Partially Ordered Sets and their Möbius Functions III: Topology of Posets

Bruce Sagan
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027
sagan@math.msu.edu
www.math.msu.edu/~sagan

June 11, 2014
A partition of a set S is a family π of nonempty sets B_1, \ldots, B_k called blocks such that $\biguplus_i B_i = S$ (disjoint union). We write $\pi = B_1/\ldots/B_k \vdash S$ omitting braces and commas in blocks.

Ex. $\pi = \text{acf}/\text{bg}/\text{de} \vdash \{a, b, c, d, e, f, g\}$.

The partition lattice is $\Pi_n = \{\pi : \pi \vdash [n]\}$ ordered by $B_1/\ldots/B_k \leq C_1/\ldots/C_l$ if for each B_i there is a C_j with $B_i \subseteq C_j$.

If P has a $\hat{0}$ and a $\hat{1}$ we write $\mu(P) = \mu_P(\hat{0}, \hat{1})$ and similarly for other elements of $I(P)$.

Ex.

\[
\begin{array}{c}
\text{Ex.} & 123 & 2 & \mu(\pi) \\
\Pi_3 = 12/3 -1 & 13/2 -1 & 1/23 -1 \\
& 1/2/3 1 & \\
\end{array}
\]

\[
\begin{array}{c|cccccccc}
\mu(\Pi_n) & 1 & 2 & 3 & 4 & 5 & 6 \\
n & 1 & -1 & 2 & -6 & 24 & -120 \\
\end{array}
\]

Theorem

We have: $\mu(\Pi_n) = (-1)^{n-1}(n-1)!$
An **abstract simplicial complex** is a finite nonempty family \(\Delta \) of finite sets called **faces** such that

\[
F \in \Delta \quad \text{and} \quad F' \subseteq F \quad \implies \quad F' \in \Delta.
\]

A **geometric realization** of \(\Delta \) has a \((d - 1)\)-dimensional simplex (tetrahedron) for each \(d\)-element set in \(\Delta \). The **dimension** of \(F \in \Delta \) is \(\dim F = \#F - 1 \). Face \(F \) is a **vertex or edge** if \(\dim F = 0 \) or 1, respectively.

Ex. \(\Delta = \{\emptyset, u, v, w, x, uv, uw, vw, wx, uvw\} \)

- \(\dim u = 0 \) a vertex,
- \(\dim uv = 1 \), an edge
- \(\dim uvw = 2 \).

\(uvw \) and \(wx \) are facets.

Not pure.

Face \(F \) is a **facet** if it is containment-maximal in \(\Delta \). We say \(\Delta \) is **pure of dimension** \(d \), and write \(\dim \Delta = d \), if \(\dim F = d \) for all facets \(F \) of \(\Delta \).

Note. A simplicial complex pure of dimension 1 is just a graph.
Let \(\Delta \) be pure of dimension \(d \). We say \(\Delta \) is \textit{shellable} if there is an ordering of its facets (a \textit{shelling}) \(F_1, \ldots, F_k \) such that for each \(j \leq k \):

\[
F_j \cap \left(\bigcup_{i<j} F_i \right) \text{ is a union of } (d - 1)\text{-dimensional faces of } F_j.
\]

\textbf{Ex.} For the graph at right

\(uw, vw, wx, uv, xy, wy \) is a shelling.

So \(\Delta \) is shellable.

Any sequence beginning \(uw, vw, xy \) is not a shelling since \(xy \cap (uw \cup vw) = \emptyset \).

In the original shelling:

\(r(uw) = \emptyset, r(vw) = v, r(wx) = x, \)

\(r(uv) = uv, r(xy) = y, r(wy) = wy. \)

\textbf{Note.} A graph is shellable iff it is connected.

Given a shelling \(F_1, \ldots, F_k \), the \textit{restriction of } \(F_j \) is

\[
r(F_j) = \{ v \text{ a vertex of } F_j : F_j - v \subseteq \left(\bigcup_{i<j} F_i \right) \}.
\]
Let S^d denote the d-sphere (sphere of dimension d). To form the *bouquet* or *wedge* of k spheres of dimension d, $\vee^k S^d$, take a point of each sphere and identify the points.

Ex.

\[\vee^2 S^1 = \]

\[\begin{array}{c}
\begin{array}{c}
\ast \\
\end{array}
\end{array} \cong \]

\[\begin{array}{c}
\begin{array}{c}
\ast \\
\end{array}
\end{array} \cong \]

\[u \quad F_1 \quad F_3 \quad x \\
F_4 \quad w \quad F_6 \quad y \\
v \quad F_2 \quad F_5 \\
x \quad v \quad y \quad w \quad x \quad y
\]

\[r(uw) = \emptyset, \quad r(vw) = v, \quad r(wx) = x, \quad r(uv) = uv, \]
\[r(xy) = y, \quad r(wy) = wy.\]

If topological spaces X and Y are *homotopic*, write $X \simeq Y$.

