Partially Ordered Sets and their Möbius Functions III: Topology of Posets

Bruce Sagan Department of Mathematics Michigan State University East Lansing, MI 48824-1027 sagan@math.msu.edu www.math.msu.edu/~sagan

June 11, 2014

A *partition* of a set *S* is a family π of nonempty sets B_1, \ldots, B_k called *blocks* such that $\biguplus_i B_i = S$ (disjoint union). We write $\pi = B_1 / \ldots / B_k \vdash S$ omitting braces and commas in blocks. **Ex.** $\pi = acf/bg/de \vdash \{a, b, c, d, e, f, g\}$. The *partition lattice* is $\prod_n = \{\pi : \pi \vdash [n]\}$ ordered by $B_1 / \ldots / B_k \leq C_1 / \ldots / C_l$ if for each B_i there is a C_j with $B_i \subseteq C_j$. If *P* has a $\hat{0}$ and a $\hat{1}$ we write $\mu(P) = \mu_P(\hat{0}, \hat{1})$ and similarly for other elements of I(P).

We have: $\mu(\Pi_n) = (-1)^{n-1}(n-1)!$

An *(abstract) simplicial complex* is a finite nonempty family Δ of finite sets called *faces* such that

$$F \in \Delta$$
 and $F' \subseteq F \implies F' \in \Delta$.

A *geometric realization* of Δ has a (d-1)-dimensional simplex (tetrahedron) for each *d*-element set in Δ . The *dimension* of $F \in \Delta$ is dim F = #F - 1. Face F is a vertex or edge if dim F = 0 or 1, respectively. **Ex.** $\Delta = \{\emptyset, u, v, w, x, uv, uw, vw, wx, uvw\}$ dim u = 0 a vertex. dim uv = 1, an edge W х $\dim uvw = 2.$ $\Delta =$ uvw and wx are facets. Not pure.

Face *F* is a *facet* if it is containment-maximal in Δ . We say Δ is *pure of dimension d*, and write dim $\Delta = d$, if dim *F* = *d* for all facets *F* of Δ .

Note. A simplicial complex pure of dimension 1 is just a graph.

Let Δ be pure of dimension d. We say Δ is *shellable* if there is an ordering of its facets (a *shelling*) F_1, \ldots, F_k such that for each i < k:

 $F_i \bigcap (\bigcup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

Ex. For the graph at right uw, vw, wx, uv, xy, wy is a shelling. So Δ is shellable. Any sequence beginning uw, vw, xyis not a shelling since $xy \cap (uw \cup vw) = \emptyset$. In the original shelling: $r(uw) = \emptyset$, r(vw) = v, r(wx) = x, $\Delta = F_4$ r(uv) = uv, r(xv) = v, r(wv) = wv.

Note. A graph is shellable iff it is connected.

Given a shelling F_1, \ldots, F_k , the *restriction of* F_i is

$$r(F_j) = \{v \text{ a vertex of } F_j : F_j - v \subseteq (\cup_{i < j} F_i)\}.$$

Let S^d denote the *d*-sphere (sphere of dimension *d*). To form the *bouquet* or *wedge* of *k* spheres of dimension *d*, $\vee^k S^d$, take a point of each sphere and identify the points.

 $r(uw) = \emptyset$, r(vw) = v, r(wx) = x, r(uv) = uv, r(xy) = y, r(wy) = wy.

If topological spaces X and Y are *homotopic*, write $X \simeq Y$.

Theorem

If Δ is a shellable simplicial complex pure of dimension d, then

$$\Delta \simeq \vee^k S^d$$

where k is the number of facets satisfying r(F) = F in a shelling of Δ .

Let *X* be a toplogical space, say $X \subseteq \mathbb{R}^n$ for some *n*. If *X* has dimension *d* then we write $X = X^d$.

Ex. 1. S^d , the *d*-sphere. For example S^1 is a circle.

2. B^d , the closed *d*-ball. For example, B^2 is a closed disc.

The *boundary* of $X = X^d$, ∂X , is the set of $p \in X$ such that any (deformed) open *d*-ball centerd at *p* contains points both in and out of *X*.

Ex. 1. $\partial B^d = S^{d-1}$. 2. $\partial S^d = \emptyset$.

Call $C = C^i \subseteq X$ an *i-cycle* if $\partial C = \emptyset$. Call two cycles

equivalent if they form the boundary of a subset of X.

Ex. If X is a hollow cylinder, then the two copies of S^1 at either end are equivalent.

The *ith reduced Betti number* of X is

 $\tilde{\beta}_i(X) =$ minimum number of inequivalent *i*- cycles which are not boundaries of some subset of X and generate all *i*-cycles.

