.

Ex.

4 3

1 2

G
4 3

1 2

increasing F
4 3

1 2

not increasing F

Define

fk (G) = # of increasing spanning forests of G with k edges.

and

IF (G; t) =
n−1∑
k=0

(−1)k fk (G)tn−k .
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Always write ij = {i , j} ∈ E(G) with i < j .

The induced ordered
partition of E(G) is (E1, . . . ,En−1) where

Ej = {{i , j + 1} : {i , j + 1} ∈ E(G)}.
Ex.

4 3

1 2
G =

has partition

E1 = {12}, E2 = {23}, E3 = {14,24},

and

IF (G; t) = t(t − 1)2(t − 2)

= p(G; t) (chromatic polynomial).

Theorem (Hallam-S)
Let G have V = [n] inducing partition (E1, . . . ,En−1). Then

IF (G; t) = t
n−1∏
j=1

(t − |Ej |).
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If G is a graph and W ⊆ V (G), let G[W ] denote the induced
subgraph of G with vertex set W .

A clique in G is a subgraph
G[W ] which is complete.
Ex.

4 3

1 2

G
4

1 2

G[1,2,4] a clique
4 3

2

G[2,3,4] not a clique

1 1 2 1 2

3

1 2

34

Say G has a perfect elimination ordering (peo) if there is an
ordering v1, . . . , vn of V such that, for all i , the vertices adjacent
to vi in G[v1, . . . , vi−1] form a clique. If G has a peo then
p(G; t) has roots in N. Using the bond lattice of G, we prove:

Theorem (Hallam-S)
Let G be a graph with V = [n]. Then p(G; t) = IF (G; t) if and
only if 1, . . . ,n is a peo of G.
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