Theorem

If Δ is a shellable simplicial complex pure of dimension d, then

\[\Delta \simeq \vee^k S^d\]

*where k is the number of facets satisfying $r(F) = F$ in a shelling of Δ.\]
Let X be a topological space, say $X \subseteq \mathbb{R}^n$ for some n. If X has dimension d then we write $X = X^d$.

Ex. 1. S^d, the d-sphere. For example S^1 is a circle.
2. B^d, the closed d-ball. For example, B^2 is a closed disc.

The *boundary* of $X = X^d$, ∂X, is the set of $p \in X$ such that any (deformed) open d-ball centered at p contains points both in and out of X.

Ex. 1. $\partial B^d = S^{d-1}$.
2. $\partial S^d = \emptyset$.

Call $C = C^i \subseteq X$ an *i-cycle* if $\partial C = \emptyset$. Call two cycles *equivalent* if they form the boundary of a subset of X.

Ex. If X is a hollow cylinder, then the two copies of S^1 at either end are equivalent.

The *ith reduced Betti number* of X is

$$\tilde{\beta}_i(X) = \text{minimum number of inequivalent } i\text{-cycles which are not boundaries of some subset of } X \text{ and generate all } i\text{-cycles.}$$

If $X \simeq Y$ then $\tilde{\beta}_i(X) = \tilde{\beta}_i(Y)$ for all i. We use reduced Betti numbers since then $\tilde{\beta}_0(X) = 0$ for a connected X.
Proposition

We have

\[\tilde{\beta}_i(S^d) = \begin{cases}
 1 & \text{if } i = d, \\
 0 & \text{if } i \neq d.
\end{cases} \]

Proof.

We will prove this for \(S^2 \). First consider \(i = 2 \). We have already seen that \(\partial S^2 = \emptyset \), so \(S^2 \) is a cycle. And it can not be a boundary, since if \(\partial Y = S^2 \) then \(Y \) would have dimension 3 and so \(Y \not\subseteq S^2 \). Thus \(\tilde{\beta}_2(S^2) = 1 \).

Now consider \(i = 1 \). If we have a 1-cylce \(C \subset S^2 \), then \(C = \partial D \) where \(D \subseteq S^2 \) is the disc interior to \(C \). So every 1-cycle is also a boundary and \(\tilde{\beta}_1(S^2) = 0 \).

Finally, for \(i = 0 \). \(S^2 \) is connected so \(\tilde{\beta}_0(S^2) = 0 \).

Taking wedges adds reduced Betti numbers.

Corollary

We have

\[\tilde{\beta}_i(\vee^k S^d) = \begin{cases}
 k & \text{if } i = d, \\
 0 & \text{if } i \neq d.
\end{cases} \]
The *reduced Euler characteristic* of X is
\[
\tilde{\chi}(X) = \sum_{i \geq -1} (-1)^i \tilde{\beta}_i(X) = -\tilde{\beta}_{-1}(X) + \tilde{\beta}_0(X) - \tilde{\beta}_1(X) + \cdots
\]

By the previous proposition $\tilde{\beta}_i(\vee^k S^d) = k$ if $i = d$ and zero else.

Corollary

We have $\tilde{\chi}(\vee^k S^d) = (-1)^d k$.

The *ith face number* of a simplicial complex Δ is

$f_i(\Delta) = (# \text{ of faces of dimension } i) = (# \text{ of faces of cardinality } i + 1.)$

Theorem

$\tilde{\chi}(\Delta) = \sum_{i \geq -1} (-1)^i f_i(X) = -f_{-1}(X) + f_0(X) - f_1(X) + \cdots$

Ex. $\Delta \cong \vee^2 S^1 \overset{\text{Cor}}{\implies} \tilde{\chi}(\Delta) = \tilde{\chi}(\vee^2 S^1) = -2$.

- $\dim F = -1 \implies F = \emptyset \implies f_{-1}(\Delta) = 1$,
- $\dim F = 0 \implies F = \text{vertex} \implies f_0(\Delta) = 5$,
- $\dim F = 1 \implies F = \text{edge} \implies f_1(\Delta) = 6$,
- $i \geq 2 \implies f_i(\Delta) = 0$, \quad $\therefore \tilde{\chi}(\Delta) = -1 + 5 - 6 = -2$.

\[\Delta = \begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\end{array}\]
If \(x, y \in P \) (poset) then an \(x-y \) chain of length \(l \) in \(P \) is a subposet \(C : x = x_0 < x_1 < \ldots < x_l = y \). If \(P \) is bounded, let \(\overline{P} = P - \{\hat{0}, \hat{1}\} \).