If $X \simeq Y$ then $\tilde{\beta}_i(X) = \tilde{\beta}_i(Y)$ for all *i*. We use reduced Betti numbers since then $\tilde{\beta}_0(X) = 0$ for a connected *X*.

Proposition We have

$$\widetilde{\beta}_i(S^d) = \begin{cases} 1 & \text{if } i = d, \\ 0 & \text{if } i \neq d. \end{cases}$$

Proof.

We will prove this for S^2 . First consider i = 2. We have already seen that $\partial S^2 = \emptyset$, so S^2 is a cycle. And it can not be a boundary, since if $\partial Y = S^2$ then Y would have dimension 3 and so $Y \not\subseteq S^2$. Thus $\tilde{\beta}_2(S^2) = 1$. Now consider i = 1. If we have a 1-cylce $C \subset S^2$, then $C = \partial D$ where $D \subseteq S^2$ is the disc interior to C. So every 1-cycle is also a boundary and $\tilde{\beta}_1(S^2) = 0$. Finally, for i = 0. S^2 is connected so $\tilde{\beta}_0(S^2) = 0$.

Taking wedges adds reduced Betti numbers.

Corollary

We have

$$ilde{eta}_i(ee^k \mathcal{S}^d) = \left\{egin{array}{cc} k & {\it if}\, i=d, \ 0 & {\it if}\, i
eq d. \end{array}
ight.$$

The reduced Euler characteristic of X is

$$\widetilde{\chi}(X) = \sum_{i \ge -1} (-1)^i \widetilde{\beta}_i(X) = -\widetilde{\beta}_{-1}(X) + \widetilde{\beta}_0(X) - \widetilde{\beta}_1(X) + \cdots$$

By the previous proposition $\tilde{\beta}_i(\vee^k S^d) = k$ if i = d and zero else. Corollary

We have $\tilde{\chi}(\vee^k S^d) = (-1)^d k$.

The *ith face number* of a simplicial complex Δ is

 $f_i(\Delta) = (\# \text{ of faces of dimension } i) = (\# \text{ of faces of cardinality } i + 1.)$

Theorem

$$ilde{\chi}(\Delta) = \sum_{i \ge -1} (-1)^i f_i(X) = -f_{-1}(X) + f_0(X) - f_1(X) + \cdots$$

Ex.
$$\Delta \simeq \vee^2 S^1 \stackrel{\text{Cor}}{\Longrightarrow} \tilde{\chi}(\Delta) = \tilde{\chi}(\vee^2 S^1) = -2.$$

 $\dim F = -1 \implies F = \emptyset \implies f_{-1}(\Delta) = 1,$
 $\dim F = 0 \implies F = \text{vertex} \implies f_0(\Delta) = 5, \quad \Delta =$
 $\dim F = 1 \implies F = \text{edge} \implies f_1(\Delta) = 6,$
 $i \ge 2 \implies f_i(\Delta) = 0, \quad \therefore \tilde{\chi}(\Delta) = -1 + 5 - 6 = -2.$

If $x, y \in P$ (poset) then an x-y chain of length I in P is a subposet $C : x = x_0 < x_1 < \ldots < x_l = y$. If P is bounded, let $\overline{P} = P - {\hat{0}, \hat{1}}.$

The order complex of a bounded P is

 $\Delta(P) = \text{ set of all chains in } \overline{P}.$

A subset of a chain is a chain so $\Delta(P)$ is a simplicial complex.

Lemma

In I(P): $(\zeta - \delta)^{I}(x, y) = \# \text{ of } x - y \text{ chains of length } I.$

Proof. We have $(\zeta - \delta)(x, y) = 1$ if x < y and zero else. So

$$\begin{aligned} (\zeta - \delta)^{l}(x, y) &= \sum_{x = x_{0}, x_{1}, \dots, x_{l} = y} (\zeta - \delta)(x_{0}, x_{1}) \cdots (\zeta - \delta)(x_{l-1}, x_{l}) \\ &= \sum_{x = x_{0} < x_{1} < \dots < x_{l} = y} \mathbf{1} = \text{ # of } x - y \text{ chains of length } l. \end{aligned}$$

Theorem

In a bounded poset P with $\hat{0} \neq \hat{1}$: $\mu(P) = \tilde{\chi}(\Delta(P))$.

