Partially Ordered Sets and their Möbius Functions IV: Factoring the Characteristic Polynomial

Bruce Sagan
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027
sagan@math.msu.edu
www.math.msu.edu/~sagan

June 2, 2014
Motivating Examples

Quotient Posets

The Standard Equivalence Relation

The Main Theorem

Partitions Induced by Chains

Application: Increasing Forests
Outline

Motivating Examples

Quotient Posets

The Standard Equivalence Relation

The Main Theorem

Partitions Induced by Chains

Application: Increasing Forests
This work is joint with Joshua Hallam.

All posets will be ranked.

Many ranked posets have characteristic polynomials whose roots are nonnegative integers. Why? Answers have been given by Saito and Terao, Stanley, Zaslavsky, Blass and S, as well as others. Recall that the characteristic polynomial of a ranked poset P is $\chi(P) = \chi(P; t) = \sum_{x \in P} \mu(x) t^{\rho(P)} - \rho(x)$.

In some cases the factorization is easy to explain. Recall:

Proposition

Let P, Q be ranked posets.

1. $P \sim Q \implies \chi(P; t) = \chi(Q; t)$.
2. $P \times Q$ is ranked and $\chi(P \times Q; t) = \chi(P; t) \chi(Q; t)$.

Ex. We have $\chi(C_1) = \mu(0) t + \mu(1) = t - 1$. Now $B_n \sim C_n$. So by the previous theorem $\chi(B_n) = \chi(C_n) = \chi(C_1)^n = (t - 1)^n$.
This work is joint with Joshua Hallam. All posets will be ranked.

Many ranked posets have characteristic polynomials whose roots are nonnegative integers. Why? Answers have been given by Saito and Terao, Stanley, Zaslavsky, Blass and S, as well as others.

Recall that the characteristic polynomial of a ranked poset P is $\chi(P) = \chi(P; t) = \sum_{x \in P} \mu(x) t^{\rho(P)} - \rho(x)$.

In some cases the factorization is easy to explain. Recall:

Proposition

1. If $P \sim = Q \Rightarrow \chi(P; t) = \chi(Q; t)$.

2. $P \times Q$ is ranked and $\chi(P \times Q; t) = \chi(P; t) \chi(Q; t)$.

Ex.

We have $\chi(C_1) = \mu(0) t + \mu(1) = t - 1$.

Now $B_n \sim = C_n$. So by the previous theorem $\chi(B_n) = \chi(C_n) = (t - 1)^n$.

This work is joint with Joshua Hallam. All posets will be ranked. Many ranked posets have characteristic polynomials whose roots are nonnegative integers.
This work is joint with Joshua Hallam. All posets will be ranked. Many ranked posets have characteristic polynomials whose roots are nonnegative integers. Why?
This work is joint with Joshua Hallam. All posets will be ranked. Many ranked posets have characteristic polynomials whose roots are nonnegative integers. Why? Answers have been given by Saito and Terao, Stanley, Zaslavsky, Blass and S, as well as others.

Recall that the characteristic polynomial of a ranked poset P is $\chi(P) = \chi(P; t) = \sum_{x \in P} \mu(x) t^{\rho(P)} - \rho(x)$. In some cases the factorization is easy to explain.

Proposition
Let P, Q be ranked posets.
1. $P \sim Q \Rightarrow \chi(P; t) = \chi(Q; t)$.
2. $P \times Q$ is ranked and $\chi(P \times Q; t) = \chi(P; t) \chi(Q; t)$.

Ex. We have $\chi(C_1) = \mu(0) t + \mu(1) = t - 1$. Now $B_n \sim C_n 1$. So by the previous theorem $\chi(B_n) = \chi(C_n 1) = \chi(C_1)^n = (t - 1)^n$.
This work is joint with Joshua Hallam. All posets will be ranked. Many ranked posets have characteristic polynomials whose roots are nonnegative integers. Why? Answers have been given by Saito and Terao, Stanley, Zaslavsky, Blass and S, as well as others. Recall that the characteristic polynomial of a ranked poset P is

$$
\chi(P) = \chi(P; t) = \sum_{x \in P} \mu(x) t^{\rho(P) - \rho(x)}.
$$
This work is joint with Joshua Hallam. All posets will be ranked. Many ranked posets have characteristic polynomials whose roots are nonnegative integers. Why? Answers have been given by Saito and Terao, Stanley, Zaslavsky, Blass and S, as well as others. Recall that the characteristic polynomial of a ranked poset P is

$$
\chi(P) = \chi(P; t) = \sum_{x \in P} \mu(x) t^{\rho(P) - \rho(x)}.
$$

In some cases the factorization is easy to explain.
This work is joint with Joshua Hallam. All posets will be ranked. Many ranked posets have characteristic polynomials whose roots are nonnegative integers. Why? Answers have been given by Saito and Terao, Stanley, Zaslavsky, Blass and S, as well as others. Recall that the characteristic polynomial of a ranked poset P is

$$\chi(P) = \chi(P; t) = \sum_{x \in P} \mu(x) t^{\rho(P) - \rho(x)}.$$

In some cases the factorization is easy to explain. Recall:

Proposition

Let P, Q be ranked posets.
This work is joint with Joshua Hallam. All posets will be ranked. Many ranked posets have characteristic polynomials whose roots are nonnegative integers. Why? Answers have been given by Saito and Terao, Stanley, Zaslavsky, Blass and S, as well as others. Recall that the characteristic polynomial of a ranked poset P is

$$\chi(P) = \chi(P; t) = \sum_{x \in P} \mu(x) t^{\rho(P) - \rho(x)}.$$

In some cases the factorization is easy to explain. Recall:

Proposition

Let P, Q be ranked posets.

1. $P \cong Q \implies \chi(P; t) = \chi(Q; t).$
This work is joint with Joshua Hallam. All posets will be ranked. Many ranked posets have characteristic polynomials whose roots are nonnegative integers. Why? Answers have been given by Saito and Terao, Stanley, Zaslavsky, Blass and S, as well as others. Recall that the characteristic polynomial of a ranked poset P is

$$
\chi(P) = \chi(P; t) = \sum_{x \in P} \mu(x) t^{\rho(P) - \rho(x)}.
$$

In some cases the factorization is easy to explain. Recall:

Proposition

Let P, Q be ranked posets.

1. $P \cong Q \implies \chi(P; t) = \chi(Q; t)$.
2. $P \times Q$ is ranked and $\chi(P \times Q; t) = \chi(P; t) \chi(Q; t)$.
This work is joint with Joshua Hallam. All posets will be ranked. Many ranked posets have characteristic polynomials whose roots are nonnegative integers. Why? Answers have been given by Saito and Terao, Stanley, Zaslavsky, Blass and S, as well as others. Recall that the characteristic polynomial of a ranked poset P is

$$\chi(P) = \chi(P; t) = \sum_{x \in P} \mu(x) t^{\rho(P) - \rho(x)}.$$

In some cases the factorization is easy to explain Recall:

Proposition

Let P, Q be ranked posets.

1. $P \cong Q \implies \chi(P; t) = \chi(Q; t)$.
2. $P \times Q$ is ranked and $\chi(P \times Q; t) = \chi(P; t)\chi(Q; t)$.

Ex. We have

$$\chi(C_1)$$
This work is joint with Joshua Hallam. All posets will be ranked. Many ranked posets have characteristic polynomials whose roots are nonnegative integers. Why? Answers have been given by Saito and Terao, Stanley, Zaslavsky, Blass and S, as well as others. Recall that the characteristic polynomial of a ranked poset P is

$$\chi(P) = \chi(P; t) = \sum_{x \in P} \mu(x) t^{\rho(P) - \rho(x)}.$$

In some cases the factorization is easy to explain. Recall:

Proposition

Let P, Q be ranked posets.

1. $P \cong Q \implies \chi(P; t) = \chi(Q; t)$.
2. $P \times Q$ is ranked and $\chi(P \times Q; t) = \chi(P; t) \chi(Q; t)$.

Ex. We have

$$\chi(C_1) = \mu(0)t + \mu(1)$$
This work is joint with Joshua Hallam. All posets will be ranked. Many ranked posets have characteristic polynomials whose roots are nonnegative integers. Why? Answers have been given by Saito and Terao, Stanley, Zaslavsky, Blass and S, as well as others. Recall that the characteristic polynomial of a ranked poset P is

$$\chi(P) = \chi(P; t) = \sum_{x \in P} \mu(x) t^{\rho(P) - \rho(x)}.$$

In some cases the factorization is easy to explain. Recall:

Proposition

Let P, Q be ranked posets.

1. $P \cong Q \implies \chi(P; t) = \chi(Q; t)$.
2. $P \times Q$ is ranked and $\chi(P \times Q; t) = \chi(P; t)\chi(Q; t)$.

Ex. We have

$$\chi(C_1) = \mu(0)t + \mu(1) = t - 1.$$
This work is joint with Joshua Hallam. All posets will be ranked. Many ranked posets have characteristic polynomials whose roots are nonnegative integers. Why? Answers have been given by Saito and Terao, Stanley, Zaslavsky, Blass and S, as well as others. Recall that the characteristic polynomial of a ranked poset P is

$$
\chi(P) = \chi(P; t) = \sum_{x \in P} \mu(x) t^{\rho(P) - \rho(x)}.
$$

In some cases the factorization is easy to explain Recall:

Proposition

Let P, Q be ranked posets.

1. $P \cong Q \implies \chi(P; t) = \chi(Q; t)$.
2. $P \times Q$ is ranked and $\chi(P \times Q; t) = \chi(P; t)\chi(Q; t)$.

Ex. We have

$$
\chi(C_1) = \mu(0)t + \mu(1) = t - 1.
$$

Now B_n
This work is joint with Joshua Hallam. All posets will be ranked. Many ranked posets have characteristic polynomials whose roots are nonnegative integers. Why? Answers have been given by Saito and Terao, Stanley, Zaslavsky, Blass and S, as well as others. Recall that the characteristic polynomial of a ranked poset P is

$$
\chi(P) = \chi(P; t) = \sum_{x \in P} \mu(x) t^{\rho(P) - \rho(x)}.
$$

In some cases the factorization is easy to explain. Recall:

Proposition

Let P, Q be ranked posets.

1. $P \cong Q \implies \chi(P; t) = \chi(Q; t)$.
2. $P \times Q$ is ranked and $\chi(P \times Q; t) = \chi(P; t) \chi(Q; t)$.

Ex. We have

$$
\chi(C_1) = \mu(0)t + \mu(1) = t - 1.
$$

Now $B_n \cong C_1^n$.
This work is joint with Joshua Hallam. All posets will be ranked. Many ranked posets have characteristic polynomials whose roots are nonnegative integers. Why? Answers have been given by Saito and Terao, Stanley, Zaslavsky, Blass and S, as well as others. Recall that the characteristic polynomial of a ranked poset P is

$$\chi(P) = \chi(P; t) = \sum_{x \in P} \mu(x) t^{\rho(P) - \rho(x)}.$$

In some cases the factorization is easy to explain. Recall:

Proposition

Let P, Q be ranked posets.

1. $P \cong Q \implies \chi(P; t) = \chi(Q; t)$.
2. $P \times Q$ is ranked and $\chi(P \times Q; t) = \chi(P; t) \chi(Q; t)$.

Ex. We have

$$\chi(C_1) = \mu(0) t + \mu(1) = t - 1.$$

Now $B_n \cong C_1^n$. So by the previous theorem

$$\chi(B_n)$$
This work is joint with Joshua Hallam. All posets will be ranked. Many ranked posets have characteristic polynomials whose roots are nonnegative integers. Why? Answers have been given by Saito and Terao, Stanley, Zaslavsky, Blass and S, as well as others. Recall that the characteristic polynomial of a ranked poset P is

$$
\chi(P) = \chi(P; t) = \sum_{x \in P} \mu(x) t^\rho(P) - \rho(x).
$$

In some cases the factorization is easy to explain. Recall:

Proposition

Let P, Q be ranked posets.

1. $P \cong Q \implies \chi(P; t) = \chi(Q; t)$.
2. $P \times Q$ is ranked and $\chi(P \times Q; t) = \chi(P; t) \chi(Q; t)$.

Ex. We have

$$
\chi(C_1) = \mu(0)t + \mu(1) = t - 1.
$$

Now $B_n \cong C_1^n$. So by the previous theorem

$$
\chi(B_n) = \chi(C_1^n)
$$
This work is joint with Joshua Hallam. All posets will be ranked. Many ranked posets have characteristic polynomials whose roots are nonnegative integers. Why? Answers have been given by Saito and Terao, Stanley, Zaslavsky, Blass and S, as well as others. Recall that the characteristic polynomial of a ranked poset P is

$$\chi(P) = \chi(P; t) = \sum_{x \in P} \mu(x) t^{\rho(P) - \rho(x)}.$$

In some cases the factorization is easy to explain. Recall:

Proposition

Let P, Q be ranked posets.

1. $P \cong Q \implies \chi(P; t) = \chi(Q; t)$.
2. $P \times Q$ is ranked and $\chi(P \times Q; t) = \chi(P; t) \chi(Q; t)$.

Ex. We have

$$\chi(C_1) = \mu(0)t + \mu(1) = t - 1.$$

Now $B_n \cong C_1^n$. So by the previous theorem

$$\chi(B_n) = \chi(C_1^n) = \chi(C_1)^n.$$
This work is joint with Joshua Hallam. All posets will be ranked. Many ranked posets have characteristic polynomials whose roots are nonnegative integers. Why? Answers have been given by Saito and Terao, Stanley, Zaslavsky, Blass and S, as well as others. Recall that the characteristic polynomial of a ranked poset P is

$$\chi(P) = \chi(P; t) = \sum_{x \in P} \mu(x) t^{\rho(P) - \rho(x)}.$$

In some cases the factorization is easy to explain. Recall:

Proposition

*Let P, Q be ranked posets. 1. $P \cong Q \implies \chi(P; t) = \chi(Q; t)$. 2. $P \times Q$ is ranked and $\chi(P \times Q; t) = \chi(P; t) \chi(Q; t)$.

Ex. We have

$$\chi(C_1) = \mu(0)t + \mu(1) = t - 1.$$

Now $B_n \cong C_1^n$. So by the previous theorem

$$\chi(B_n) = \chi(C_1^n) = \chi(C_1)^n = (t - 1)^n.$$
Ex. Consider the partition lattice Π_3.

$$
\Pi_3 = \begin{array}{ccc}
1 & 2 & 3 \\
1 & 2 & \\
1 & 3 & \\
1 & 2 & 3
\end{array}
$$

$$
\chi(\Pi_3, t) = t^2 - 3t + 2 = (t-1)(t-2).
$$

Theorem $\chi(\Pi_n, t) = (t-1)(t-2) \cdots (t-n+1)$.

But Π_n is not a product of smaller posets.
Ex. Consider the partition lattice Π_3.

\[
\Pi_3 = \begin{array}{ccc}
12/3 & 13/2 & 1/23 \\
1/2/3 \\
\end{array}
\]

Theorem $\chi(\Pi_n, t) = (t-1)(t-2) \cdots (t-n+1)$.

But Π_n is not a product of smaller posets.
Ex. Consider the partition lattice Π_3.

$\Pi_3 = 12/3 13/2 1/23$

Theorem $\chi(\Pi_n, t) = (t-1)(t-2) \cdots (t-n+1)$.

But Π_n is not a product of smaller posets.
Ex. Consider the partition lattice Π_3.

\[
\begin{array}{c}
\Pi_3 = 12/3 \quad -1 \quad 13/2 \quad -1 \quad 1/23 \quad -1 \\
1/2/3 \quad 1
\end{array}
\]

Theorem $\chi(\Pi_n, t) = (t - 1)(t - 2) \cdots (t - n + 1)$.

