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Functions III: Topology of Posets

Bruce Sagan
Department of Mathematics
Michigan State University

East Lansing, MI 48824-1027
sagan@math.msu.edu

www.math.msu.edu/˜sagan

June 11, 2014





A partition of a set S is a family π of nonempty sets B1, . . . ,Bk
called blocks such that ]iBi = S (disjoint union). We write
π = B1/ . . . /Bk ` S omitting braces and commas in blocks.
Ex. π = acf/bg/de ` {a,b, c,d ,e, f ,g}.
The partition lattice is Πn = {π : π ` [n]} ordered by
B1/ . . . /Bk ≤ C1/ . . . /Cl if for each Bi there is a Cj with Bi ⊆ Cj .
If P has a 0̂ and a 1̂ we write µ(P) = µP(0̂, 1̂) and similarly for
other elements of I(P).

Ex.

Π3 =

1/2/3

12/3 13/2 1/23

123 µ(π)

1

−1 −1 −1

2

n 1 2 3 4 5 6
µ(Πn) 1 −1 2 −6 24 −120

Theorem
We have: µ(Πn) = (−1)n−1(n − 1)!



An (abstract) simplicial complex is a finite nonempty family ∆ of
finite sets called faces such that

F ∈ ∆ and F ′ ⊆ F =⇒ F ′ ∈ ∆.

A geometric realization of ∆ has a (d − 1)-dimensional simplex
(tetrahedron) for each d-element set in ∆. The dimension of
F ∈ ∆ is dim F = #F − 1. Face F is a vertex or edge if
dim F = 0 or 1, respectively.
Ex. ∆ = {∅,u, v ,w , x ,uv ,uw , vw ,wx ,uvw}

dim u = 0 a vertex,
dim uv = 1, an edge
dim uvw = 2.
uvw and wx are facets.
Not pure.

∆ =

v

u
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Face F is a facet if it is containment-maximal in ∆. We say ∆
is pure of dimension d , and write dim ∆ = d , if dim F = d for all
facets F of ∆.
Note. A simplicial complex pure of dimension 1 is just a graph.



Let ∆ be pure of dimension d . We say ∆ is shellable if there is
an ordering of its facets (a shelling) F1, . . . ,Fk such that for
each j ≤ k :

Fj

⋂(
∪i<jFi

)
is a union of (d − 1)-dimensional faces of Fj .

Ex. For the graph at right
uw , vw , wx , uv , xy , wy is a shelling.
So ∆ is shellable.
Any sequence beginning uw , vw , xy
is not a shelling since xy ∩ (uw ∪ vw) = ∅.
In the original shelling:
r(uw) = ∅, r(vw) = v , r(wx) = x ,
r(uv) = uv , r(xy) = y , r(wy) = wy .

∆ =
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Note. A graph is shellable iff it is connected.

Given a shelling F1, . . . ,Fk , the restriction of Fj is

r(Fj) = {v a vertex of Fj : Fj − v ⊆
(
∪i<jFi

)
}.



Let Sd denote the d-sphere (sphere of dimension d). To form
the bouquet or wedge of k spheres of dimension d , ∨kSd , take
a point of each sphere and identify the points.

Ex.

∨2S1 = '

v

u

w

y

xF1

F2

F3

F4 F5

F6

r(uw) = ∅, r(vw) = v , r(wx) = x , r(uv) = uv ,
r(xy) = y , r(wy) = wy .
If topological spaces X and Y are homotopic, write X ' Y .

Theorem
If ∆ is a shellable simplicial complex pure of dimension d, then

∆ ' ∨kSd

where k is the number of facets satisfying r(F ) = F in a
shelling of ∆.



Let X be a toplogical space, say X ⊆ Rn for some n. If X has
dimension d then we write X = X d .
Ex. 1. Sd , the d-sphere. For example S1 is a circle.
2. Bd , the closed d-ball. For example, B2 is a closed disc.
The boundary of X = X d , ∂X , is the set of p ∈ X such that any
(deformed) open d-ball centerd at p contains points both in and
out of X .
Ex. 1. ∂Bd = Sd−1. 2. ∂Sd = ∅.
Call C = C i ⊆ X an i -cycle if ∂C = ∅. Call two cycles
equivalent if they form the boundary of a subset of X .
Ex. If X is a hollow cylinder, then the two copies of S1 at either
end are equivalent.
The i th reduced Betti number of X is

β̃i(X ) = minimum number of inequivalent i- cycles which are
not boundaries of some subset of X and generate all i-cycles.