The order complex of a bounded \(P \) is

\[
\Delta(P) = \text{set of all chains in } \overline{P}.
\]

A subset of a chain is a chain so \(\Delta(P) \) is a simplicial complex.

Ex. \(P = C_4 \),

\[
\therefore \overline{C}_4 = \begin{array}{c} 3 \\
2 \\
1 \end{array} \quad \text{and } \Delta(C_4) = \begin{array}{c} 1 \\
2 \\
3 \end{array}
\]

In general \(\Delta(C_n) \simeq B^0 \), a point.

Ex. \(P = B_3 \),

\[
\therefore \overline{B}_3 = \begin{array}{c} 12 \\
13 \\
23 \end{array} \quad \text{and } \Delta(B_3) = \begin{array}{c} 1 \\
12 \\
13 \end{array}
\]

In general \(\Delta(B_n) \simeq S^{n-2} \).
Lemma

In $l(P)$: $(\zeta - \delta)^l(x, y) = \# \text{ of } x-y \text{ chains of length } l$.

Proof. We have $(\zeta - \delta)(x, y) = 1$ if $x < y$ and zero else. So

$$(\zeta - \delta)^l(x, y) = \sum_{x=x_0, x_1, \ldots, x_l=y} (\zeta - \delta)(x_0, x_1) \cdots (\zeta - \delta)(x_{l-1}, x_l)$$

$$= \sum_{x=x_0 < x_1 < \ldots < x_l=y} 1 = \# \text{ of } x-y \text{ chains of length } l. \quad \square$$

Theorem

In a bounded poset P with $\hat{0} \neq \hat{1}$: $\mu(P) = \tilde{\chi}(\Delta(P))$.

Proof. Using the definition of μ and the lemma,

$$\mu(P) = \zeta^{-1}(P) = (\delta + (\zeta - \delta))^{-1}(P) = \sum_{l \geq 0} (-1)^l (\zeta - \delta)^l(P)$$

$$= \sum_{l \geq 1} (-1)^l (\# \text{ of } \hat{0}-\hat{1} \text{ chains of length } l \text{ in } P)$$

$$= \sum_{l \geq 1} (-1)^{l-2} (\# \text{ of chains of length } l - 2 \text{ in } \overline{P})$$

$$= \sum_{i \geq -1} (-1)^i f_i(\Delta(P)) = \tilde{\chi}(\Delta(P)). \quad \square$$
A poset P is *graded* if it is bounded and ranked.

Ex. Our example posets C_n, B_n, D_n, Π_n are all graded.

Let $E(P)$ be the edge set of the Hasse diagram of P. A labeling $\ell : E(P) \to \mathbb{R}$ induces a labeling of saturated chains by

$$\ell(x_0 \triangleleft x_1 \triangleleft \ldots \triangleleft x_l) = (\ell(x_0 \triangleleft x_1), \ldots, \ell(x_{l-1} \triangleleft x_l)).$$

Ex. For B_n, let

$$\ell(S \triangleleft T) = T - S.$$
Say saturated chain C has a property if $\ell(C)$ has that property. An *EL-labelling* of a graded poset P is $\ell : E \to \mathbb{R}$ such that, for each interval $[x, y] \subseteq P$

1. there is a unique weakly increasing x–y chain C_{xy},

2. C_{xy} is lexicographically least among saturated x–y chains.

All four of our example posets have EL-labelings. We will give the labeling and verify the two conditions for the interval $[\hat{0}, \hat{1}]$.

1. In C_n, let $\ell(i - 1 \Join i) = i$. Then there is only one saturated chain and $\ell(0 \Join 1 \Join \ldots \Join n) = (1, 2, \ldots, n)$.

2. In B_n, let $\ell(S \Join T) = T - S$. Then ℓ is a bijection between saturated $\hat{0}$–$\hat{1}$ chains and permutations of $[n]$

$$\ell(\hat{0} \Join \{x_1\} \Join \{x_1, x_2\} \Join \ldots \Join \hat{1}) = (x_1, x_2, \ldots, x_n).$$

There is a unique weakly increasing permutation, $(1, 2, \ldots, n)$, and it is lexicographically smaller than any other permutation.
3. In D_n. let $\ell(c \triangleleft d) = d/c$.