But Π_n is not a product of smaller posets.
Ex. Consider the partition lattice Π_3.

\[
\begin{array}{ccc}
123 & 2 \\
12/3 & \text{ } & 13/2 \\
1/2/3 & \text{ } & 1/23 \\
1/2/3 & \text{ } & 1
\end{array}
\]

$\Pi_3 = 12/3 \quad -1 \quad 13/2 \quad -1 \quad 1/23 \quad -1$

Theorem: $\chi(\Pi_n, t) = (t-1)(t-2)\cdots(t-n+1)$. But Π_n is not a product of smaller posets.
Ex. Consider the partition lattice Π_3.

\[\Pi_3 = 12/3 \quad -1 \quad 13/2 \quad -1 \quad 1/23 \quad -1\]

\[\chi(\Pi_3, t) = t^2 - t - t - t + 2\]
Ex. Consider the partition lattice Π_3.

\[\Pi_3 = \begin{array}{c}
123 \\
12/3 & -1 & 13/2 & -1 & 1/23 & -1 \\
1/2/3 & 1
\end{array} \]

\[\chi(\Pi_3, t) = t^2 - t - t - t + 2 \]

\[= t^2 - 3t + 2 \]
Ex. Consider the partition lattice Π_3.

\[\Pi_3 = \begin{array}{ccc}
123 & & 2 \\
& -1 & \\
13/2 & -1 & 1/23 \\
& 1/2/3 & 1 \\
\end{array} \]

\[\chi(\Pi_3, t) = t^2 - t - t - t + 2 \\
= t^2 - 3t + 2 \\
= (t - 1)(t - 2). \]
Ex. Consider the partition lattice Π_3.

\[
\begin{align*}
\Pi_3 &= \frac{12}{3} -1 \frac{13}{2} -1 \frac{1}{23} -1 \\
&\quad \frac{1/2}{3} 1
\end{align*}
\]

\[
\chi(\Pi_3, t) = t^2 - t - t - t + 2 = t^2 - 3t + 2 = (t - 1)(t - 2).
\]

Theorem
\[
\chi(\Pi_n, t) = (t - 1)(t - 2) \cdots (t - n + 1).
\]
Ex. Consider the partition lattice Π_3.

\[\Pi_3 = \begin{array}{ccc}
123 & 2 \\
12/3 & -1 & 13/2 & -1 & 1/23 & -1 \\
1/2/3 & 1 \\
\end{array} \]

\[\chi(\Pi_3, t) = t^2 - t - t - t + 2 = t^2 - 3t + 2 = (t - 1)(t - 2). \]

Theorem

\[\chi(\Pi_n, t) = (t - 1)(t - 2) \cdots (t - n + 1). \]

But Π_n is not a product of smaller posets.
The *claw*, CL_n, consists of a $\hat{0}$ together with n atoms.
The *claw*, CL_n, consists of a $\hat{0}$ together with n atoms.

$$CL_n = \hat{0} \quad a_1 \quad a_2 \quad \cdots \quad a_n$$

Thus $\chi(\text{CL}_n) = t - n$. So the characteristic polynomial of CL_n can give us any positive integer root as n varies.
The *claw*, CL_n, consists of a $\hat{0}$ together with n atoms.

$$CL_n = \begin{array}{cccccc} -1 & a_1 & a_2 & -1 & \cdots & a_n & -1 \\ \hat{0} & 1 \end{array}$$

Thus $\chi(CL_n) = t^n - n$. So the characteristic polynomial of CL_n can give us any positive integer root as n varies.
The *claw*, CL_n, consists of a $\hat{0}$ together with n atoms.

Thus

$$\chi(CL_n) = t - n.$$
The *claw*, CL_n, consists of a $\hat{0}$ together with n atoms.

$$CL_n = \begin{array}{cccc}
-1 & a_1 & a_2 & -1 \\
& a_3 & \ddots & \vdots \\
& & \ddots & a_n \\
& & & -1
\end{array}
$$

Thus

$$\chi(CL_n) = t - n.$$

So the characteristic polynomial of CL_n can give us any positive integer root as n varies.
Let us consider the product $CL_1 \times CL_2$.
Let us consider the product $CL_1 \times CL_2$.

\[
\hat{0} \times (a \times b \times c) = (\hat{0}, \hat{0}, \hat{0}, \hat{0})
\]

We have $\chi(CL_1 \times CL_2) = \chi(CL_1) \chi(CL_2) = (t - 1)(t - 2)$.
Let us consider the product $CL_1 \times CL_2$.

\[
\hat{0} \times b \times c = (\hat{0}, b) \times (\hat{0}, c) = (\hat{0}, \hat{0})
\]
Let us consider the product $CL_1 \times CL_2$.

\[
\hat{0} \times \hat{0} = (a, \hat{0}) = (\hat{0}, \hat{0}) = (a, c) = (\hat{0}, b) = (a, \hat{0}) = (\hat{0}, c).
\]
Let us consider the product $CL_1 \times CL_2$.

\[
\hat{0} \times a \times b \times c = (\hat{0}, b) \times (a, \hat{0}) \times (\hat{0}, c) = (a, b) \times (a, c) \times (\hat{0}, \hat{0})
\]
Let us consider the product $CL_1 \times CL_2$.

We have

$$\chi(CL_1 \times CL_2)$$
Let us consider the product $CL_1 \times CL_2$.

We have

$$\chi(CL_1 \times CL_2) = \chi(CL_1) \chi(CL_2)$$
Let us consider the product $CL_1 \times CL_2$.

We have

$$\chi(CL_1 \times CL_2) = \chi(CL_1)\chi(CL_2) = (t - 1)(t - 2)$$
Let us consider the product $CL_1 \times CL_2$.

We have

$$\chi(CL_1 \times CL_2) = \chi(CL_1) \chi(CL_2) = (t - 1)(t - 2) = \chi(\Pi_3).$$
Clearly Π_3 and $CL_1 \times CL_2$ are not isomorphic.
Clearly Π_3 and $CL_1 \times CL_2$ are not isomorphic.
Clearly Π_3 and $CL_1 \times CL_2$ are not isomorphic. What if we identify the top two elements of $CL_1 \times CL_2$?

$$
\begin{array}{ccc}
-1 & 12/3 & -1 \\
1 & 13/2 & -1 \\
+1 & 1/23 & \\
\end{array}
$$

$$
\begin{array}{ccc}
(a, b) & +1 & (a, c) & +1 \\
(\hat{0}, b) & -1 & (a, \hat{0}) & -1 \\
(\hat{0}, \hat{0}) & +1 & \\
\end{array}
$$

Π_3

$CL_1 \times CL_2$
Clearly Π_3 and $CL_1 \times CL_2$ are not isomorphic. What if we identify the top two elements of $CL_1 \times CL_2$?

\[
\begin{array}{c}
+2 & 123 \\
\downarrow & \downarrow & \downarrow \\
-1 & 12/3 & -1 & 13/2 & -1 & 1/23 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
+1 & 1/2/3 & -1 & 1/23 & -1 & 1/23 \\
\end{array}
\]

Π_3

\[
\begin{array}{c}
(a, b) & +1 & (a, c) & +1 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
(\hat{0}, b) & -1 & (a, \hat{0}) & -1 & (\hat{0}, c) & -1 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
(\hat{0}, \hat{0}) & +1 \\
\end{array}
\]

$CL_1 \times CL_2$

Note that the M"obius values of (a, b) and (a, c) added to give the M"obius value of $(a, b) \sim (a, c)$.

So $\chi(\Pi_3)$ did not change after the identification since characteristic polynomials only record the sums of the M"obius values at each rank.
Clearly Π_3 and $CL_1 \times CL_2$ are not isomorphic. What if we identify the top two elements of $CL_1 \times CL_2$?

Note that the Möbius values of (a, b) and (a, c) added to give the Möbius value of $(a, b) \sim (a, c)$.

So $\chi(\Pi_3)$ did not change after the identification since characteristic polynomials only record the sums of the Möbius values at each rank.

$CL_1 \times CL_2$ after identification
Clearly Π_3 and $CL_1 \times CL_2$ are not isomorphic. What if we identify the top two elements of $CL_1 \times CL_2$?

Note that the M"obius values of (a, b) and (a, c) added to give the M"obius value of $(a, b) \sim (a, c)$.

\[
\begin{array}{c}\begin{array}{c}
+2 \\
+1 \\
\end{array}
\end{array}
\begin{array}{c}123 \\
1/2/3 \\
\end{array}
\begin{array}{c}\begin{array}{c}
-1 \\
-1 \\
\end{array}
\end{array}
\begin{array}{c}12/3 \\
13/2 \\
1/23 \\
\end{array}
\begin{array}{c}\begin{array}{c}
-1 \\
-1 \\
\end{array}
\end{array}
\begin{array}{c}1/3 \\
1/2 \\
1/23 \\
\end{array}
\begin{array}{c}\begin{array}{c}
+1 \\
-1 \\
\end{array}
\end{array}
\begin{array}{c}1/2/3 \\
1/2/3 \\
\end{array}
\begin{array}{c}\begin{array}{c}
(\hat{0}, b) \\
(\hat{0}, \hat{0}) \\
\end{array}
\end{array}
\begin{array}{c}+1 \\
+1 \\
\end{array}
\begin{array}{c}(a, \hat{0}) \\
\end{array}
\begin{array}{c}+1 \\
\end{array}
\begin{array}{c}(\hat{0}, c) \\
\end{array}
\begin{array}{c}\begin{array}{c}
-1 \\
\end{array}
\end{array}
\begin{array}{c}\begin{array}{c}
(a, \hat{0}) \\
(\hat{0}, \hat{0}) \\
\end{array}
\end{array}
\begin{array}{c}\begin{array}{c}
\sim \\
\sim \\
\end{array}
\end{array}
\begin{array}{c}\begin{array}{c}
(a, c) \\
\end{array}
\end{array}
\begin{array}{c}\begin{array}{c}
+2 \\
\end{array}
\end{array}
\begin{array}{c}\begin{array}{c}
\end{array}
\end{array}\end{array}
\end{array}
\begin{array}{c}CL_1 \times CL_2 \\
\text{after identification}
\end{array}
Clearly Π_3 and $CL_1 \times CL_2$ are not isomorphic. What if we identify the top two elements of $CL_1 \times CL_2$?

Note that the Möbius values of (a, b) and (a, c) added to give the Möbius value of $(a, b) \sim (a, c)$. So $\chi(CL_1 \times CL_2)$ did not change after the identification since characteristic polynomials only record the sums of the Möbius values at each rank.
General Method.

Suppose \(P \) is a ranked poset and we wish to prove \(\chi(P) = (t - r_1) \ldots (t - r_n) \) where \(r_1, \ldots, r_n \) are positive integers.

1. Construct the poset \(Q = \text{CL}^{r_1} \times \cdots \times \text{CL}^{r_n} \).

2. Identify elements of \(Q \) to form a poset \(Q/\sim \) in such a way that
 - \(\chi(Q/\sim) = \chi(Q) = (t - r_1) \ldots (t - r_n) \),
 - \(Q/\sim \sim = P \).

3. It follows that \(\chi(P) = \chi(Q/\sim) = (t - r_1) \ldots (t - r_n) \).
General Method.
Suppose P is a ranked poset and we wish to prove

$$\chi(P) = (t - r_1) \ldots (t - r_n)$$

where r_1, \ldots, r_n are positive integers.
General Method.
Suppose P is a ranked poset and we wish to prove

$$
\chi(P) = (t - r_1) \ldots (t - r_n)
$$

where r_1, \ldots, r_n are positive integers.

1. Construct the poset

$$Q = CL_{r_1} \times \cdots \times CL_{r_n}.$$
General Method.
Suppose P is a ranked poset and we wish to prove

$$\chi(P) = (t - r_1) \ldots (t - r_n)$$

where r_1, \ldots, r_n are positive integers.

1. Construct the poset

 $$Q = CL_{r_1} \times \cdots \times CL_{r_n}.$$

2. Identify elements of Q to form a poset Q/\sim.

General Method.

Suppose P is a ranked poset and we wish to prove

$$
\chi(P) = (t - r_1) \ldots (t - r_n)
$$

where r_1, \ldots, r_n are positive integers.

1. **Construct the poset**

 $$
 Q = CL_{r_1} \times \cdots \times CL_{r_n}.
 $$

2. **Identify elements of Q to form a poset Q/\sim in such a way that**

 (a) $\chi(Q/\sim) = \chi(Q)$
General Method.
Suppose P is a ranked poset and we wish to prove

$$\chi(P) = (t - r_1) \ldots (t - r_n)$$

where r_1, \ldots, r_n are positive integers.

1. Construct the poset

 $$Q = CL_{r_1} \times \cdots \times CL_{r_n}.$$

2. Identify elements of Q to form a poset Q/\sim in such a way that

 (a) $\chi(Q/\sim) = \chi(Q) = (t - r_1) \ldots (t - r_n),$
General Method.
Suppose P is a ranked poset and we wish to prove

$$\chi(P) = (t - r_1) \ldots (t - r_n)$$

where r_1, \ldots, r_n are positive integers.

1. Construct the poset

\[Q = CL_{r_1} \times \cdots \times CL_{r_n}. \]

2. Identify elements of Q to form a poset Q/\sim in such a way that

(a) $\chi(Q/\sim) = \chi(Q) = (t - r_1) \ldots (t - r_n),$
(b) $(Q/\sim) \cong P.$
General Method.
Suppose P is a ranked poset and we wish to prove

$$\chi(P) = (t - r_1) \ldots (t - r_n)$$

where r_1, \ldots, r_n are positive integers.

1. Construct the poset

$$Q = CL_{r_1} \times \cdots \times CL_{r_n}.$$

2. Identify elements of Q to form a poset Q/\sim in such a way that

 (a) $\chi(Q/\sim) = \chi(Q) = (t - r_1) \ldots (t - r_n),$

 (b) $(Q/\sim) \cong P.$

3. It follows that

$$\chi(P)$$
General Method.
Suppose P is a ranked poset and we wish to prove

$$\chi(P) = (t - r_1) \ldots (t - r_n)$$

where r_1, \ldots, r_n are positive integers.

1. Construct the poset

$$Q = CL_{r_1} \times \cdots \times CL_{r_n}.$$

2. Identify elements of Q to form a poset Q/\sim in such a way that
 (a) $\chi(Q/\sim) = \chi(Q) = (t - r_1) \ldots (t - r_n),$
 (b) $(Q/\sim) \cong P.$

3. It follows that

$$\chi(P) = \chi(Q/\sim).$$
General Method.

Suppose P is a ranked poset and we wish to prove

$$\chi(P) = (t - r_1) \ldots (t - r_n)$$

where r_1, \ldots, r_n are positive integers.

1. Construct the poset

$$Q = CL_{r_1} \times \cdots \times CL_{r_n}.$$

2. Identify elements of Q to form a poset Q/\sim in such a way that
 (a) $\chi(Q/\sim) = \chi(Q) = (t - r_1) \ldots (t - r_n),$
 (b) $(Q/\sim) \cong P.$

3. It follows that

$$\chi(P) = \chi(Q/\sim) = (t - r_1) \ldots (t - r_n).$$
Outline

Motivating Examples

Quotient Posets

The Standard Equivalence Relation

The Main Theorem

Partitions Induced by Chains

Application: Increasing Forests
Let P be a poset and let \sim be an equivalence relation on P. We define the quotient, P/\sim, to be the set of equivalence classes with the binary relation \leq defined by $X \leq Y$ in $P/\sim \iff x \leq y$ in P for some $x \in X$ and some $y \in Y$. Quotients of posets need not be posets. Ex. Consider $C_3 = \{0, 1, 2, 3\}$. Put an equivalence relation on C_3 with classes $X = \{0, 2\}$, $Y = \{1\}$. Then $X < Y$ since $0 < 1$ and $Y < X$ since $1 < 2$.
Let P be a poset and let \sim be an equivalence relation on P. We define the quotient, P/\sim, to be the set of equivalence classes with the binary relation \leq defined by

$$X \leq Y \text{ in } P/\sim \iff x \leq y \text{ in } P \text{ for some } x \in X \text{ and some } y \in Y.$$
Let P be a poset and let \sim be an equivalence relation on P. We define the *quotient*, P/\sim, to be the set of equivalence classes with the binary relation \leq defined by

$$X \leq Y \text{ in } P/\sim \iff x \leq y \text{ in } P \text{ for some } x \in X \text{ and some } y \in Y.$$

Quotients of posets *need not* be posets.
Let P be a poset and let \sim be an equivalence relation on P. We define the quotient, P/\sim, to be the set of equivalence classes with the binary relation \leq defined by

$X \leq Y$ in $P/\sim \iff x \leq y$ in P for some $x \in X$ and some $y \in Y$.

Quotients of posets need not be posets.

Ex. Consider

\[
C_3 = \begin{array}{c}
& & 2 \\
& 1 \\
0 & & \\
\end{array}
\]
Let P be a poset and let \sim be an equivalence relation on P. We define the *quotient*, P/\sim, to be the set of equivalence classes with the binary relation \leq defined by

$$X \leq Y \text{ in } P/\sim \iff x \leq y \text{ in } P \text{ for some } x \in X \text{ and some } y \in Y.$$

Quotients of posets *need not* be posets.

Ex. Consider

\[
\begin{array}{c}
 & 2 \\
C_3 = & 1 \\
 & 0
\end{array}
\]

Put an equivalence relation on C_3 with classes

$$X = \{0, 2\}, \quad Y = \{1\}.$$
Let P be a poset and let \sim be an equivalence relation on P. We define the quotient, P/\sim, to be the set of equivalence classes with the binary relation \leq defined by

$$X \leq Y \text{ in } P/\sim \iff x \leq y \text{ in } P \text{ for some } x \in X \text{ and some } y \in Y.$$

Quotients of posets need not be posets.

Ex. Consider

$$
C_3 = \begin{array}{c}
2 \\
| \\
1 \\
| \\
0 \\
\end{array}
$$

Put an equivalence relation on C_3 with classes

$$X = \{0, 2\}, \quad Y = \{1\}.$$

Then $X < Y$ since $0 < 1$.

Let P be a poset and let \sim be an equivalence relation on P. We define the *quotient*, P/\sim, to be the set of equivalence classes with the binary relation \leq defined by

$$X \leq Y \text{ in } P/\sim \iff x \leq y \text{ in } P \text{ for some } x \in X \text{ and some } y \in Y.$$

Quotients of posets *need not* be posets.

Ex. Consider

$$C_3 = \begin{array}{c} \text{2} \\ \downarrow \text{1} \\ \text{0} \end{array}$$

Put an equivalence relation on C_3 with classes

$$X = \{0, 2\}, \quad Y = \{1\}.$$

Then $X < Y$ since $0 < 1$ and $Y < X$ since $1 < 2$.
Let P be a poset and let \sim be an equivalence relation on P.
Let P be a poset and let \sim be an equivalence relation on P. We say the quotient P/\sim is a *homogeneous quotient* if

1. $\hat{0}$ is in an equivalence class by itself, and
2. $X \leq Y$ in P/\sim implies that for all $x \in X$ there is a $y \in Y$ with $x \leq y$.
Let P be a poset and let \sim be an equivalence relation on P. We say the quotient P/\sim is a \textit{homogeneous quotient} if

\begin{enumerate}
\item $\hat{0}$ is in an equivalence class by itself, and
\end{enumerate}
Let P be a poset and let \sim be an equivalence relation on P. We say the quotient P/\sim is a *homogeneous quotient* if

1. $\hat{0}$ is in an equivalence class by itself, and
2. $X \leq Y$ in P/\sim implies that for all $x \in X$ there is a $y \in Y$ with $x \leq y$.