If X ' Y then β̃i(X ) = β̃i(Y ) for all i . We use reduced Betti
numbers since then β̃0(X ) = 0 for a connected X .



Proposition
We have

β̃i(Sd ) =

{
1 if i = d,
0 if i 6= d.

Proof.
We will prove this for S2. First consider i = 2. We have already
seen that ∂S2 = ∅, so S2 is a cycle. And it can not be a
boundary, since if ∂Y = S2 then Y would have dimension 3 and
so Y 6⊆ S2. Thus β̃2(S2) = 1.
Now consider i = 1. If we have a 1-cylce C ⊂ S2, then C = ∂D
where D ⊆ S2 is the disc interior to C. So every 1-cycle is also
a boundary and β̃1(S2) = 0.
Finally, for i = 0. S2 is connected so β̃0(S2) = 0.

Taking wedges adds reduced Betti numbers.

Corollary
We have

β̃i(∨kSd ) =

{
k if i = d,
0 if i 6= d.



The reduced Euler characteristic of X is

χ̃(X ) =
∑
i≥−1

(−1)i β̃i(X ) = −β̃−1(X ) + β̃0(X )− β̃1(X ) + · · ·

By the previous proposition β̃i(∨kSd ) = k if i = d and zero else.

Corollary
We have χ̃(∨kSd ) = (−1)dk.
The i th face number of a simplicial complex ∆ is

fi(∆) = (# of faces of dimension i) = (# of faces of cardinality i + 1.)

Theorem
χ̃(∆) =

∑
i≥−1

(−1)i fi(X ) = −f−1(X ) + f0(X )− f1(X ) + · · ·

Ex. ∆ ' ∨2S1 Cor
=⇒ χ̃(∆) = χ̃(∨2S1) = −2.

dim F = −1 =⇒ F = ∅ =⇒ f−1(∆) = 1,
dim F = 0 =⇒ F = vertex =⇒ f0(∆) = 5,
dim F = 1 =⇒ F = edge =⇒ f1(∆) = 6,

i ≥ 2 =⇒ fi(∆) = 0, ∴ χ̃(∆) = −1 + 5− 6 = −2.

∆ =



If x , y ∈ P (poset) then an x–y chain of length l in P is a
subposet C : x = x0 < x1 < . . . < xl = y . If P is bounded, let

P = P − {0̂, 1̂}.
The order complex of a bounded P is

∆(P) = set of all chains in P.

A subset of a chain is a chain so ∆(P) is a simplicial complex.
Ex. P = C4,

∴ C4 =

1

2

3

and ∆(C4) =

2

1

3

In general ∆(Cn) ' B0, a point.
Ex. P = B3,

∴ B3 =

1

12

2

13

3

23
and ∆(B3) =

2

1

3

12 13

23

In general ∆(Bn) ' Sn−2.



Lemma
In I(P): (ζ − δ)l(x , y) = # of x–y chains of length l.
Proof. We have (ζ − δ)(x , y) = 1 if x < y and zero else. So

(ζ − δ)l(x , y) =
∑

x=x0,x1,...,xl =y

(ζ − δ)(x0, x1) · · · (ζ − δ)(xl−1, xl)

=
∑

x=x0<x1<...<xl =y

1 = # of x–y chains of length l .

Theorem
In a bounded poset P with 0̂ 6= 1̂: µ(P) = χ̃(∆(P)).
Proof. Using the definition of µ and the lemma,

µ(P) = ζ−1(P) = (δ + (ζ − δ))−1(P) =
∑

l≥0(−1)l(ζ − δ)l(P)

=
∑

l≥1(−1)l(# of 0̂–1̂ chains of length l in P)

=
∑

l≥1(−1)l−2(# of chains of length l − 2 in P)

=
∑

i≥−1(−1)i fi(∆(P)) = χ̃(∆(P)).



A poset P is graded if it is bounded and ranked.
Ex. Our example posets Cn,Bn,Dn,Πn are all graded.
Let E(P) be the edge set of the Hasse diagram of P. A labeling
` : E(P)→ R induces a labeling of saturated chains by

`(x0 � x1 � . . .� xl) = (`(x0 � x1), . . . , `(xl−1 � xl)).

Ex. For Bn, let
`(S � T ) = T − S.

B3 =

∅

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}

1
2

3

2 1
3

2
1

3

3
2

1

{1}

{1,3}

{1,2,3}

3

2

`({1}� {1,3}� {1,2,3}) = (3,2).