If $n = \prod_{i=1}^{k} \rho_i^{m_i}$ then ℓ is a bijection between saturated $\hat{0}$$\hat{1}$ chains and permutations of the multiset

$$M = \{\overbrace{\{p_1, \ldots, p_1, \ldots, p_k, \ldots, p_k\}}^{m_1}, \ldots, \overbrace{\{p_1, \ldots, p_1, \ldots, p_k, \ldots, p_k\}}^{m_k}\}.$$

There is a unique weakly increasing permutation of M and it is lexicographically least.

4. In Π_n, if $\pi = B_1/\ldots/B_k$ and merging B_i with B_j forms σ then $\ell(\pi \triangleleft \sigma) = \max\{\min B_i, \min B_j\}$.

If C is a saturated $\hat{0}$$\hat{1}$ chain then $\ell(C)$ is a permutation of $\{2, \ldots, n\}$:
for all π, σ we have $2 \leq \ell(\pi \triangleleft \sigma) \leq n$,
$\#\ell(C) = n - 1 = \#\{2, \ldots, n\}$,
and m appears as a label in C at most once since after merging it is no longer a min. Permutation $(2, \ldots, n)$ only occurs once: $\ell(\hat{0} \triangleleft 12/3/ \ldots /n \triangleleft 123/4/ \ldots/n \triangleleft \ldots \triangleleft \hat{1})$.

$D_{18} = \begin{array}{c}
18 \\
3 \\
6 \\
2 \\
3 \\
2 \\
3 \\
9 \\
3 \\
2 \\
3 \\
\end{array}$
Theorem (Björner, 1980)

Let P be a graded poset. If P has an EL-labelling then $\Delta(P)$ is shellable. In fact, if F_1, \ldots, F_k is a list of the saturated $\hat{0} - \hat{1}$ chains in lexicographic order, then $\overline{F}_1, \ldots, \overline{F}_k$ is a shelling of $\Delta(P)$. Furthermore

$$\mu(P) = (-1)^{\rho(P)}(\# \text{ of strictly decreasing } F_j). \quad (1)$$

Proof of (??). Using the first half of the theorem

$$\mu(P) = \tilde{\chi}(\Delta(P)) = (-1)^{\dim \Delta(P)}(\# \text{ of } F_j \text{ with } r(\overline{F}_j) = \overline{F}_j).$$

The power of -1 is as desired since $\dim \Delta(P) = \rho(P) - 2$. So it suffices to show that $\ell(F_j)$ is strictly decreasing iff $r(\overline{F}_j) = \overline{F}_j$.

\Rightarrow ("\Leftarrow" is similar) Suppose $F_j : x_0 \prec \ldots \prec x_n$ is strictly decreasing. We must show that given any $x_r \in \overline{F}_j$ there is F_i with $i < j$ and $F_i \cap F_j = F_j - \{x_r\}$. Now $x_{r-1} \prec x_r \prec x_{r+1}$ is strictly decreasing. Let $x_{r-1} \prec y_r \prec x_{r+1}$ be the weakly increasing chain in $[x_{r-1}, x_{r+1}]$. Then $F_i = F_j - \{x_r\} \cup \{y_r\}$ is lexicographically smaller than F_j. So $i < j$ and $F_i \cap F_j = F_j - \{x_r\}$. \square
Corollary

(a) \(\mu(C_n) = 0 \) if \(n \geq 2 \).

(b) \(\mu(B_n) = (-1)^n \).

(c) \(\mu(D_n) = \begin{cases} (-1)^k & \text{if } n = p_1 \ldots p_k \text{ distinct primes}, \\ 0 & \text{else}. \end{cases} \)

(d) \(\mu(\Pi_n) = (-1)^{n-1}(n-1)! \).

Proof. (a) \(C_n \) has a single chain which is weakly increasing. So it has no strictly decreasing chain and \(\mu(C_n) = (-1)^n \cdot 0 = 0 \). (b) The \(\ell(F_i) \) are in bijection with the permutations of \(\{1, \ldots, n\} \). The unique strictly decreasing permutation is \((n, n-1, \ldots, 1) \). (c) Combine the proofs in (a) and (b). (d) The \(\ell(F_i) \) are permutations of \(\{2, \ldots, n\} \). Suppose \(\ell(F_i) = (n, n-1, \ldots, 2) \) where \(F_i = \pi_0 \triangleleft \pi_1 \triangleleft \ldots \triangleleft \pi_{n-1} \). Then \(\pi_1 \) is obtained from \(\pi_0 \) by merging \(\{n\} \) with another block, giving \(n-1 \) choices. So \(n-1 \) is still a minimum of some block which must be merged with one of the \(n-2 \) other blocks to form \(\pi_2 \). Continuing in this manner gives \((n-1)! \) chains. \(\square \)