Lemma (Hallam-S)

If P/\sim is a homogeneous quotient then P/\sim is a poset.

Proof. Reflexivity and transitivity in \leq in P/\sim are easy. To prove antisymmetry, suppose that $X \leq Y$ and $Y \leq X$. By definition, there is an $x \in X$ and $y \in Y$ with $x \leq y$. Since $Y \leq X$ there is an $x' \in X$ with $x \leq y \leq x'$. Since $X \leq Y$ there is a $y' \in Y$ with $x \leq y \leq x' \leq y'$. Continuing, we get a chain $x \leq y \leq x' \leq y' \leq ...$ If some inequality is an equality, then we have a common element of X and Y which implies $X = Y$. If all are strict, then we would have an infinite chain in P. But this contradicts the fact that P is finite, so this case can not happen.
Let P be a poset and let \sim be an equivalence relation on P. We say the quotient P/\sim is a **homogeneous quotient** if

1. $\hat{0}$ is in an equivalence class by itself, and
2. $X \leq Y$ in P/\sim implies that for all $x \in X$ there is a $y \in Y$ with $x \leq y$.

Lemma (Hallam-S)

If P/\sim is a homogeneous quotient then P/\sim a poset.
Let P be a poset and let \sim be an equivalence relation on P. We say the quotient P/\sim is a *homogeneous quotient* if

1. $\hat{0}$ is in an equivalence class by itself, and
2. $X \leq Y$ in P/\sim implies that for all $x \in X$ there is a $y \in Y$ with $x \leq y$.

Lemma (Hallam-S)

If P/\sim is a homogeneous quotient then P/\sim a poset.

Proof. Reflexivity and transitivity in \leq in P/\sim are easy.
Let P be a poset and let \sim be an equivalence relation on P. We say the quotient P/\sim is a *homogeneous quotient* if

1. $\hat{0}$ is in an equivalence class by itself, and
2. $X \leq Y$ in P/\sim implies that for all $x \in X$ there is a $y \in Y$ with $x \leq y$.

Lemma (Hallam-S)

If P/\sim is a homogeneous quotient then P/\sim a poset.

Proof. Reflexivity and transitivity in \leq in P/\sim are easy. To prove antisymmetry, suppose that $X \leq Y$ and $Y \leq X$.
Let P be a poset and let \sim be an equivalence relation on P. We say the quotient P/\sim is a **homogeneous quotient** if

1. $\hat{0}$ is in an equivalence class by itself, and
2. $X \leq Y$ in P/\sim implies that for all $x \in X$ there is a $y \in Y$ with $x \leq y$.

Lemma (Hallam-S)

If P/\sim is a homogeneous quotient then P/\sim a poset.

Proof. Reflexivity and transitivity in \leq in P/\sim are easy. To prove antisymmetry, suppose that $X \leq Y$ and $Y \leq X$. By definition, there is a $x \in X$ and $y \in Y$ with $x \leq y$.

...
Let P be a poset and let \sim be an equivalence relation on P. We say the quotient P/\sim is a **homogeneous quotient** if

1. $\hat{0}$ is in an equivalence class by itself, and
2. $X \leq Y$ in P/\sim implies that for all $x \in X$ there is a $y \in Y$ with $x \leq y$.

Lemma (Hallam-S)

If P/\sim is a homogeneous quotient then P/\sim a poset.

Proof. Reflexivity and transitivity in \leq in P/\sim are easy. To prove antisymmetry, suppose that $X \leq Y$ and $Y \leq X$. By definition, there is a $x \in X$ and $y \in Y$ with $x \leq y$. Since $Y \leq X$ there is a $x' \in X$ with $x \leq y \leq x'$.

...
Let P be a poset and let \sim be an equivalence relation on P. We say the quotient P/\sim is a **homogeneous quotient** if

1. $\hat{0}$ is in an equivalence class by itself, and
2. $X \leq Y$ in P/\sim implies that for all $x \in X$ there is a $y \in Y$ with $x \leq y$.

Lemma (Hallam-S)

If P/\sim is a homogeneous quotient then P/\sim is a poset.

Proof. Reflexivity and transitivity in \leq in P/\sim are easy. To prove antisymmetry, suppose that $X \leq Y$ and $Y \leq X$. By definition, there is a $x \in X$ and $y \in Y$ with $x \leq y$. Since $Y \leq X$ there is a $x' \in X$ with $x \leq y \leq x'$. Since $X \leq Y$ there is a $y' \in Y$ with $x \leq y \leq x' \leq y'$. If some inequality is an equality, then we have a common element of X and Y which implies $X = Y$. If all are strict, then we would have an infinite chain in P. But this contradicts the fact that P is finite, so this case can not happen.
Let P be a poset and let \sim be an equivalence relation on P. We say the quotient P/\sim is a homogeneous quotient if

1. 0 is in an equivalence class by itself, and
2. $X \leq Y$ in P/\sim implies that for all $x \in X$ there is a $y \in Y$ with $x \leq y$.

Lemma (Hallam-S)

If P/\sim is a homogeneous quotient then P/\sim a poset.

Proof. Reflexivity and transitivity in \leq in P/\sim are easy. To prove antisymmetry, suppose that $X \leq Y$ and $Y \leq X$. By definition, there is a $x \in X$ and $y \in Y$ with $x \leq y$. Since $Y \leq X$ there is a $x' \in X$ with $x \leq y \leq x'$. Since $X \leq Y$ there is a $y' \in Y$ with $x \leq y \leq x' \leq y'$. Continuing, we get a chain

$$x \leq y \leq x' \leq y' \leq \ldots$$
Let P be a poset and let \sim be an equivalence relation on P. We say the quotient P/\sim is a **homogeneous quotient** if

1. $\hat{0}$ is in an equivalence class by itself, and
2. $X \leq Y$ in P/\sim implies that for all $x \in X$ there is a $y \in Y$ with $x \leq y$.

Lemma (Hallam-S)

If P/\sim is a homogeneous quotient then P/\sim a poset.

Proof. Reflexivity and transitivity in \leq in P/\sim are easy. To prove antisymmetry, suppose that $X \leq Y$ and $Y \leq X$. By definition, there is a $x \in X$ and $y \in Y$ with $x \leq y$. Since $Y \leq X$ there is a $x' \in X$ with $x \leq y \leq x'$. Since $X \leq Y$ there is a $y' \in Y$ with $x \leq y \leq x' \leq y'$. Continuing, we get a chain

$$x \leq y \leq x' \leq y' \leq \ldots$$

If some inequality is an equality, then we have a common element of X and Y which implies $X = Y$.
Let P be a poset and let \sim be an equivalence relation on P. We say the quotient P/\sim is a **homogeneous quotient** if

1. $\hat{0}$ is in an equivalence class by itself, and
2. $X \leq Y$ in P/\sim implies that for all $x \in X$ there is a $y \in Y$ with $x \leq y$.

Lemma (Hallam-S)

If P/\sim is a homogeneous quotient then P/\sim a poset.

Proof. Reflexivity and transitivity in \leq in P/\sim are easy. To prove antisymmetry, suppose that $X \leq Y$ and $Y \leq X$. By definition, there is a $x \in X$ and $y \in Y$ with $x \leq y$. Since $Y \leq X$ there is a $x' \in X$ with $x \leq y \leq x'$. Since $X \leq Y$ there is a $y' \in Y$ with $x \leq y \leq x' \leq y'$. Continuing, we get a chain

$$x \leq y \leq x' \leq y' \leq \ldots$$

If some inequality is an equality, then we have a common element of X and Y which implies $X = Y$. If all are strict, then we would have an infinite chain in P.
Let P be a poset and let \sim be an equivalence relation on P. We say the quotient P/\sim is a **homogeneous quotient** if

1. $\hat{0}$ is in an equivalence class by itself, and
2. $X \leq Y$ in P/\sim implies that for all $x \in X$ there is a $y \in Y$ with $x \leq y$.

Lemma (Hallam-S)

If P/\sim is a homogeneous quotient then P/\sim a poset.

Proof. Reflexivity and transitivity in \leq in P/\sim are easy. To prove antisymmetry, suppose that $X \leq Y$ and $Y \leq X$. By definition, there is a $x \in X$ and $y \in Y$ with $x \leq y$. Since $Y \leq X$ there is a $x' \in X$ with $x \leq y \leq x'$. Since $X \leq Y$ there is a $y' \in Y$ with $x \leq y \leq x' \leq y'$. Continuing, we get a chain

$$x \leq y \leq x' \leq y' \leq \ldots$$

If some inequality is an equality, then we have a common element of X and Y which implies $X = Y$. If all are strict, then we would have an infinite chain in P. But this contradicts the fact that P is finite, so this case cannot happen.
Outline

Motivating Examples

Quotient Posets

The Standard Equivalence Relation

The Main Theorem

Partitions Induced by Chains

Application: Increasing Forests
How do we determine a suitable equivalence relation?
How do we determine a suitable equivalence relation? If P is a lattice, then there is a canonical choice.
How do we determine a suitable equivalence relation? If P is a lattice, then there is a canonical choice.

Let us revisit Π_3.

How do we determine a suitable equivalence relation? If P is a lattice, then there is a canonical choice.

Let us revisit Π_3. Label the atoms of $CL_1 \times CL_2$ with atoms from Π_3 as follows:
How do we determine a suitable equivalence relation? If P is a lattice, then there is a canonical choice.

Let us revisit Π_3. Label the atoms of $CL_1 \times CL_2$ with atoms from Π_3 as follows:

\[
\begin{array}{ccc}
12/3 & 13/2 & 1/23 \\
\times & \\ \\
\hat{0} & \hat{0} & \hat{0}
\end{array}
\]
How do we determine a suitable equivalence relation? If P is a lattice, then there is a canonical choice.

Let us revisit Π_3. Label the atoms of $CL_1 \times CL_2$ with atoms from Π_3 as follows:

\[
\begin{align*}
\hat{0} & \quad 12/3 & \quad 13/2 & \quad 1/23 & \quad (\hat{0}, 13/2) & \quad (12/3, \hat{0}) & \quad (\hat{0}, 1/23) \\
\times & \quad \times \\
\hat{0} & \quad \hat{0} & \quad \hat{0} & \quad (\hat{0}, \hat{0}) & \quad (\hat{0}, \hat{0}) & \quad (\hat{0}, \hat{0}) & \quad (\hat{0}, \hat{0})
\end{align*}
\]
Now relabel each element of the product with the join of its two coordinates.

Finally, identify elements with the same label to obtain the same quotient we did before.

Not only is the quotient isomorphic to Π_3, it even has the same labeling.
Now relabel each element of the product with the join of its two coordinates.

(12/3, 13/2) (12/3, 1/23)

(0, 13/2) (12/3, 0) (0, 1/23)

(0, 0)

Finally, identify elements with the same label to obtain the same quotient we did before. Not only is the quotient isomorphic to \(\Pi_3 \), it even has the same labeling.
Now relabel each element of the product with the join of its two coordinates.

\[(\hat{0}, \frac{13}{2}), (\frac{12}{3}, \hat{0}), (\hat{0}, 1/23)\]

\[=\]

\[(\frac{12}{3}, \frac{13}{2}), (\frac{12}{3}, 1/23), (\frac{12}{3}, \hat{0})\]

Finally, identify elements with the same label to obtain the same quotient we did before. Not only is the quotient isomorphic to \(\Pi_3\), it even has the same labeling.
Now relabel each element of the product with the join of its two coordinates.

\[(\hat{0}, \frac{13}{2}) \quad \hat{0}, \frac{1}{23} \quad \frac{12}{3}, \hat{0} \quad \hat{0}, \hat{0}\]

\[(\hat{0}, \hat{0}) \quad \frac{12}{3}, \hat{0} \quad \hat{0}, \frac{1}{23} \quad \frac{12}{3}, \frac{13}{2}\]

Finally, identify elements with the same label to obtain the same quotient we did before.
Now relabel each element of the product with the join of its two coordinates.

\[(12/3, 13/2) \quad (12/3, 1/23)\]

\[\text{=} \quad 123\]

\[\text{=} \quad 13/2 \quad 12/3 \quad 1/23\]

Finally, identify elements with the same label to obtain the same quotient we did before.
Now relabel each element of the product with the join of its two coordinates.

\[
\begin{align*}
(12/3, 13/2) & \quad (12/3, 1/23) \\
(\hat{0}, 13/2) & \quad (12/3, \hat{0}) & (\hat{0}, 1/23) \\
(\hat{0}, \hat{0}) & & & \\
\end{align*}
\]

Finally, identify elements with the same label to obtain the same quotient we did before.
Now relabel each element of the product with the join of its two coordinates.

\[
\begin{align*}
(12/3, 13/2) & \quad (12/3, 1/23) \\
(0, 13/2) & \quad (12/3, 0) & \quad (0, 1/23) \\
(0, 0) & \\
\end{align*}
\]

Finally, identify elements with the same label to obtain the same quotient we did before. Not only is the quotient isomorphic to \(\Pi_3 \), it even has the same labeling.
An ordered partition of a set \mathcal{A} is a sequence of subsets (A_1, \ldots, A_n) with $\bigcup_i A_i = \mathcal{A}$.
An ordered partition of a set \(\mathcal{A} \) is a sequence of subsets \((A_1, \ldots, A_n)\) with \(\bigcup_i A_i = \mathcal{A} \). We write \((A_1, \ldots, A_n) \vdash \mathcal{A}\).
An ordered partition of a set \mathcal{A} is a sequence of subsets (A_1, \ldots, A_n) with $\bigcup_i A_i = \mathcal{A}$. We write $(A_1, \ldots, A_n) \vdash \mathcal{A}$.

Ex. $(A_1, A_2) \vdash \mathcal{A}(\Pi_3)$ where $A_1 = \{12/3\}$, $A_2 = \{13/2, 1/23\}$.
An ordered partition of a set A is a sequence of subsets (A_1, \ldots, A_n) with $\bigcup_i A_i = A$. We write $(A_1, \ldots, A_n) \vdash A$. Let $(A_1, \ldots, A_n) \vdash A(L)$ for a lattice L. Let CL_{A_i} be the claw with atom set A_i.

Ex. $(A_1, A_2) \vdash A(\Pi_3)$ where $A_1 = \{12/3\}$, $A_2 = \{13/2, 1/23\}$.
An ordered partition of a set \(A \) is a sequence of subsets \((A_1, \ldots, A_n)\) with \(\bigcup_i A_i = A \). We write \((A_1, \ldots, A_n) \vdash A\).

Let \((A_1, \ldots, A_n) \vdash A(L)\) for a lattice \(L \). Let \(CL_{A_i} \) be the claw with atom set \(A_i \).

Ex. \((A_1, A_2) \vdash A(\Pi_3)\) where \(A_1 = \{12/3\}, A_2 = \{13/2, 1/23\}\). Note that \(CL_{A_1} \) and \(CL_{A_2} \) were the claws used for \(\Pi_3 \).
An ordered partition of a set \mathcal{A} is a sequence of subsets (A_1, \ldots, A_n) with $\bigcup_i A_i = \mathcal{A}$. We write $(A_1, \ldots, A_n) \vdash \mathcal{A}$. Let $(A_1, \ldots, A_n) \vdash \mathcal{A}(L)$ for a lattice L. Let CL_{A_i} be the claw with atom set A_i. The standard equivalence relation on $\prod_i CL_{A_i}$ is

$$t \sim s \text{ in } \prod_{i=1}^n CL_{A_i} \iff \bigvee t = \bigvee s \text{ in } L.$$

Ex. $(A_1, A_2) \vdash \mathcal{A}(\Pi_3)$ where $A_1 = \{12/3\}$, $A_2 = \{13/2, 1/23\}$. Note that CL_{A_1} and CL_{A_2} were the claws used for Π_3.

\[\hat{0} \quad \hat{0} \quad 12\quad 12\quad 13\quad 1/23\]
An ordered partition of a set A is a sequence of subsets (A_1, \ldots, A_n) with $\bigcup_i A_i = A$. We write $(A_1, \ldots, A_n) \vdash A$. Let $(A_1, \ldots, A_n) \vdash A(L)$ for a lattice L. Let CL_{A_i} be the claw with atom set A_i. The standard equivalence relation on $\prod_i CL_{A_i}$ is

$$t \sim s \text{ in } \prod_{i=1}^n CL_{A_i} \iff \bigvee t = \bigvee s \text{ in } L.$$

The atomic transversals of $x \in L$ are the elements of the equivalence class

$$T^a_x = \left\{ t \in \prod_{i=1}^n CL_{A_i} : \bigvee t = x \right\}.$$

Ex. $(A_1, A_2) \vdash A(\Pi_3)$ where $A_1 = \{12/3\}$, $A_2 = \{13/2, 1/23\}$. Note that CL_{A_1} and CL_{A_2} were the claws used for Π_3.