Say saturated chain C has a property if `(C) has that property.
An EL-labelling of a graded poset P is ` : E → R such that, for
each interval [x , y ] ⊆ P

1. there is a unique weakly increasing x–y chain Cxy ,
2. Cxy is lexicographically least among saturated x–y chains.

All four of our example posets have EL-labelings. We will give
the labeling and verify the two conditions for the interval [0̂, 1̂].

1. In Cn, let `(i − 1 � i) = i . Then there is only one saturated
chain and `(0 � 1 � . . .� n) = (1,2, . . . ,n).

2. In Bn, let `(S � T ) = T − S. Then ` is a bijection between
saturated 0̂–1̂ chains and permutations of [n]

`(0̂ � {x1}� {x1, x2}� . . .� 1̂) = (x1, x2, . . . , xn).

There is a unique weakly increasing permutation, (1,2, . . . ,n),
and it is lexicographically smaller than any other permutation.



3. In Dn. let `(c � d) = d/c.

D18 =

1

2 3

6 9

18

2 3

3 2
3

3 2
If n =

∏k
i=1 pm1

i then ` is a bijection between

saturated 0̂–1̂ chains and permutations of the
multiset

M = {{
m1︷ ︸︸ ︷

p1, . . . ,p1, . . . ,

mk︷ ︸︸ ︷
pk , . . . ,pk}}.

There is a unique weakly increasing

permutation of M and it is lexicographically least.

4. In Πn, if π = B1/ . . . /Bk and merging Bi with Bj forms σ then
`(π � σ) = max{min Bi ,min Bj}.

Π3 =

1/2/3

12/3 13/2 1/23

123

2 3 3

3 2 2
If C is a saturated 0̂–1̂ chain then
`(C) is a permutation of {2, . . . ,n}:
for all π, σ we have 2 ≤ `(π � σ) ≤ n,

#`(C) = n − 1 = #{2, . . . ,n},
and m appears as a label in C at most once since after merging

it is no longer a min. Permutation (2, . . . ,n) only occurs once:

`(0̂ � 12/3/ . . . /n � 123/4/ . . . /n � . . .� 1̂).



Theorem (Björner, 1980)
Let P be a graded poset. If P has an EL-labelling then ∆(P) is
shellable. In fact, if F1, . . . ,Fk is a list of the saturated 0̂− 1̂
chains in lexicographic order, then F 1, . . . ,F k is a shelling of
∆(P). Furthermore

µ(P) = (−1)ρ(P)(# of strictly decreasing Fj). (1)

Proof of (??). Using the first half of the theorem

µ(P) = χ̃(∆(P)) = (−1)dim ∆(P)(# of F j with r(F j) = F j).

The power of −1 is as desired since dim ∆(P) = ρ(P)− 2. So
it suffices to show that `(Fj) is strictly decreasing iff r(F j) = F j .
“ =⇒ ” (“⇐=” is similar) Suppose Fj : x0 � . . .� xn is strictly
decreasing. We must show that given any xr ∈ F j there is Fi
with i < j and Fi ∩Fj = Fj −{xr}. Now xr−1 � xr � xr+1 is strictly
decreasing. Let xr−1 � yr � xr+1 be the weakly increasing chain
in [xr−1, xr+1]. Then Fi = Fj − {xr} ∪ {yr} is lexicographically
smaller than Fj . So i < j and Fi ∩ Fj = Fj − {xr}.



Corollary
(a) µ(Cn) = 0 if n ≥ 2.
(b) µ(Bn) = (−1)n,

(c) µ(Dn) =

{
(−1)k if n = p1 . . . pk distinct primes,
0 else.

(d) µ(Πn) = (−1)n−1(n − 1)!

Proof. (a) Cn has a single chain which is weakly increasing. So
it has no strictly decreasing chain and µ(Cn) = (−1)n · 0 = 0.
(b) The `(Fi) are in bijection with the permutations of {1, . . . ,n}.
The unique strictly decreasing permutation is (n,n − 1, . . . ,1).
(c) Combine the proofs in (a) and (b).
(d) The `(Fi) are permutations of {2, . . . ,n}. Suppose
`(Fi) = (n,n − 1, . . . ,2) where Fi = π0 � π1 � . . .� πn−1. Then
π1 is obtained from π0 by merging {n} with another block,
giving n − 1 choices. So n − 1 is still a minimum of some block
which must be merged with one of the n − 2 other blocks to
form π2. Continuing in this manner gives (n − 1)! chains.