An ordered partition of a set \mathcal{A} is a sequence of subsets (A_1, \ldots, A_n) with $\biguplus_i A_i = \mathcal{A}$. We write $(A_1, \ldots, A_n) \vdash \mathcal{A}$. Let $(A_1, \ldots, A_n) \vdash \mathcal{A}(L)$ for a lattice L. Let CL_{A_i} be the claw with atom set A_i. The standard equivalence relation on $\prod_i CL_{A_i}$ is

$$t \sim s \text{ in } \prod_{i=1}^{n} CL_{A_i} \iff \bigvee t = \bigvee s \text{ in } L.$$

The atomic transversals of $x \in L$ are the elements of the equivalence class

$$T_x^a = \left\{ t \in \prod_{i=1}^{n} CL_{A_i} : \bigvee t = x \right\}.$$

Ex. $(A_1, A_2) \vdash \mathcal{A}(\Pi_3)$ where $A_1 = \{12/3\}$, $A_2 = \{13/2, 1/23\}$. Note that CL_{A_1} and CL_{A_2} were the claws used for Π_3.

$$\begin{array}{c|c}
 x \in \Pi_3 & t \in T_x^a \\
\end{array}$$
An ordered partition of a set \mathcal{A} is a sequence of subsets (A_1, \ldots, A_n) with $\bigcup_i A_i = \mathcal{A}$. We write $(A_1, \ldots, A_n) \vdash \mathcal{A}$. Let $(A_1, \ldots, A_n) \vdash \mathcal{A}(L)$ for a lattice L. Let CL_{A_i} be the claw with atom set A_i. The standard equivalence relation on $\prod_i CL_{A_i}$ is

$$t \sim s \text{ in } \prod_{i=1}^n CL_{A_i} \iff \bigvee t = \bigvee s \text{ in } L.$$

The atomic transversals of $x \in L$ are the elements of the equivalence class

$$\mathcal{T}_{x^a}^a = \left\{ t \in \prod_{i=1}^n CL_{A_i} : \bigvee t = x \right\}.$$

Ex. $(A_1, A_2) \vdash \mathcal{A}(\Pi_3)$ where $A_1 = \{12/3\}$, $A_2 = \{13/2, 1/23\}$. Note that CL_{A_1} and CL_{A_2} were the claws used for Π_3.

<table>
<thead>
<tr>
<th>$x \in \Pi_3$</th>
<th>$t \in \mathcal{T}_{x^a}^a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{0}$</td>
<td>$t \in \mathcal{T}_{x^a}^a$</td>
</tr>
</tbody>
</table>
An ordered partition of a set A is a sequence of subsets (A_1, \ldots, A_n) with $\bigcup_i A_i = A$. We write $(A_1, \ldots, A_n) \vdash A$.

Let $(A_1, \ldots, A_n) \vdash A(L)$ for a lattice L. Let CL_{A_i} be the claw with atom set A_i. The **standard equivalence relation** on $\prod_i CL_{A_i}$ is

$$t \sim s \text{ in } \prod_{i=1}^n CL_{A_i} \iff \bigvee t = \bigvee s \text{ in } L.$$

The **atomic transversals of $x \in L$** are the elements of the equivalence class

$$\mathcal{T}_x^a = \left\{ t \in \prod_{i=1}^n CL_{A_i} : \bigvee t = x \right\}.$$

Ex. $(A_1, A_2) \vdash A(\Pi_3)$ where $A_1 = \{12/3\}$, $A_2 = \{13/2, 1/23\}$. Note that CL_{A_1} and CL_{A_2} were the claws used for Π_3.

<table>
<thead>
<tr>
<th>$x \in \Pi_3$</th>
<th>$t \in \mathcal{T}_x^a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{0}$</td>
<td>$\left(\hat{0}, \hat{0}\right)$</td>
</tr>
</tbody>
</table>
An ordered partition of a set \(A \) is a sequence of subsets \((A_1, \ldots, A_n) \) with \(\bigcup_i A_i = A \). We write \((A_1, \ldots, A_n) \vdash A \).

Let \((A_1, \ldots, A_n) \vdash A(L) \) for a lattice \(L \). Let \(CL_{A_i} \) be the claw with atom set \(A_i \). The **standard equivalence relation** on \(\prod_i CL_{A_i} \) is

\[
 t \sim s \text{ in } \prod_{i=1}^{n} CL_{A_i} \iff \bigvee t = \bigvee s \text{ in } L.
\]

The **atomic transversals of \(x \in L \)** are the elements of the equivalence class

\[
 \mathcal{T}_x^a = \left\{ t \in \prod_{i=1}^{n} CL_{A_i} : \bigvee t = x \right\}.
\]

Ex. \((A_1, A_2) \vdash A(\Pi_3) \) where \(A_1 = \{12/3\}, \ A_2 = \{13/2, 1/23\} \).

Note that \(CL_{A_1} \) and \(CL_{A_2} \) were the claws used for \(\Pi_3 \).

<table>
<thead>
<tr>
<th>(x \in \Pi_3)</th>
<th>(t \in \mathcal{T}_x^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{0})</td>
<td>((\hat{0}, \hat{0}))</td>
</tr>
<tr>
<td>(12/3)</td>
<td></td>
</tr>
</tbody>
</table>
An ordered partition of a set \mathcal{A} is a sequence of subsets (A_1, \ldots, A_n) with $\bigcup_i A_i = \mathcal{A}$. We write $(A_1, \ldots, A_n) \vdash \mathcal{A}$. Let $(A_1, \ldots, A_n) \vdash \mathcal{A}(L)$ for a lattice L. Let CL_{A_i} be the claw with atom set A_i. The standard equivalence relation on $\prod_i CL_{A_i}$ is

$$t \sim s \text{ in } \prod_{i=1}^n CL_{A_i} \iff \bigvee t = \bigvee s \text{ in } L.$$

The atomic transversals of $x \in L$ are the elements of the equivalence class

$$\mathcal{T}_{x}^a = \left\{ t \in \prod_{i=1}^n CL_{A_i} : \bigvee t = x \right\}.$$

Ex. $(A_1, A_2) \vdash \mathcal{A}(\Pi_3)$ where $A_1 = \{12/3\}$, $A_2 = \{13/2, 1/23\}$. Note that CL_{A_1} and CL_{A_2} were the claws used for Π_3.

<table>
<thead>
<tr>
<th>$x \in \Pi_3$</th>
<th>$t \in \mathcal{T}_{x}^a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{0}$</td>
<td>$(\hat{0}, \hat{0})$</td>
</tr>
<tr>
<td>$12/3$</td>
<td>$(12/3, \hat{0})$</td>
</tr>
</tbody>
</table>
An ordered partition of a set \(A \) is a sequence of subsets \((A_1, \ldots, A_n) \) with \(\bigcup_i A_i = A \). We write \((A_1, \ldots, A_n) \vdash A \).

Let \((A_1, \ldots, A_n) \vdash A(L) \) for a lattice \(L \). Let \(CL_{A_i} \) be the claw with atom set \(A_i \). The standard equivalence relation on \(\prod_i CL_{A_i} \) is

\[
t \sim s \text{ in } \prod_{i=1}^{n} CL_{A_i} \iff \bigvee t = \bigvee s \text{ in } L.
\]

The atomic transversals of \(x \in L \) are the elements of the equivalence class

\[
T_x^a = \left\{ t \in \prod_{i=1}^{n} CL_{A_i} : \bigvee t = x \right\}.
\]

Ex. \((A_1, A_2) \vdash A(\Pi_3) \) where \(A_1 = \{12/3\} \), \(A_2 = \{13/2, 1/23\} \).

Note that \(CL_{A_1} \) and \(CL_{A_2} \) were the claws used for \(\Pi_3 \).

<table>
<thead>
<tr>
<th>(x \in \Pi_3)</th>
<th>(t \in T_x^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{0})</td>
<td>((\hat{0}, \hat{0}))</td>
</tr>
<tr>
<td>(12/3)</td>
<td>((12/3, \hat{0}))</td>
</tr>
<tr>
<td>(123)</td>
<td></td>
</tr>
</tbody>
</table>
An ordered partition of a set \(\mathcal{A} \) is a sequence of subsets \((A_1, \ldots, A_n)\) with \(\bigcup_i A_i = \mathcal{A} \). We write \((A_1, \ldots, A_n) \vdash \mathcal{A}\). Let \((A_1, \ldots, A_n) \vdash \mathcal{A}(L)\) for a lattice \(L\). Let \(CL_{A_i}\) be the claw with atom set \(A_i\). The *standard equivalence relation* on \(\prod_i CL_{A_i} \) is

\[
t \sim s \text{ in } \prod_{i=1}^n CL_{A_i} \iff \bigvee t = \bigvee s \text{ in } L.
\]

The *atomic transversals of \(x \in L\) are the elements of the equivalence class

\[
\mathcal{T}_{x}^a = \left\{ t \in \prod_{i=1}^n CL_{A_i} : \bigvee t = x \right\}.
\]

Ex. \((A_1, A_2) \vdash \mathcal{A}(\Pi_3)\) where \(A_1 = \{12/3\}, A_2 = \{13/2, 1/23\}\). Note that \(CL_{A_1}\) and \(CL_{A_2}\) were the claws used for \(\Pi_3\).

<table>
<thead>
<tr>
<th>(x \in \Pi_3)</th>
<th>(t \in \mathcal{T}_{x}^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{0})</td>
<td>((\hat{0}, \hat{0}))</td>
</tr>
<tr>
<td>12/3</td>
<td>((12/3, \hat{0}))</td>
</tr>
<tr>
<td>123</td>
<td>((12/3, 13/2), (12/3, 1/23)).</td>
</tr>
</tbody>
</table>
Outline

Motivating Examples

Quotient Posets

The Standard Equivalence Relation

The Main Theorem

Partitions Induced by Chains

Application: Increasing Forests
We need a condition on the standard equivalence relation which will make sure that the quotient is homogeneous and ranked.
We need a condition on the standard equivalence relation which will make sure that the quotient is homogeneous and ranked. The support of $t = (t_1, \ldots, t_n) \in \prod_i CL_{A_i}$ is

$$\text{supp } t = \{ i : t_i \neq \hat{0} \}.$$
We need a condition on the standard equivalence relation which will make sure that the quotient is homogeneous and ranked. The *support* of \(t = (t_1, \ldots, t_n) \in \prod_i CL_{A_i} \) is
\[
\text{supp } t = \{ i : t_i \neq \hat{0} \}.
\]
Note that \(|\text{supp } t| = \rho(t) \) where the rank is taken in \(\prod_i CL_{A_i} \).
We need a condition on the standard equivalence relation which will make sure that the quotient is homogeneous and ranked. The *support* of $t = (t_1, \ldots, t_n) \in \prod_i CL_{A_i}$ is

$$\text{supp } t = \{ i : t_i \neq \hat{0} \}.$$

Note that $|\text{supp } t| = \rho(t)$ where the rank is taken in $\prod_i CL_{A_i}$.

<table>
<thead>
<tr>
<th>Ex.</th>
<th>$x \in \Pi_3$</th>
<th>$t \in T_x^a$</th>
<th>$\text{supp } t$</th>
<th>$\rho(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>(0, 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12/3</td>
<td>(12/3, 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>123</td>
<td>(12/3, 13/2), (12/3, 1/23)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lemma (Hallam-S)

Let L be a lattice, $(A_1, \ldots, A_n) \vdash A(L)$ and $Q = \prod_i CL_{A_i}$. Suppose that for all $x \in L$ and all $t \in T_x^a$ we have $|\text{supp } t| = \rho(t)$. Then the standard equivalence relation is homogeneous, Q/\sim is ranked, and $\rho(T_x^a) = \rho(x)$.

We need a condition on the standard equivalence relation which will make sure that the quotient is homogeneous and ranked. The \textit{support} of \(t = (t_1, \ldots, t_n) \in \prod_i CL_{A_i} \) is
\[
\text{supp} t = \{ i : t_i \neq \hat{0} \}.
\]

Note that \(|\text{supp} t| = \rho(t) \) where the rank is taken in \(\prod_i CL_{A_i} \).

\textbf{Ex.}

<table>
<thead>
<tr>
<th>(x \in \Pi_3)</th>
<th>(t \in \mathcal{T}_x^a)</th>
<th>(\text{supp} t)</th>
<th>(\rho(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{0})</td>
<td>((\hat{0}, \hat{0}))</td>
<td>(\emptyset)</td>
<td></td>
</tr>
<tr>
<td>(12/3)</td>
<td>((12/3, \hat{0}))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(123)</td>
<td>((12/3, 13/2)), ((12/3, 1/23))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
We need a condition on the standard equivalence relation which will make sure that the quotient is homogeneous and ranked. The *support* of \(t = (t_1, \ldots, t_n) \in \prod_i CL_{A_i} \) is

\[
\text{supp } t = \{ i : t_i \neq \hat{0} \}.
\]

Note that \(|\text{supp } t| = \rho(t) \) where the rank is taken in \(\prod_i CL_{A_i} \).

Ex.

<table>
<thead>
<tr>
<th>(x \in \Pi_3)</th>
<th>(t \in T_x^a)</th>
<th>(\text{supp } t)</th>
<th>(\rho(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{0})</td>
<td>((\hat{0}, \hat{0}))</td>
<td>(\emptyset)</td>
<td>0</td>
</tr>
<tr>
<td>12/3</td>
<td>((12/3, \hat{0}))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>((12/3, 13/2), (12/3, 1/23))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
We need a condition on the standard equivalence relation which will make sure that the quotient is homogeneous and ranked. The *support* of \(t = (t_1, \ldots, t_n) \in \prod_i CL_{A_i} \) is

\[
\text{supp} t = \{ i : t_i \neq \hat{0} \}.
\]

Note that \(|\text{supp} t| = \rho(t) \) where the rank is taken in \(\prod_i CL_{A_i} \).

<table>
<thead>
<tr>
<th>Ex.</th>
<th>(x \in \Pi_3)</th>
<th>(t \in T_x^a)</th>
<th>(\text{supp} t)</th>
<th>(\rho(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\hat{0}, \hat{0})</td>
<td>(\emptyset)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12/3</td>
<td>(12/3, \hat{0})</td>
<td>({1})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>(12/3, 13/2), (12/3, 1/23))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
We need a condition on the standard equivalence relation which will make sure that the quotient is homogeneous and ranked. The *support* of \(t = (t_1, \ldots, t_n) \in \prod_i \mathit{CL}_{A_i} \) is
\[
\text{supp } t = \{ i : t_i \neq \hat{0} \}.
\]
Note that \(|\text{supp } t| = \rho(t) \) where the rank is taken in \(\prod_i \mathit{CL}_{A_i} \).

Ex.
\[
\begin{array}{|c|c|c|c|}
\hline
x \in \Pi_3 & t \in \mathcal{T}_x^a & \text{supp } t & \rho(x) \\
\hline
\hat{0} & (\hat{0}, \hat{0}) & \emptyset & 0 \\
12/3 & (12/3, \hat{0}) & \{1\} & 1 \\
123 & (12/3, 13/2), (12/3, 1/23) & & \\
\hline
\end{array}
\]
We need a condition on the standard equivalence relation which will make sure that the quotient is homogeneous and ranked. The *support* of \(t = (t_1, \ldots, t_n) \in \prod_i CL_{A_i} \) is

\[
\text{supp} t = \{i : t_i \neq \hat{0}\}.
\]

Note that \(|\text{supp} t| = \rho(t) \) where the rank is taken in \(\prod_i CL_{A_i} \).

Ex.

<table>
<thead>
<tr>
<th>(x \in \Pi_3)</th>
<th>(t \in T_x^a)</th>
<th>supp (t)</th>
<th>(\rho(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{0})</td>
<td>((\hat{0}, \hat{0}))</td>
<td>(\emptyset)</td>
<td>0</td>
</tr>
<tr>
<td>12/3</td>
<td>((12/3, \hat{0}))</td>
<td>{1}</td>
<td>1</td>
</tr>
<tr>
<td>123</td>
<td>((12/3, 13/2), (12/3, 1/23))</td>
<td>{1, 2}</td>
<td></td>
</tr>
</tbody>
</table>
We need a condition on the standard equivalence relation which will make sure that the quotient is homogeneous and ranked. The *support* of \(t = (t_1, \ldots, t_n) \in \prod_i CL_{A_i} \) is

\[
\text{supp}\, t = \{ i \; : \; t_i \neq \hat{0} \}.
\]

Note that \(|\text{supp}\, t| = \rho(t) \) where the rank is taken in \(\prod_i CL_{A_i} \).

Ex.

<table>
<thead>
<tr>
<th>(x \in \Pi_3)</th>
<th>(t \in T_x^a)</th>
<th>(\text{supp}, t)</th>
<th>(\rho(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>((\hat{0}, \hat{0}))</td>
<td>(\emptyset)</td>
<td>0</td>
</tr>
<tr>
<td>12/3</td>
<td>((12/3, \hat{0}))</td>
<td>({1})</td>
<td>1</td>
</tr>
<tr>
<td>123</td>
<td>((12/3, 13/2), (12/3, 1/23))</td>
<td>({1, 2})</td>
<td>2</td>
</tr>
</tbody>
</table>
We need a condition on the standard equivalence relation which will make sure that the quotient is homogeneous and ranked. The support of \(t = (t_1, \ldots, t_n) \in \prod_i CL_{A_i} \) is

\[
\text{supp } t = \{ i : t_i \neq \hat{0} \}.
\]

Note that \(|\text{supp } t| = \rho(t) \) where the rank is taken in \(\prod_i CL_{A_i} \).

Ex.

<table>
<thead>
<tr>
<th>(x \in \Pi_3)</th>
<th>(t \in T_x^a)</th>
<th>(\text{supp } t)</th>
<th>(\rho(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{0})</td>
<td>((\hat{0}, \hat{0}))</td>
<td>(\emptyset)</td>
<td>0</td>
</tr>
<tr>
<td>12/3</td>
<td>((12/3, \hat{0}))</td>
<td>({1})</td>
<td>1</td>
</tr>
<tr>
<td>123</td>
<td>((12/3, 13/2), (12/3, 1/23))</td>
<td>({1, 2})</td>
<td>2</td>
</tr>
</tbody>
</table>

Lemma (Hallam-S)

Let \(L \) be a lattice, \((A_1, \ldots, A_n) \vdash A(L) \) and \(Q = \prod_i CL_{A_i} \). Suppose that for all \(x \in L \) and all \(t \in T_x^a \) we have

\[
| \text{supp } t | = \rho(x).
\]
We need a condition on the standard equivalence relation which will make sure that the quotient is homogeneous and ranked. The support of \(t = (t_1, \ldots, t_n) \in \prod_i CL_{A_i} \) is

\[
\text{supp } t = \{ i : t_i \neq \hat{0} \}.
\]

Note that \(|\text{supp } t| = \rho(t) \) where the rank is taken in \(\prod_i CL_{A_i} \).

Ex.

<table>
<thead>
<tr>
<th>(x \in \Pi_3)</th>
<th>(t \in \mathcal{T}_x^a)</th>
<th>\text{supp } t</th>
<th>\rho(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{0})</td>
<td>((\hat{0}, \hat{0}))</td>
<td>(\emptyset)</td>
<td>0</td>
</tr>
<tr>
<td>12/3</td>
<td>(12/3, (\hat{0}))</td>
<td>{1}</td>
<td>1</td>
</tr>
<tr>
<td>123</td>
<td>(12/3, 13/2), (12/3, 1/23)</td>
<td>{1, 2}</td>
<td>2</td>
</tr>
</tbody>
</table>

Lemma (Hallam-S)

Let \(L \) be a lattice, \((A_1, \ldots, A_n) \vdash A(L)\) and \(Q = \prod_i CL_{A_i} \). Suppose that for all \(x \in L \) and all \(t \in \mathcal{T}_x^a \) we have

\[
|\text{supp } t| = \rho(x).
\]

Then the standard equivalence relation is homogeneous, \(Q/ \sim \) is ranked, and

\[
\rho(\mathcal{T}_x^a) = \rho(x).
\]
We wish to make sure that when identifying the elements in an equivalence class, the Möbius function of the class is the sum of the Möbius functions of its elements so that χ does not change.

Lemma (Hallam-S)

Let lattice L, $(A_1,\ldots,A_n) \vdash A(L)$ and $Q = \prod_{i \in I} A_i$ satisfy the conditions of the previous lemma. Suppose, for each $x \neq \hat{0}$ in L, there exists an index i such that $|A_x \cap A_i| = 1$. (1) Then for any $T \ni x \in Q/\sim$ we have $\mu(T \ni x) = \sum_{t \in T \ni x} \mu(t)$.

Ex. Π_3 with $A_1 = \{12/3\}$ and $A_2 = \{13/2, 1/23\}$.

If $x \in A(\Pi_3)$, then $A_x = \{x\}$ and (1) is clear. If $x = 123$ then $|A_x \cap A_1| = 1$.
We wish to make sure that when identifying the elements in an equivalence class, the Möbius function of the class is the sum of the Möbius functions of its elements so that χ does not change. Given $x \in L$, let

$$A_x = \{ a \in A(L) : a \leq x \}.$$
We wish to make sure that when identifying the elements in an equivalence class, the Möbius function of the class is the sum of the Möbius functions of its elements so that χ does not change. Given $x \in L$, let

\[A_x = \{ a \in A(L) : a \leq x \}. \]

Lemma (Hallam-S)

Let lattice L, $(A_1, \ldots, A_n) \vdash A(L)$ and $Q = \prod_i CL_{A_i}$ satisfy the conditions of the previous lemma.
We wish to make sure that when identifying the elements in an equivalence class, the Möbius function of the class is the sum of the Möbius functions of its elements so that χ does not change. Given $x \in L$, let

$$A_x = \{a \in A(L) : a \leq x\}.$$

Lemma (Hallam-S)

Let lattice L, $(A_1, \ldots, A_n) \vdash A(L)$ and $Q = \prod_i CL_{A_i}$ satisfy the conditions of the previous lemma. Suppose, for each $x \neq \hat{0}$ in L,

$$\text{there exists an index } i \text{ such that } |A_x \cap A_i| = 1. \quad (1)$$
We wish to make sure that when identifying the elements in an equivalence class, the Möbius function of the class is the sum of the Möbius functions of its elements so that \(\chi \) does not change. Given \(x \in L \), let

\[
A_x = \{ a \in A(L) : a \leq x \}.
\]

Lemma (Hallam-S)

Let lattice \(L, (A_1, \ldots, A_n) \vdash A(L) \) and \(Q = \prod_i CL_{A_i} \) satisfy the conditions of the previous lemma. Suppose, for each \(x \neq \hat{0} \) in \(L \),

\[
\text{there exists an index } i \text{ such that } |A_x \cap A_i| = 1. \quad (1)
\]

Then for any \(T_x^a \in Q/ \sim \) we have

\[
\mu(T_x^a) = \sum_{t \in T_x^a} \mu(t).
\]
We wish to make sure that when identifying the elements in an equivalence class, the Möbius function of the class is the sum of the Möbius functions of its elements so that χ does not change. Given $x \in L$, let

$$A_x = \{a \in A(L) : a \leq x\}.$$

Lemma (Hallam-S)

Let lattice L, $(A_1, \ldots, A_n) \vdash A(L)$ and $Q = \prod_i CL_{A_i}$ satisfy the conditions of the previous lemma. Suppose, for each $x \neq \hat{0}$ in L,

there exists an index i such that $|A_x \cap A_i| = 1$. \hfill (1)

Then for any $T_x^a \in Q/ \sim$ we have

$$\mu(T_x^a) = \sum_{t \in T_x^a} \mu(t).$$

Ex. Π_3 with $A_1 = \{12/3\}$ and $A_2 = \{13/2, 1/23\}$.
We wish to make sure that when identifying the elements in an equivalence class, the Möbius function of the class is the sum of the Möbius functions of its elements so that χ does not change. Given $x \in L$, let

$$A_x = \{a \in A(L) : a \leq x\}.$$

Lemma (Hallam-S)

Let lattice L, $(A_1, \ldots, A_n) \vdash A(L)$ and $Q = \prod_i CL_{A_i}$ satisfy the conditions of the previous lemma. Suppose, for each $x \neq \hat{0}$ in L, there exists an index i such that $|A_x \cap A_i| = 1$. \hspace{1cm} (1)

Then for any $T_x^a \in Q/\sim$ we have

$$\mu(T_x^a) = \sum_{t \in T_x^a} \mu(t).$$

Ex. Π_3 with $A_1 = \{12/3\}$ and $A_2 = \{13/2, 1/23\}$. If $x \in A(\Pi_3)$,
We wish to make sure that when identifying the elements in an equivalence class, the Möbius function of the class is the sum of the Möbius functions of its elements so that χ does not change. Given $x \in L$, let

$$A_x = \{a \in A(L) : a \leq x\}.$$

Lemma (Hallam-S)

Let lattice L, $(A_1, \ldots, A_n) \vdash A(L)$ and $Q = \prod_i CL_{A_i}$ satisfy the conditions of the previous lemma. Suppose, for each $x \neq \hat{0}$ in L,

$$\text{there exists an index } i \text{ such that } |A_x \cap A_i| = 1. \quad (1)$$

Then for any $T_x^a \in Q/ \sim$ we have

$$\mu(T_x^a) = \sum_{t \in T_x^a} \mu(t).$$

Ex. Π_3 with $A_1 = \{12/3\}$ and $A_2 = \{13/2, 1/23\}$. If $x \in A(\Pi_3)$, then $A_x = \{x\}$ and (1) is clear.
We wish to make sure that when identifying the elements in an
equivalence class, the Möbius function of the class is the sum
of the Möbius functions of its elements so that χ does not
change. Given $x \in L$, let

$$A_x = \{a \in A(L) : a \leq x\}.$$

Lemma (Hallam-S)

Let lattice L, $(A_1, \ldots, A_n) \vdash A(L)$ and $Q = \prod_i CL_{A_i}$ satisfy the
conditions of the previous lemma. Suppose, for each $x \neq \hat{0}$ in L,

$$\text{there exists an index } i \text{ such that } |A_x \cap A_i| = 1. \quad (1)$$

Then for any $T^a_x \in Q/ \sim$ we have

$$\mu(T^a_x) = \sum_{t \in T^a_x} \mu(t).$$

Ex. Π_3 with $A_1 = \{12/3\}$ and $A_2 = \{13/2, 1/23\}$. If $x \in A(\Pi_3)$,
then $A_x = \{x\}$ and (1) is clear. If $x = 123$
We wish to make sure that when identifying the elements in an equivalence class, the Möbius function of the class is the sum of the Möbius functions of its elements so that \(\chi \) does not change. Given \(x \in L \), let

\[
A_x = \{ a \in A(L) : a \leq x \}.
\]

Lemma (Hallam-S)

Let lattice \(L \), \((A_1, \ldots, A_n) \vdash A(L) \) and \(Q = \prod_i CL_{A_i} \) satisfy the conditions of the previous lemma. Suppose, for each \(x \neq \hat{0} \) in \(L \),

\[
\text{there exists an index } i \text{ such that } |A_x \cap A_i| = 1. \tag{1}
\]

Then for any \(T_x^a \in Q/ \sim \) we have

\[
\mu(T_x^a) = \sum_{t \in T_x^a} \mu(t).
\]

Ex. \(\Pi_3 \) with \(A_1 = \{12/3\} \) and \(A_2 = \{13/2, 1/23\} \). If \(x \in A(\Pi_3) \), then \(A_x = \{x\} \) and (1) is clear. If \(x = 123 \) then \(|A_x \cap A_1| = 1 \).
Our main theorem is as follows.
Our main theorem is as follows.

Theorem (Hallam-S)

Let \(L \) be a lattice, \((A_1, \ldots, A_n) \models \mathcal{A}(L) \) and \(Q = \prod_i CL_{A_i} \).

Suppose that the following three conditions hold.

1. For all \(x \in L \) we have \(T_a x \neq \emptyset \).
2. If \(t \in T_a x \) then \(|\text{supp} t| = \rho(x) \).
3. For each \(x \neq \hat{0} \) in \(L \), there is \(i \) such that \(|A_x \cap A_i| = 1 \).

Then we can conclude the following.

(a) \((Q/\sim) \sim = L \).
(b) \(\chi(L; t) = n \prod_{i=1}^n (t - |A_i|) \).

Condition (1) is used to prove that the map \((Q/\sim) \rightarrow L \) by \(T_a x \mapsto x \) is surjective.
Our main theorem is as follows.

Theorem (Hallam-S)

Let L be a lattice, $(A_1, \ldots, A_n) \vdash A(L)$ and $Q = \prod_i CL_{A_i}$. Suppose that the following three conditions hold.

1. For all $x \in L$ we have $Ta_x \neq \emptyset$.
2. If $t \in Ta_x$ then $|\text{supp } t| = \rho(x)$.
3. For each $x \neq \hat{0}$ in L, there is i such that $|A_x \cap A_i| = 1$.

Then we can conclude the following.

(a) $(Q/\sim) \sim = L$.

(b) $\chi(L; t) = n \prod_i (t - |A_i|)$.
Our main theorem is as follows.

Theorem (Hallam-S)

Let L be a lattice, $(A_1, \ldots, A_n) \vdash A(L)$ and $Q = \prod_i CL_{A_i}$. Suppose that the following three conditions hold.

1. For all $x \in L$ we have $\mathcal{T}_x^a \neq \emptyset$.

Then we can conclude the following.

(a) $Q / \sim \sim = L$.

(b) $\chi(L; t) = n \prod_i (t - |A_i|)$.

Condition (1) is used to prove that the map $(Q / \sim \sim) \rightarrow L$ by $T_x^a \mapsto x$ is surjective.
Our main theorem is as follows.

Theorem (Hallam-S)

Let L be a lattice, $(A_1, \ldots, A_n) \vdash \mathcal{A}(L)$ and $Q = \prod_i CL_{A_i}$. Suppose that the following three conditions hold.

1. For all $x \in L$ we have $\mathcal{T}_x^a \neq \emptyset$.
2. If $t \in \mathcal{T}_x^a$ then $|\text{supp } t| = \rho(x)$.
3. For each $x \neq \hat{0}$ in L, there is i such that $|A_x \cap A_i| = 1$.

Then we can conclude the following.

(a) $Q/\sim \sim = L$.

(b) $\chi(L; t) = n \prod_i (t - |A_i|)$.

Condition (1) is used to prove that the map $(Q/\sim \sim) \to L$ by $\mathcal{T}_x^a \mapsto x$ is surjective.
Our main theorem is as follows.

Theorem (Hallam-S)

Let L be a lattice, $(A_1, \ldots, A_n) \vdash A(L)$ and $Q = \prod_i CL_{A_i}$. Suppose that the following three conditions hold.

1. For all $x \in L$ we have $T_x^a \neq \emptyset$.
2. If $t \in T_x^a$ then $|\text{supp } t| = \rho(x)$.
3. For each $x \neq \hat{0}$ in L, there is i such that $|A_x \cap A_i| = 1$.

Then we can conclude the following.

(a) $(Q/\sim) \sim = L$.
(b) $\chi(L; t) = n \prod_{i=1}^{|A|} (t - |A_i|)$.
Our main theorem is as follows.

Theorem (Hallam-S)

Let L be a lattice, $(A_1, \ldots, A_n) \vdash A(L)$ and $Q = \prod_i CL_{A_i}$. Suppose that the following three conditions hold.

1. For all $x \in L$ we have $T^a_x \neq \emptyset$.
2. If $t \in T^a_x$ then $|\text{supp } t| = \rho(x)$.
3. For each $x \neq \hat{0}$ in L, there is i such that $|A_x \cap A_i| = 1$.

Then we can conclude the following.

(a) $(Q/\sim) \sim = L$.
(b) $\chi(L; t) = n \prod_{i=1}^{\eta} (t - |A_i|)$.

Condition (1) is used to prove that the map $(Q/\sim) \rightarrow L$ by $T^a_x \mapsto x$ is surjective.
Our main theorem is as follows.

Theorem (Hallam-S)

Let L be a lattice, $(A_1, \ldots, A_n) \vdash A(L)$ and $Q = \prod_i CL_{A_i}$. Suppose that the following three conditions hold.

1. For all $x \in L$ we have $T^a_x \neq \emptyset$.
2. If $t \in T^a_x$ then $|\text{supp } t| = \rho(x)$.
3. For each $x \neq \hat{0}$ in L, there is i such that $|A_x \cap A_i| = 1$.

Then we can conclude the following.

(a) $(Q/ \sim) \cong L$.
Our main theorem is as follows.

Theorem (Hallam-S)

Let L be a lattice, $(A_1, \ldots, A_n) \vdash A(L)$ and $Q = \prod_i CL_{A_i}$.

Suppose that the following three conditions hold.

1. For all $x \in L$ we have $T_x^a \neq \emptyset$.
2. If $t \in T_x^a$ then $|\text{supp } t| = \rho(x)$.
3. For each $x \neq \hat{0}$ in L, there is i such that $|A_x \cap A_i| = 1$.

Then we can conclude the following.

(a) $(Q/\sim) \cong L$.

(b) $\chi(L; t) = \prod_{i=1}^{n} (t - |A_i|)$.
Our main theorem is as follows.

Theorem (Hallam-S)

Let L be a lattice, $(A_1, \ldots, A_n) \vdash A(L)$ and $Q = \prod_i CL_{A_i}$. Suppose that the following three conditions hold.

1. For all $x \in L$ we have $\mathcal{T}_x^a \neq \emptyset$.
2. If $t \in \mathcal{T}_x^a$ then $|\text{supp } t| = \rho(x)$.
3. For each $x \neq \hat{0}$ in L, there is i such that $|A_x \cap A_i| = 1$.

Then we can conclude the following.

(a) $(Q/\sim) \cong L$.

(b) $\chi(L; t) = \prod_{i=1}^{n}(t - |A_i|)$.

Condition (1) is used to prove that the map $(Q/\sim) \to L$ by $\mathcal{T}_x^a \mapsto x$ is surjective.
Corollary

\[\chi(\Pi_n; t) = (t - 1)(t - 2) \ldots (t - n + 1). \]
Corollary

\[\chi(\Pi_n; t) = (t - 1)(t - 2) \ldots (t - n + 1). \]

Proof. If \(i < j \) let \(\{i, j\} \) be the atom of \(\Pi_n \) having this set as its unique non-singleton block.
Corollary

$$\chi(\Pi_n; t) = (t - 1)(t - 2) \ldots (t - n + 1).$$

Proof. If $i < j$ let \{i, j\} be the atom of Π_n having this set as its unique non-singleton block. Let $(A_1, \ldots, A_{n-1}) \vdash A(\Pi_n)$ where

$$A_i = \{\{1, i + 1\}, \{2, i + 1\}, \ldots, \{i, i + 1\}\}.$$
Corollary
\[\chi(\Pi_n; t) = (t - 1)(t - 2) \ldots (t - n + 1). \]

Proof. If \(i < j \) let \(\{i, j\} \) be the atom of \(\Pi_n \) having this set as its unique non-singleton block. Let \((A_1, \ldots, A_{n-1}) \vdash A(\Pi_n)\) where
\[A_i = \{\{1, i + 1\}, \{2, i + 1\}, \ldots, \{i, i + 1\}\}. \]
We will verify the three conditions for \(x = \hat{1} \).
Corollary

\[\chi(\Pi_n; t) = (t - 1)(t - 2) \ldots (t - n + 1). \]

Proof. If \(i < j \) let \(\{i, j\} \) be the atom of \(\Pi_n \) having this set as its unique non-singleton block. Let \((A_1, \ldots, A_{n-1}) \vdash A(\Pi_n) \) where

\[A_i = \{\{1, i + 1\}, \{2, i + 1\}, \ldots, \{i, i + 1\}\}. \]

We will verify the three conditions for \(x = \hat{1} \).

(1) \[\]
Corollary

\[\chi(\Pi_n; t) = (t - 1)(t - 2) \ldots (t - n + 1). \]

Proof. If \(i < j \) let \(\{i, j\} \) be the atom of \(\Pi_n \) having this set as its unique non-singleton block. Let \((A_1, \ldots, A_{n-1}) \vdash A(\Pi_n)\) where

\[A_i = \{\{1, i+1\}, \{2, i+1\}, \ldots, \{i, i+1\}\}. \]

We will verify the three conditions for \(x = \hat{1} \).

(1) \((\{1, 2\}, \{2, 3\}, \ldots, \{n-1, n\}) \in T_{\hat{1}}^a. \)
Corollary

\[\chi(\Pi_n; t) = (t - 1)(t - 2) \ldots (t - n + 1). \]

Proof. If \(i < j \) let \(\{i, j\} \) be the atom of \(\Pi_n \) having this set as its unique non-singleton block. Let \((A_1, \ldots, A_{n-1}) \vdash A(\Pi_n)\) where

\[A_i = \{\{1, i + 1\}, \{2, i + 1\}, \ldots, \{i, i + 1\}\}. \]

We will verify the three conditions for \(x = \hat{1} \).

(1) \(\{1, 2\}, \{2, 3\}, \ldots, \{n - 1, n\} \in \mathcal{T}_{\hat{1}} \).

(2) \(\)
Corollary
\[\chi(\Pi_n; t) = (t - 1)(t - 2) \ldots (t - n + 1). \]

Proof. If \(i < j \) let \(\{i, j\} \) be the atom of \(\Pi_n \) having this set as its unique non-singleton block. Let \((A_1, \ldots, A_{n-1}) \vdash A(\Pi_n)\) where
\[A_i = \{\{1, i + 1\}, \{2, i + 1\}, \ldots, \{i, i + 1\}\}. \]

We will verify the three conditions for \(x = \hat{1} \).

(1) \(\{(1, 2), (2, 3), \ldots, (n - 1, n)\} \in T_a^1 \).

(2) With any \(t \in Q \), associate a graph \(G_t \) with \(V = [n] \) and
\[ij \in E \iff \{i, j\} \in t. \]
Corollary

\[\chi(\Pi_n; t) = (t - 1)(t - 2) \ldots (t - n + 1). \]

Proof. If \(i < j \) let \(\{i, j\} \) be the atom of \(\Pi_n \) having this set as its unique non-singleton block. Let \((A_1, \ldots, A_{n-1}) \vdash A(\Pi_n) \) where

\[A_i = \{\{1, i + 1\}, \{2, i + 1\}, \ldots, \{i, i + 1\}\}. \]

We will verify the three conditions for \(x = \hat{1} \).

1. \((\{1, 2\}, \{2, 3\}, \ldots, \{n - 1, n\}) \in T^a_\hat{1}. \)
2. With any \(t \in Q \), associate a graph \(G_t \) with \(V = [n] \) and

\[ij \in E \iff \{i, j\} \in t. \]

I claim \(G_t \) is a forest.
Corollary
\[\chi(\Pi_n; t) = (t - 1)(t - 2) \ldots (t - n + 1). \]

Proof. If \(i < j \) let \(\{i, j\} \) be the atom of \(\Pi_n \) having this set as its unique non-singleton block. Let \((A_1, \ldots, A_{n-1}) \vdash A(\Pi_n)\) where
\[A_i = \{\{1, i + 1\}, \{2, i + 1\}, \ldots, \{i, i + 1\}\}. \]

We will verify the three conditions for \(x = \hat{\imath} \).

(1) \(\{1, 2\}, \{2, 3\}, \ldots, \{n - 1, n\} \in T_{\hat{\imath}}^a. \)

(2) With any \(t \in Q \), associate a graph \(G_t \) with \(V = [n] \) and
\[ij \in E \iff \{i, j\} \in t. \]

I claim \(G_t \) is a forest. If \(C : \ldots i, m, j, \ldots \) is a cycle with \(m = \max C \), then \(\{i, m\}, \{j, m\} \in t. \)
Corollary

\[\chi(\Pi_n; t) = (t - 1)(t - 2) \ldots (t - n + 1). \]

Proof. If \(i < j \) let \(\{i, j\} \) be the atom of \(\Pi_n \) having this set as its unique non-singleton block. Let \((A_1, \ldots, A_{n-1}) \vdash A(\Pi_n)\) where

\[A_i = \{\{1, i + 1\}, \{2, i + 1\}, \ldots, \{i, i + 1\}\}. \]

We will verify the three conditions for \(x = \hat{1} \).

1. \((\{1, 2\}, \{2, 3\}, \ldots, \{n - 1, n\}) \in T_{\hat{1}}^a. \)

2. With any \(t \in Q \), associate a graph \(G_t \) with \(V = [n] \) and

\[ij \in E \iff \{i, j\} \in t. \]

I claim \(G_t \) is a forest. If \(C : \ldots i, m, j, \ldots \) is a cycle with \(m = \max C \), then \(\{i, m\}, \{j, m\} \in t \). But \(\{i, m\}, \{j, m\} \in A_{m-1} \).
Corollary

\[\chi(\Pi_n; t) = (t - 1)(t - 2) \ldots (t - n + 1). \]

Proof. If \(i < j \) let \(\{i, j\} \) be the atom of \(\Pi_n \) having this set as its unique non-singleton block. Let \((A_1, \ldots, A_{n-1}) \vdash A(\Pi_n) \) where

\[A_i = \{\{1, i + 1\}, \{2, i + 1\}, \ldots, \{i, i + 1\}\}. \]

We will verify the three conditions for \(x = \hat{1} \).

(1) \((\{1, 2\}, \{2, 3\}, \ldots, \{n - 1, n\}) \in T^a_\hat{1}. \)

(2) With any \(t \in Q \), associate a graph \(G_t \) with \(V = [n] \) and

\[ij \in E \iff \{i, j\} \in t. \]

I claim \(G_t \) is a forest. If \(C : \ldots i, m, j, \ldots \) is a cycle with \(m = \max C \), then \(\{i, m\}, \{j, m\} \in t. \) But \(\{i, m\}, \{j, m\} \in A_{m-1}. \)

Also, the vertices of the components of \(G_t \) are the blocks of \(\bigvee t. \).
Corollary

\[\chi(\Pi_n; t) = (t - 1)(t - 2) \ldots (t - n + 1). \]

Proof. If \(i < j \) let \(\{i, j\} \) be the atom of \(\Pi_n \) having this set as its unique non-singleton block. Let \((A_1, \ldots, A_{n-1}) \vdash A(\Pi_n) \) where

\[A_i = \{\{1, i + 1\}, \{2, i + 1\}, \ldots, \{i, i + 1\}\}. \]

We will verify the three conditions for \(x = \hat{1} \).

(1) \((\{1, 2\}, \{2, 3\}, \ldots, \{n - 1, n\}) \in T^a_1. \)

(2) \(\text{With any } t \in Q, \text{ associate a graph } G_t \text{ with } V = [n] \text{ and }
\begin{align*}
ij \in E & \iff \{i, j\} \in t.
\end{align*} \)

I claim \(G_t \) is a forest. If \(C : \ldots i, m, j, \ldots \) is a cycle with \(m = \max C \), then \(\{i, m\}, \{j, m\} \in t \). But \(\{i, m\}, \{j, m\} \in A_{m-1} \).

Also, the vertices of the components of \(G_t \) are the blocks of \(\sqrt{t} \).

\[\therefore t \in T^a_1 \]
Corollary

\(\chi(\Pi_n; t) = (t - 1)(t - 2) \ldots (t - n + 1). \)

Proof. If \(i < j \) let \(\{i, j\} \) be the atom of \(\Pi_n \) having this set as its unique non-singleton block. Let \((A_1, \ldots, A_{n-1}) \vdash A(\Pi_n)\) where

\[
A_i = \{\{1, i + 1\}, \{2, i + 1\}, \ldots, \{i, i + 1\}\}.
\]

We will verify the three conditions for \(x = \hat{1} \).

1. \((\{1, 2\}, \{2, 3\}, \ldots, \{n - 1, n\}) \in T_{\hat{1}}^a. \)
2. With any \(t \in Q \), associate a graph \(G_t \) with \(V = [n] \) and

\[ij \in E \iff \{i, j\} \in t. \]

I claim \(G_t \) is a forest. If \(C : \ldots i, m.j, \ldots \) is a cycle with \(m = \max C \), then \(\{i, m\}, \{j, m\} \in t \). But \(\{i, m\}, \{j, m\} \in A_{m-1} \).

Also, the vertices of the components of \(G_t \) are the blocks of \(\bigvee t \).

\[\therefore t \in T_{\hat{1}}^a \implies G_t \text{ a tree} \]
Corollary
\(\chi(\Pi_n; t) = (t - 1)(t - 2) \ldots (t - n + 1).\)

Proof. If \(i < j\) let \(\{i, j\}\) be the atom of \(\Pi_n\) having this set as its unique non-singleton block. Let \((A_1, \ldots, A_{n-1}) \vdash A(\Pi_n)\) where

\[A_i = \{\{1, i + 1\}, \{2, i + 1\}, \ldots, \{i, i + 1\}\}.

We will verify the three conditions for \(x = \hat{1}\).

1. \(\{1, 2\}, \{2, 3\}, \ldots, \{n - 1, n\} \in T^a_\hat{1}\).
2. With any \(t \in Q\), associate a graph \(G_t\) with \(V = [n]\) and
 \[ij \in E \iff \{i, j\} \in t.\]

I claim \(G_t\) is a forest. If \(C: \ldots i, m, j, \ldots\) is a cycle with \(m = \max C\), then \(\{i, m\}, \{j, m\} \in t\). But \(\{i, m\}, \{j, m\} \in A_{m-1}\).

Also, the vertices of the components of \(G_t\) are the blocks of \(\bigvee t\).

\[\therefore t \in T^a_\hat{1} \implies G_t \text{ a tree} \implies |\text{supp } t| = n - 1\]
Corollary

\[\chi(\Pi_n; t) = (t - 1)(t - 2) \ldots (t - n + 1). \]

Proof. If \(i < j \) let \(\{i, j\} \) be the atom of \(\Pi_n \) having this set as its unique non-singleton block. Let \((A_1, \ldots, A_{n-1}) \vdash A(\Pi_n) \) where

\[A_i = \{\{1, i + 1\}, \{2, i + 1\}, \ldots, \{i, i + 1\}\}. \]

We will verify the three conditions for \(x = \hat{1} \).

1. \((\{1, 2\}, \{2, 3\}, \ldots, \{n - 1, n\}) \in T_{\hat{1}}^a. \)

2. With any \(t \in Q \), associate a graph \(G_t \) with \(V = [n] \) and

\[ij \in E \iff \{i, j\} \in t. \]

I claim \(G_t \) is a forest. If \(C : \ldots i, m.j, \ldots \) is a cycle with \(m = \max C \), then \(\{i, m\}, \{j, m\} \in t \). But \(\{i, m\}, \{j, m\} \in A_{m-1} \).

Also, the vertices of the components of \(G_t \) are the blocks of \(\bigvee t \).

\[\therefore t \in T_{\hat{1}}^a \Rightarrow G_t \text{ a tree} \Rightarrow |\text{supp } t| = n - 1 = \rho(\hat{1}). \]
Corollary
\[\chi(\Pi_n; t) = (t - 1)(t - 2) \ldots (t - n + 1). \]

Proof. If \(i < j \) let \(\{i, j\} \) be the atom of \(\Pi_n \) having this set as its unique non-singleton block. Let \((A_1, \ldots, A_{n-1}) \vdash A(\Pi_n)\) where
\[A_i = \{\{1, i + 1\}, \{2, i + 1\}, \ldots, \{i, i + 1\}\}. \]

We will verify the three conditions for \(x = \hat{1} \).

1. \((\{1, 2\}, \{2, 3\}, \ldots, \{n - 1, n\}) \in T_1^a. \)

2. With any \(t \in Q \), associate a graph \(G_t \) with \(V = [n] \) and
\[ij \in E \iff \{i, j\} \in t. \]

I claim \(G_t \) is a forest. If \(C : \ldots i, m, j, \ldots \) is a cycle with \(m = \max C \), then \(\{i, m\}, \{j, m\} \in t \). But \(\{i, m\}, \{j, m\} \in A_{m-1} \).

Also, the vertices of the components of \(G_t \) are the blocks of \(\bigvee t \).
\[\therefore t \in T_1^a \implies G_t \text{ a tree } \implies |\text{supp} t| = n - 1 = \rho(\hat{1}). \]

3. \(\leq \)
Corollary
\[\chi(\Pi_n; t) = (t - 1)(t - 2) \ldots (t - n + 1). \]

Proof. If \(i < j \) let \{i, j\} be the atom of \(\Pi_n \) having this set as its unique non-singleton block. Let \((A_1, \ldots, A_{n-1}) \vdash A(\Pi_n)\) where

\[A_i = \{\{1, i + 1\}, \{2, i + 1\}, \ldots, \{i, i + 1\}\}. \]

We will verify the three conditions for \(x = \hat{1} \).

1. \((\{1, 2\}, \{2, 3\}, \ldots, \{n - 1, n\}) \in T^a_\hat{1} \).
2. With any \(t \in Q \), associate a graph \(G_t \) with \(V = [n] \) and

\[ij \in E \iff \{i, j\} \in t. \]

I claim \(G_t \) is a forest. If \(C: \ldots i, m, j, \ldots \) is a cycle with \(m = \max C \), then \(\{i, m\}, \{j, m\} \in t \). But \(\{i, m\}, \{j, m\} \in A_{m-1} \).

Also, the vertices of the components of \(G_t \) are the blocks of \(\bigvee t \).

\[\therefore t \in T^a_\hat{1} \implies G_t \text{ a tree} \implies |\text{supp } t| = n - 1 = \rho(\hat{1}). \]

3. \(A_1 = \{\{1, 2\}\} \) so \(|A_\hat{1} \cap A_1| = 1. \)
Corollary

\(\chi(\Pi_n; t) = (t - 1)(t - 2) \ldots (t - n + 1). \)

Proof. If \(i < j \) let \(\{i, j\} \) be the atom of \(\Pi_n \) having this set as its unique non-singleton block. Let \((A_1, \ldots, A_{n-1}) \vdash A(\Pi_n)\) where

\[
A_i = \{\{1, i + 1\}, \{2, i + 1\}, \ldots, \{i, i + 1\}\}.
\]

We will verify the three conditions for \(x = \hat{1} \).

(1) \((\{1, 2\}, \{2, 3\}, \ldots, \{n - 1, n\}) \in \mathcal{T}_1^a. \)

(2) With any \(t \in Q \), associate a graph \(G_t \) with \(V = [n] \) and

\[
ij \in E \iff \{i, j\} \in t.
\]

I claim \(G_t \) is a forest. If \(C : \ldots i, m, j, \ldots \) is a cycle with \(m = \max C \), then \(\{i, m\}, \{j, m\} \in t \). But \(\{i, m\}, \{j, m\} \in A_{m-1} \).

Also, the vertices of the components of \(G_t \) are the blocks of \(\bigvee t \).

\[
\therefore t \in \mathcal{T}_1^a \implies G_t \text{ a tree} \implies |\text{supp } t| = n - 1 = \rho(\hat{1}).
\]

(3) \(A_1 = \{\{1, 2\}\} \) so \(|A_\hat{1} \cap A_1| = 1. \)

\[
\therefore \chi(\Pi_n; t) = (t - |A_1|) \ldots (t - |A_{n-1}|)
\]
Corollary
\[\chi(\Pi_n; t) = (t - 1)(t - 2) \ldots (t - n + 1). \]

Proof. If \(i < j \) let \(\{i, j\} \) be the atom of \(\Pi_n \) having this set as its unique non-singleton block. Let \((A_1, \ldots, A_{n-1}) \vdash A(\Pi_n)\) where
\[A_i = \{\{1, i + 1\}, \{2, i + 1\}, \ldots, \{i, i + 1\}\}. \]

We will verify the three conditions for \(x = \hat{1} \).

1. \((\{1, 2\}, \{2, 3\}, \ldots, \{n - 1, n\}) \in T^a_\hat{1}.
2. With any \(t \in Q \), associate a graph \(G_t \) with \(V = [n] \) and
\[ij \in E \iff \{i, j\} \in t. \]

I claim \(G_t \) is a forest. If \(C : \ldots i, m, j, \ldots \) is a cycle with \(m = \max C \), then \(\{i, m\}, \{j, m\} \in t \). But \(\{i, m\}, \{j, m\} \in A_{m-1} \). Also, the vertices of the components of \(G_t \) are the blocks of \(\sqrt{t} \).
\[\therefore t \in T^a_\hat{1} \implies G_t \text{ a tree} \implies |\text{supp } t| = n - 1 = 1. \]

3. \(A_1 = \{\{1, 2\}\} \) so \(|A_\hat{1} \cap A_1| = 1. \)
\[\therefore \chi(\Pi_n; t) = (t - |A_1|) \ldots (t - |A_{n-1}|) = (t - 1) \ldots (t - n + 1). \]
How do we find an appropriate atom partition?

We say \((A_1, \ldots, A_n) \models A(L)\) is induced by a chain \(\mathbf{C}: \hat{0} = x_0 < x_1 < x_2 < \cdots < x_n = \hat{1}\) such that

\[A_i = \{ a \in A(L) : a \leq x_i \text{ and } a \neq x_i - 1 \} \].

In \(\Pi_3\), the partition with \(A_1 = \{12/3\}\) and \(A_2 = \{13/2, 1/23\}\) is induced by the chain \(\mathbf{C}: 1/2 < 12/3 < 123\).

In \(\Pi_n\), our partition is induced by \(\hat{0} < [2] < [3] < \cdots < \hat{1}\) where \([i]\) is the partition having this set as its only non-trivial block.
How do we find an appropriate atom partition? We say
\((A_1, \ldots, A_n) \vdash A(L)\) is \textit{induced by a chain} if there is a chain
\(C : \hat{0} = x_0 < x_1 < x_2 < \cdots < x_n = \hat{1}\) such that
\[
A_i = \{ a \in A(L) : a \leq x_i \text{ and } a \not\leq x_{i-1} \}.
\]
How do we find an appropriate atom partition? We say
\((A_1, \ldots, A_n) \vdash A(L)\) is \textit{induced by a chain} if there is a chain
\(C : \hat{0} = x_0 < x_1 < x_2 < \cdots < x_n = \hat{1}\) such that
\[A_i = \{ a \in A(L) : a \leq x_i \text{ and } a \not\leq x_{i-1} \}. \]

In \(\Pi_3\), the partition with \(A_1 = \{12/3\}\) and \(A_2 = \{13/2, 1/23\}\) is
induced by the chain \(C : 1/2/3 < 12/3 < 123\).
How do we find an appropriate atom partition? We say
$(A_1, \ldots, A_n) \vdash A(L)$ is *induced by a chain* if there is a chain
$C : \hat{0} = x_0 < x_1 < x_2 < \cdots < x_n = \hat{1}$ such that

$$A_i = \{ a \in A(L) : a \leq x_i \text{ and } a \not\leq x_{i-1} \}.$$

In Π_3, the partition with $A_1 = \{12/3\}$ and $A_2 = \{13/2, 1/23\}$ is
induced by the chain $C : 1/2/3 < 12/3 < 123$.

```
123
/    \
12/3 13/2
/  \
1/23
```
How do we find an appropriate atom partition? We say $(A_1, \ldots, A_n) \vdash A(L)$ is *induced by a chain* if there is a chain $C : \hat{0} = x_0 < x_1 < x_2 < \cdots < x_n = \hat{1}$ such that

$$A_i = \{a \in A(L) : a \leq x_i \text{ and } a \nleq x_{i-1}\}.$$

In Π_3, the partition with $A_1 = \{12/3\}$ and $A_2 = \{13/2, 1/23\}$ is induced by the chain $C : 1/2/3 < 12/3 < 123$.

![Diagram of partition and chain](image-url)
How do we find an appropriate atom partition? We say $(A_1, \ldots, A_n) \vdash A(L)$ is *induced by a chain* if there is a chain $C : 0 = x_0 < x_1 < x_2 < \cdots < x_n = 1$ such that

$$A_i = \{ a \in A(L) : a \leq x_i \text{ and } a \not\leq x_{i-1} \}.$$

In Π_3, the partition with $A_1 = \{12/3\}$ and $A_2 = \{13/2, 1/23\}$ is induced by the chain $C : 1/2/3 < 12/3 < 123$.

![Diagram](attachment:image.png)
How do we find an appropriate atom partition? We say $(A_1, \ldots, A_n) \vdash \mathcal{A}(L)$ is *induced by a chain* if there is a chain $C : \hat{0} = x_0 < x_1 < x_2 < \cdots < x_n = \hat{1}$ such that

$$A_i = \{ a \in \mathcal{A}(L) : a \leq x_i \text{ and } a \not\leq x_{i-1} \}.$$

In Π_3, the partition with $A_1 = \{12/3\}$ and $A_2 = \{13/2, 1/23\}$ is induced by the chain $C : 1/2/3 < 12/3 < 123$.

![Diagram](image.png)
How do we find an appropriate atom partition? We say
$$(A_1, \ldots, A_n) \vdash \mathcal{A}(L)$$ is \textit{induced by a chain} if there is a chain
$C : \hat{0} = x_0 < x_1 < x_2 < \cdots < x_n = \hat{1}$ such that
$$A_i = \{ a \in \mathcal{A}(L) : a \leq x_i \text{ and } a \not\leq x_{i-1} \}.$$

In Π_3, the partition with $A_1 = \{12/3\}$ and $A_2 = \{13/2, 1/23\}$ is induced by the chain $C : 1/2/3 < 12/3 < 123$.

\begin{center}
\begin{tikzpicture}

% Triangle vertices
\node (123) at (0,0) {123};
\node (231) at (1,-2) {231};
\node (123) at (2,-4) {123};

% Triplet edges
\draw (123) -- (231) -- (123) -- (231); % Triplet edges
\draw (123) -- (231) -- (123); % Chain edges
\end{tikzpicture}
\end{center}

$A_1 = \boxed{12/3}$

$13/2$

$1/23$

$1/2/3$
How do we find an appropriate atom partition? We say \((A_1, \ldots, A_n) \vdash A(L)\) is \textit{induced by a chain} if there is a chain \(C : \hat{0} = x_0 < x_1 < x_2 < \cdots < x_n = \hat{1}\) such that

\[A_i = \{ a \in A(L) : a \leq x_i \text{ and } a \not< x_{i-1} \}. \]

In \(\Pi_3\), the partition with \(A_1 = \{12/3\}\) and \(A_2 = \{13/2, 1/23\}\) is induced by the chain \(C : 1/2/3 < 12/3 < 123\).
How do we find an appropriate atom partition? We say
\((A_1, \ldots, A_n) \vdash A(L)\) is \textit{induced by a chain} if there is a chain
\(C : \hat{0} = x_0 < x_1 < x_2 < \cdots < x_n = \hat{1}\) such that
\[A_i = \{a \in A(L) : a \leq x_i \text{ and } a \not\leq x_{i-1}\}.\]

In \(\Pi_3\), the partition with \(A_1 = \{12/3\}\) and \(A_2 = \{13/2, 1/23\}\) is
induced by the chain \(C : 1/2/3 < 12/3 < 123\).
How do we find an appropriate atom partition? We say \((A_1, \ldots, A_n) \vdash A(L)\) is \textit{induced by a chain} if there is a chain \(C : \hat{0} = x_0 < x_1 < x_2 < \cdots < x_n = \hat{1}\) such that

\[
A_i = \{ a \in A(L) : a \leq x_i \text{ and } a \not\leq x_{i-1} \}.
\]

In \(\Pi_3\), the partition with \(A_1 = \{12/3\}\) and \(A_2 = \{13/2, 1/23\}\) is induced by the chain \(C : 1/2/3 < 12/3 < 123\).

In \(\Pi_n\), our partition is induced by \(\hat{0} < [2] < [3] < \cdots < \hat{1}\) where \([i]\) is the partition having this set as its only non-trivial block.
Let L be a lattice and $C : \hat{0} = x_0 < x_1 < x_2 < \cdots < x_n = \hat{1}$.
Let L be a lattice and $C : 0 = x_0 < x_1 < x_2 < \cdots < x_n = \hat{1}$. For $x \in L$ let i be the index with $x \leq x_i$ and $x \not\leq x_{i-1}$.

Theorem (Hallam-S)

Let L be a lattice and (A_1, \ldots, A_n) induced by a chain C. Suppose that for all $x \in L$ and $t \in T$ we have $|\text{supp} \ t| = \rho(x)$. Under these conditions, the following are equivalent.

1. For each $x \neq 0$ in L, there is i such that $|A_x \cap A_i| = 1$.
2. Chain C satisfies the meet condition.
3. The characteristic polynomial of L factors as $\chi(L, t) = t^n \rho(L) - n \prod_{i=1}^{n} (t - |A_i|)$.
Let L be a lattice and $C : 0 = x_0 < x_1 < x_2 < \cdots < x_n = \hat{1}$. For $x \in L$ let i be the index with $x \leq x_i$ and $x \not\leq x_{i-1}$. Say that C satisfies the *meet condition* if, for every $x \in L$ of rank at least 2,

$$x \land x_{i-1} \neq \hat{0}.$$
Let L be a lattice and $C : 0 = x_0 < x_1 < x_2 < \cdots < x_n = 1$. For $x \in L$ let i be the index with $x \leq x_i$ and $x \not\leq x_{i-1}$. Say that C satisfies the **meet condition** if, for every $x \in L$ of rank at least 2,

$$x \land x_{i-1} \neq 0.$$

Theorem (Hallam-S)

Let L be a lattice and (A_1, \ldots, A_n) induced by a chain C.
Let L be a lattice and $C : \hat{0} = x_0 < x_1 < x_2 < \cdots < x_n = \hat{1}$. For $x \in L$ let i be the index with $x \leq x_i$ and $x \not\leq x_{i-1}$. Say that C satisfies the *meet condition* if, for every $x \in L$ of rank at least 2,

$$x \land x_{i-1} \neq \hat{0}.$$

Theorem (Hallam-S)

*Let L be a lattice and (A_1, \ldots, A_n) induced by a chain C. Suppose that for all $x \in L$ and $t \in T^a_x$ we have

$$|\text{supp } t| = \rho(x).$$

Under these conditions, the following are equivalent.

1. For each $x \neq \hat{0}$ in L, there is i such that $|A_x \cap A_i| = 1$.

2. Chain C satisfies the meet condition.

3. The characteristic polynomial of L factors as $\chi(L, t) = t^{\rho(L)} - n \prod_{i=1}^n (t - |A_i|)$.*
Let L be a lattice and $C : \hat{0} = x_0 < x_1 < x_2 < \cdots < x_n = \hat{1}$. For $x \in L$ let i be the index with $x \leq x_i$ and $x \not\leq x_{i-1}$. Say that C satisfies the \textit{meet condition} if, for every $x \in L$ of rank at least 2, $x \land x_{i-1} \neq \hat{0}$.

Theorem (Hallam-S)

\textit{Let L be a lattice and (A_1, \ldots, A_n) induced by a chain C. Suppose that for all $x \in L$ and $t \in T_x^a$ we have}

$$| \text{supp } t | = \rho(x).$$

\textit{Under these conditions, the following are equivalent.}
Let L be a lattice and $C : \hat{0} = x_0 < x_1 < x_2 < \cdots < x_n = \hat{1}$. For $x \in L$ let i be the index with $x \leq x_i$ and $x \not\leq x_{i-1}$. Say that C satisfies the *meet condition* if, for every $x \in L$ of rank at least 2,

$$x \land x_{i-1} \neq \hat{0}.$$

Theorem (Hallam-S)

Let L be a lattice and (A_1, \ldots, A_n) induced by a chain C. Suppose that for all $x \in L$ and $t \in T^a_x$ we have

$$|\text{supp } t| = \rho(x).$$

Under these conditions, the following are equivalent.

1. For each $x \neq \hat{0}$ in L, there is i such that $|A_x \cap A_i| = 1$.

Let L be a lattice and $C : \hat{0} = x_0 < x_1 < x_2 < \cdots < x_n = \hat{1}$. For $x \in L$ let i be the index with $x \leq x_i$ and $x \not\leq x_{i-1}$. Say that C satisfies the \textit{meet condition} if, for every $x \in L$ of rank at least 2, $x \land x_{i-1} \neq \hat{0}$.

Theorem (Hallam-S)

\textit{Let L be a lattice and (A_1, \ldots, A_n) induced by a chain C. Suppose that for all $x \in L$ and $t \in T_x^a$ we have}

\[|\text{supp } t| = \rho(x). \]

\textit{Under these conditions, the following are equivalent.}

1. \textit{For each $x \neq \hat{0}$ in L, there is i such that $|A_x \cap A_i| = 1$.}
2. \textit{Chain C satisfies the meet condition.}
Let L be a lattice and $C : \hat{0} = x_0 < x_1 < x_2 < \cdots < x_n = \hat{1}$. For $x \in L$ let i be the index with $x \leq x_i$ and $x \not\leq x_{i-1}$. Say that C satisfies the *meet condition* if, for every $x \in L$ of rank at least 2,

$$x \wedge x_{i-1} \neq \hat{0}.$$

Theorem (Hallam-S)

Let L be a lattice and (A_1, \ldots, A_n) induced by a chain C. Suppose that for all $x \in L$ and $t \in T_x^a$ we have

$$|\text{supp } t| = \rho(x).$$

Under these conditions, the following are equivalent.

1. For each $x \neq \hat{0}$ in L, there is i such that $|A_x \cap A_i| = 1$.
2. Chain C satisfies the meet condition.
3. The characteristic polynomial of L factors as

$$\chi(L, t) = t^{\rho(L)} - n \prod_{i=1}^n (t - |A_i|).$$
Any lattice L satisfies: for all $x, y, z \in L$ with $y < z$

$$y \lor (x \land z) \leq (y \lor x) \land z \quad (\text{modular inequality}).$$ \quad (2)
Any lattice L satisfies: for all $x, y, z \in L$ with $y < z$

$$y \lor (x \land z) \leq (y \lor x) \land z \quad \text{(modular inequality).}$$

(2)

Call $x \in L$ left-modular if, together with any $y < z$, we have equality in (2).

A lattice is supersolvable if it has a saturated chain of left-modular elements.

Lemma (Hallam-S)

Let L be a lattice and C a $\hat{0} - \hat{1}$ chain in L inducing (A_1, \ldots, A_n).

1. If C is saturated and consists of left-modular elements, then C satisfies the meet condition.

2. If L is semimodular then for any $x \in L$ and $t \in T$ we have

$$|\text{supp } t| = \rho(x).$$

Corollary (Stanley, 1972)

Let L be a semimodular, supersolvable lattice and (A_1, \ldots, A_n) be induced by a saturated chain of left-modular elements. Then

$$\chi(L; t) = n \prod_{i=1}^{n} (t - |A_i|).$$
Any lattice L satisfies: for all $x, y, z \in L$ with $y < z$

$$y \lor (x \land z) \leq (y \lor x) \land z \quad \text{(modular inequality).} \quad (2)$$

Call $x \in L$ left-modular if, together with any $y < z$, we have equality in (2). A lattice is supersolvable if it has a saturated chain of left-modular elements.
Any lattice L satisfies: for all $x, y, z \in L$ with $y < z$

$$y \lor (x \land z) \leq (y \lor x) \land z \quad (\text{modular inequality}). \quad (2)$$

Call $x \in L$ left-modular if, together with any $y < z$, we have equality in (2). A lattice is supersolvable if it has a saturated chain of left-modular elements.

Lemma (Hallam-S)

*Let L be a lattice and C a $\hat{0}$–$\hat{1}$ chain in L inducing (A_1, \ldots, A_n).***
Any lattice L satisfies: for all $x, y, z \in L$ with $y < z$

$$y \lor (x \land z) \leq (y \lor x) \land z \quad (\text{modular inequality}). \quad (2)$$

Call $x \in L$ left-modular if, together with any $y < z$, we have equality in (2). A lattice is supersolvable if it has a saturated chain of left-modular elements.

Lemma (Hallam-S)

Let L be a lattice and C a 0–1 chain in L inducing (A_1, \ldots, A_n).

1. If C is saturated and consists of left-modular elements, then C satisfies the meet condition.
Any lattice \(L \) satisfies: for all \(x, y, z \in L \) with \(y < z \)

\[
y \lor (x \land z) \leq (y \lor x) \land z \quad \text{(modular inequality).} \quad (2)
\]

Call \(x \in L \) **left-modular** if, together with any \(y < z \), we have equality in (2). A lattice is **supersolvable** if it has a saturated chain of left-modular elements.

Lemma (Hallam-S)

Let \(L \) be a lattice and \(C \) a \(\hat{0} \)–\(\hat{1} \) chain in \(L \) inducing \((A_1, \ldots, A_n) \).

1. If \(C \) is saturated and consists of left-modular elements, then \(C \) satisfies the meet condition.

2. If \(L \) is semimodular then for any \(x \in L \) and \(t \in T_x \) we have

\[
|\text{supp } t| = \rho(x).
\]
Any lattice L satisfies: for all $x, y, z \in L$ with $y < z$

$$y \lor (x \land z) \leq (y \lor x) \land z \quad \text{(modular inequality)}.$$ \hfill (2)

Call $x \in L$ left-modular if, together with any $y < z$, we have equality in (2). A lattice is supersolvable if it has a saturated chain of left-modular elements.

Lemma (Hallam-S)

Let L be a lattice and C a $\hat{0}$–$\hat{1}$ chain in L inducing (A_1, \ldots, A_n).

1. If C is saturated and consists of left-modular elements, then C satisfies the meet condition.

2. If L is semimodular then for any $x \in L$ and $t \in T_x^a$ we have $| \text{supp } t | = \rho(x)$.

Corollary (Stanley, 1972)

Let L be a semimodular, supersolvable lattice and (A_1, \ldots, A_n) be induced by a saturated chain of left-modular elements. Then

$$\chi(L; t) = \prod_{i=1}^{n}(t - |A_i|).$$
Outline

Motivating Examples

Quotient Posets

The Standard Equivalence Relation

The Main Theorem

Partitions Induced by Chains

Application: Increasing Forests
Let G be a graph with $V = [n]$ and F be a spanning forest.
Let G be a graph with $V = [n]$ and F be a spanning forest. Then F is \emph{increasing} if the vertices in any path of F starting at the minimum vertex of its component form an increasing sequence.
Let G be a graph with $V = [n]$ and F be a spanning forest. Then F is *increasing* if the vertices in any path of F starting at the minimum vertex of its component form an increasing sequence.

Ex. 1

![Graph G with vertices 1, 2, 3, 4 and edges between them.](image)
Let G be a graph with $V = [n]$ and F be a spanning forest. Then F is *increasing* if the vertices in any path of F starting at the minimum vertex of its component form an increasing sequence.

Ex.

\[
\begin{array}{c}
\text{1} & \text{2} \\
\text{4} & \text{3}
\end{array}
\]

G

\[
\begin{array}{c}
\text{1} & \text{2} \\
\text{4} & \text{3}
\end{array}
\]

increasing F
Let G be a graph with $V = [n]$ and F be a spanning forest. Then F is *increasing* if the vertices in any path of F starting at the minimum vertex of its component form an increasing sequence.

![Example graphs](image)

Ex.

- G
- Increasing F
- Not increasing F
Let G be a graph with $V = [n]$ and F be a spanning forest. Then F is *increasing* if the vertices in any path of F starting at the minimum vertex of its component form an increasing sequence.

Ex.

\[G \]

1 \quad 2

4 \quad 3

\[\text{increasing } F \]

1 \quad 2

4 \quad 3

\[\text{not increasing } F \]

Define

\[f_k(G) = \# \text{ of increasing spanning forests of } G \text{ with } k \text{ edges}. \]
Let G be a graph with $V = [n]$ and F be a spanning forest. Then F is *increasing* if the vertices in any path of F starting at the minimum vertex of its component form an increasing sequence.

Ex. 1 \quad 2 \quad 3 \quad 4

\begin{align*}
G & \quad \text{increasing } F \\
& \quad \text{not increasing } F
\end{align*}

Define

$$f_k(G) = \# \text{ of increasing spanning forests of } G \text{ with } k \text{ edges}.$$

and

$$IF(G; t) = \sum_{k=0}^{n-1} (-1)^k f_k(G) t^{n-k}.$$
Always write \(ij = \{i, j\} \in E(G) \) with \(i < j \).
Always write $ij = \{i, j\} \in E(G)$ with $i < j$. The \textit{induced ordered partition of $E(G)$} is (E_1, \ldots, E_{n-1}) where

$$E_j = \{\{i, j + 1\} : \{i, j + 1\} \in E(G)\}.$$
Always write $ij = \{i, j\} \in E(G)$ with $i < j$. The *induced ordered partition of* $E(G)$ *is* (E_1, \ldots, E_{n-1}) *where*

$$E_j = \{\{i, j + 1\} : \{i, j + 1\} \in E(G)\}.$$

Ex.

$$G = \begin{array}{ccc}
1 & \rightarrow & 2 \\
4 & \rightarrow & 3
\end{array}$$
Always write $ij = \{i, j\} \in E(G)$ with $i < j$. The *induced ordered partition of* $E(G)$ *is* (E_1, \ldots, E_{n-1}) where

$$E_j = \{\{i, j + 1\} : \{i, j + 1\} \in E(G)\}.$$

Ex.

The graph G has partition

E_1
Always write $ij = \{i, j\} \in E(G)$ with $i < j$. The *induced ordered partition of $E(G)$* is (E_1, \ldots, E_{n-1}) where

$$E_j = \{\{i, j + 1\} : \{i, j + 1\} \in E(G)\}.$$

Ex.

$$G = \begin{matrix} 1 & \bullet & \bullet & 2 \\
\quad & \big/ & \big/ & \\
4 & \bullet & \bullet & 3 \\
\end{matrix}$$

has partition

$$E_1 = \{12\}, \quad E_2$$
Always write $ij = \{i, j\} \in E(G)$ with $i < j$. The *induced ordered partition of $E(G)$* is (E_1, \ldots, E_{n-1}) where

$$E_j = \{\{i, j + 1\} : \{i, j + 1\} \in E(G)\}.$$

Ex.

$$G = \begin{array}{ccc}
1 & \rightarrow & 2 \\
4 & \rightarrow & 3
\end{array}$$

has partition

$$E_1 = \{12\}, \quad E_2 = \{23\}, \quad E_3$$
Always write \(ij = \{i, j\} \in E(G) \) with \(i < j \). The *induced ordered partition of* \(E(G) \) *is* \((E_1, \ldots, E_{n-1})\) where
\[
E_j = \{\{i, j+1\} : \{i, j+1\} \in E(G)\}.
\]

Ex.

![Graph diagram](image)

This graph has partition
\[
E_1 = \{12\}, \quad E_2 = \{23\}, \quad E_3 = \{14, 24\},
\]
Always write $ij = \{i, j\} \in E(G)$ with $i < j$. The \textit{induced ordered partition of $E(G)$} is (E_1, \ldots, E_{n-1}) where
\[E_j = \{ \{i, j+1\} : \{i, j+1\} \in E(G) \} \].

\textbf{Ex.}

\[G = \begin{array}{ccc}
1 & \quad & 2 \\
\text{} & \quad & \\
4 & \quad & 3 \\
\end{array} \]

has partition
\[E_1 = \{12\}, \quad E_2 = \{23\}, \quad E_3 = \{14, 24\}, \]

\textbf{Theorem (Hallam-S)}

\textit{Let G have $V = [n]$ inducing partition (E_1, \ldots, E_{n-1}). Then}

\[IF(G; t) = t \prod_{j=1}^{n-1} (t - |E_j|). \]
Always write $ij = \{i,j\} \in E(G)$ with $i < j$. The induced ordered partition of $E(G)$ is (E_1, \ldots, E_{n-1}) where

$$E_j = \{\{i, j+1\} : \{i, j+1\} \in E(G)\}.$$

Ex.

\[
\begin{array}{c}
1 \quad 2 \\
\quad 4 \quad 3
\end{array}
\]

has partition

$$E_1 = \{12\}, \quad E_2 = \{23\}, \quad E_3 = \{14, 24\},$$

and

$$IF(G; t) = t(t-1)^2(t-2)$$

Theorem (Hallam-S)

Let G have $V = [n]$ inducing partition (E_1, \ldots, E_{n-1}). Then

$$IF(G; t) = t \prod_{j=1}^{n-1} (t - |E_j|).$$
Always write $ij = \{i, j\} \in E(G)$ with $i < j$. The \textit{induced ordered partition of $E(G)$} is (E_1, \ldots, E_{n-1}) where

$$E_j = \{\{i, j+1\} : \{i, j+1\} \in E(G)\}.$$

\textbf{Ex.}

\begin{center}
\begin{tikzpicture}[scale=0.5]
 \node (1) at (0,0) [circle, fill=red] {1};
 \node (2) at (2,0) [circle, fill=red] {2};
 \node (3) at (2,2) [circle, fill=red] {3};
 \node (4) at (0,2) [circle, fill=red] {4};
 \draw (1) -- (2);
 \draw (2) -- (3);
 \draw (3) -- (4);
 \draw (1) -- (4);
\end{tikzpicture}
\end{center}

has partition

$$E_1 = \{12\}, \quad E_2 = \{23\}, \quad E_3 = \{14, 24\},$$

and

$$IF(G; t) = t(t - 1)^2(t - 2) = p(G; t) \quad \text{(chromatic polynomial)}.$$

\textbf{Theorem (Hallam-S)}

\textit{Let G have $V = [n]$ inducing partition (E_1, \ldots, E_{n-1}). Then}

$$IF(G; t) = t \prod_{j=1}^{n-1} (t - |E_j|).$$
If G is a graph and $W \subseteq V(G)$, let $G[W]$ denote the induced subgraph of G with vertex set W.
If \(G \) is a graph and \(W \subseteq V(G) \), let \(G[W] \) denote the induced subgraph of \(G \) with vertex set \(W \). A **clique** in \(G \) is a subgraph \(G[W] \) which is complete.
If G is a graph and $W \subseteq V(G)$, let $G[W]$ denote the induced subgraph of G with vertex set W. A **clique** in G is a subgraph $G[W]$ which is complete.

Ex.

$$
\begin{array}{c}
1 \\
4 \\
\end{array}
\begin{array}{c}
2 \\
3 \\
\end{array}

G
$$
If G is a graph and $W \subseteq V(G)$, let $G[W]$ denote the induced subgraph of G with vertex set W. A **clique** in G is a subgraph $G[W]$ which is complete.

Ex.

\begin{align*}
G & \quad 1 \quad 2 \\
& \quad \qu
If G is a graph and $W \subseteq V(G)$, let $G[W]$ denote the induced subgraph of G with vertex set W. A **clique** in G is a subgraph $G[W]$ which is complete.

Ex.

- G
- $G[1, 2, 4]$ a clique
- $G[2, 3, 4]$ not a clique
If G is a graph and $W \subseteq V(G)$, let $G[W]$ denote the induced subgraph of G with vertex set W. A **clique** in G is a subgraph $G[W]$ which is complete.

Ex.

$$
\begin{align*}
G & \quad | \quad G[1, 2, 4] \text{ a clique} \quad | \quad G[2, 3, 4] \text{ not a clique}
\end{align*}
$$

Say G has a **perfect elimination ordering (peo)** if there is an ordering v_1, \ldots, v_n of V such that, for all i, the vertices adjacent to v_i in $G[v_1, \ldots, v_{i-1}]$ form a clique.
If G is a graph and $W \subseteq V(G)$, let $G[W]$ denote the induced subgraph of G with vertex set W. A **clique** in G is a subgraph $G[W]$ which is complete.

Ex.

- G
- $G[1, 2, 4]$ a clique
- $G[2, 3, 4]$ not a clique

Say G has a **perfect elimination ordering (peo)** if there is an ordering v_1, \ldots, v_n of V such that, for all i, the vertices adjacent to v_i in $G[v_1, \ldots, v_{i-1}]$ form a clique.
If G is a graph and $W \subseteq V(G)$, let $G[W]$ denote the induced subgraph of G with vertex set W. A \textit{clique} in G is a subgraph $G[W]$ which is complete.

\textbf{Ex.} \hspace{1cm} \begin{array}{c}
1 \quad \begin{array}{c}
2 \quad 1 \quad 2 \quad 3 \\
4 \quad 4 \quad 4 \quad 3
\end{array} \\
\begin{array}{c}
G \\
G[1, 2, 4] \text{ a clique} \\
G[2, 3, 4] \text{ not a clique}
\end{array}
\end{array}
\hspace{1cm}

Say G has a \textit{perfect elimination ordering (peo)} if there is an ordering v_1, \ldots, v_n of V such that, for all i, the vertices adjacent to v_i in $G[v_1, \ldots, v_{i-1}]$ form a clique.
If G is a graph and $W \subseteq V(G)$, let $G[W]$ denote the induced subgraph of G with vertex set W. A **clique** in G is a subgraph $G[W]$ which is complete.

Ex.

$\begin{align*}
G & \quad G[1, 2, 4] \text{ a clique} \\
G[2, 3, 4] \text{ not a clique}
\end{align*}$

Say G has a **perfect elimination ordering (peo)** if there is an ordering v_1, \ldots, v_n of V such that, for all i, the vertices adjacent to v_i in $G[v_1, \ldots, v_{i-1}]$ form a clique.
If G is a graph and $W \subseteq V(G)$, let $G[W]$ denote the induced subgraph of G with vertex set W. A \textit{clique} in G is a subgraph $G[W]$ which is complete.

\textbf{Ex.} \hspace{1cm} G \hspace{1cm} G[1, 2, 4] \text{ a clique} \hspace{1cm} G[2, 3, 4] \text{ not a clique}

\hspace{1cm} G \hspace{1cm} 1 \hspace{1cm} 1 \hspace{1cm} 2 \hspace{1cm} 1 \hspace{1cm} 2 \hspace{1cm} 3

Say G has a \textit{perfect elimination ordering (peo)} if there is an ordering v_1, \ldots, v_n of V such that, for all i, the vertices adjacent to v_i in $G[v_1, \ldots, v_{i-1}]$ form a clique.
If \(G \) is a graph and \(W \subseteq V(G) \), let \(G[W] \) denote the induced subgraph of \(G \) with vertex set \(W \). A **clique** in \(G \) is a subgraph \(G[W] \) which is complete.

Ex.

\[
\begin{align*}
G & \quad 1 & 2 & 1 \quad 2 \\
4 & 3 & 4 & 4 & 3
\end{align*}
\]

- \(G \)
- \(G[1, 2, 4] \) a clique
- \(G[2, 3, 4] \) not a clique

Say \(G \) has a **perfect elimination ordering (peo)** if there is an ordering \(v_1, \ldots, v_n \) of \(V \) such that, for all \(i \), the vertices adjacent to \(v_i \) in \(G[v_1, \ldots, v_{i-1}] \) form a clique.
If G is a graph and $W \subseteq V(G)$, let $G[W]$ denote the induced subgraph of G with vertex set W. A **clique** in G is a subgraph $G[W]$ which is complete.

Ex.

\[
\begin{align*}
G &\quad 4 & 3 & 1 & 2 & 2 \\
G[1, 2, 4] &\text{a clique} & 4 & 3 & 1 & 2 \\
G[2, 3, 4] &\text{not a clique} & 4 & 3 & 1 & 2
\end{align*}
\]

Say G has a **perfect elimination ordering (peo)** if there is an ordering v_1, \ldots, v_n of V such that, for all i, the vertices adjacent to v_i in $G[v_1, \ldots, v_{i-1}]$ form a clique.
If G is a graph and $W \subseteq V(G)$, let $G[W]$ denote the induced subgraph of G with vertex set W. A **clique** in G is a subgraph $G[W]$ which is complete.

Ex.

\[
\begin{array}{cccc}
1 & \bullet & 2 & \bullet \\
4 & \bullet & 3 & \bullet \\
\end{array}
\quad
\begin{array}{cccc}
1 & \bullet & 2 & \bullet \\
4 & \bullet & 3 & \bullet \\
\end{array}
\]

G \quad $G[1, 2, 4]$ a clique \quad $G[2, 3, 4]$ not a clique

Say G has a **perfect elimination ordering (peo)** if there is an ordering v_1, \ldots, v_n of V such that, for all i, the vertices adjacent to v_i in $G[v_1, \ldots, v_{i-1}]$ form a clique.
If G is a graph and $W \subseteq V(G)$, let $G[W]$ denote the induced subgraph of G with vertex set W. A **clique** in G is a subgraph $G[W]$ which is complete.

![Graph Example]

Say G has a **perfect elimination ordering (peo)** if there is an ordering v_1, \ldots, v_n of V such that, for all i, the vertices adjacent to v_i in $G[v_1, \ldots, v_{i-1}]$ form a clique. If G has a peo then $\rho(G; t)$ has roots in \mathbb{N}.
If G is a graph and $W \subseteq V(G)$, let $G[W]$ denote the induced subgraph of G with vertex set W. A **clique** in G is a subgraph $G[W]$ which is complete.

Ex.

\[
\begin{align*}
\text{G:} & \quad 1 & 2 & 1 & 2 \\
& \quad 4 & 3 & 4 & 3 \\
\end{align*}
\]

$G[1, 2, 4]$ a clique

$G[2, 3, 4]$ not a clique

Say G has a **perfect elimination ordering (peo)** if there is an ordering v_1, \ldots, v_n of V such that, for all i, the vertices adjacent to v_i in $G[v_1, \ldots, v_{i-1}]$ form a clique. If G has a peo then $p(G; t)$ has roots in \mathbb{N}. Using the bond lattice of G, we prove:
If G is a graph and $W \subseteq V(G)$, let $G[W]$ denote the induced subgraph of G with vertex set W. A **clique** in G is a subgraph $G[W]$ which is complete.

Ex.

Ex. 1

\[\begin{array}{ccc}
 1 & 2 & 1 \\
 4 & 3 & 4 \\
\end{array} \]

G $G[1, 2, 4]$ a clique $G[2, 3, 4]$ not a clique

Say G has a **perfect elimination ordering (peo)** if there is an ordering v_1, \ldots, v_n of V such that, for all i, the vertices adjacent to v_i in $G[v_1, \ldots, v_{i-1}]$ form a clique. If G has a peo then $p(G; t)$ has roots in \mathbb{N}. Using the bond lattice of G, we prove:

Theorem (Hallam-S)

Let G be a graph with $V = [n]$. Then $p(G; t) = IF(G; t)$ if and only if $1, \ldots, n$ is a peo of G.