Proof. Using the definition of μ and the lemma,

$$\begin{split} \mu(P) &= \zeta^{-1}(P) = (\delta + (\zeta - \delta))^{-1}(P) = \sum_{l \ge 0} (-1)^l (\zeta - \delta)^l (P) \\ &= \sum_{l \ge 1} (-1)^l (\text{\# of } \hat{0} - \hat{1} \text{ chains of length } l \text{ in } P) \\ &= \sum_{l \ge 1} (-1)^{l-2} (\text{\# of chains of length } l - 2 \text{ in } \overline{P}) \\ &= \sum_{l \ge -1} (-1)^l f_l (\Delta(P)) = \tilde{\chi}(\Delta(P)). \quad \Box \end{split}$$

A poset *P* is *graded* if it is bounded and ranked. **Ex.** Our example posets C_n , B_n , D_n , Π_n are all graded. Let E(P) be the edge set of the Hasse diagram of *P*. A labeling $\ell : E(P) \to \mathbb{R}$ induces a labeling of saturated chains by

$$\ell(x_0 \triangleleft x_1 \triangleleft \ldots \triangleleft x_l) = (\ell(x_0 \triangleleft x_1), \ldots, \ell(x_{l-1} \triangleleft x_l)).$$

Ex. For B_n , let

$$\ell(S \lhd T) = T - S.$$

 $\ell(\{1\} \lhd \{1,3\} \lhd \{1,2,3\}) = (3,2).$

Say saturated chain *C* has a property if $\ell(C)$ has that property. An *EL-labelling* of a graded poset *P* is $\ell : E \to \mathbb{R}$ such that, for each interval $[x, y] \subseteq P$

1. there is a unique weakly increasing x-y chain C_{xy} ,

2. C_{xy} is lexicographically least among saturated x-y chains. All four of our example posets have EL-labelings. We will give the labeling and verify the two conditions for the interval $[\hat{0}, \hat{1}]$.

1. In C_n , let $\ell(i - 1 \lhd i) = i$. Then there is only one saturated chain and $\ell(0 \lhd 1 \lhd \ldots \lhd n) = (1, 2, \ldots, n)$.

2. In B_n , let $\ell(S \triangleleft T) = T - S$. Then ℓ is a bijection between saturated $\hat{0}-\hat{1}$ chains and permutations of [n]

$$\ell(\hat{0} \lhd \{x_1\} \lhd \{x_1, x_2\} \lhd \ldots \lhd \hat{1}) = (x_1, x_2, \ldots, x_n).$$

There is a unique weakly increasing permutation, (1, 2, ..., n), and it is lexicographically smaller than any other permutation.

3. In D_n . let $\ell(c \triangleleft d) = d/c$.

If $n = \prod_{i=1}^{k} p_i^{m_1}$ then ℓ is a bijection between saturated $\hat{0}-\hat{1}$ chains and permutations of the multiset $M = \{\{\overbrace{p_1, \dots, p_1}^{m_1}, \dots, \overbrace{p_k, \dots, p_k}^{m_k}\}\}.$

There is a unique weakly increasing permutation of *M* and it is lexicographically least.

4. In Π_n , if $\pi = B_1 / \dots / B_k$ and merging B_i with B_j forms σ then $\ell(\pi \triangleleft \sigma) = \max\{\min B_i, \min B_j\}$.

If *C* is a saturated $\hat{0}-\hat{1}$ chain then $\ell(C)$ is a permutation of $\{2, \ldots, n\}$: for all π, σ we have $2 \le \ell(\pi \lhd \sigma) \le n$, $\#\ell(C) = n - 1 = \#\{2, \ldots, n\}$, and *m* appears as a label in *C* at most once since after merging it is no longer a min. Permutation $(2, \ldots, n)$ only occurs once: $\ell(\hat{0} \lhd 12/3/\ldots/n \lhd 123/4/\ldots/n \lhd \ldots \lhd \hat{1})$.

Theorem (Björner, 1980)

Let P be a graded poset. If P has an EL-labelling then $\Delta(P)$ is shellable. In fact, if F_1, \ldots, F_k is a list of the saturated $\hat{0} - \hat{1}$ chains in lexicographic order, then $\overline{F}_1, \ldots, \overline{F}_k$ is a shelling of $\Delta(P)$. Furthermore

 $\mu(P) = (-1)^{\rho(P)} (\# \text{ of strictly decreasing } F_j).$ (1)

Proof of (??). Using the first half of the theorem

$$\mu(P) = \tilde{\chi}(\Delta(P)) = (-1)^{\dim \Delta(P)} (\# \text{ of } \overline{F}_j \text{ with } r(\overline{F}_j) = \overline{F}_j).$$

The power of -1 is as desired since dim $\Delta(P) = \rho(P) - 2$. So it suffices to show that $\ell(F_j)$ is strictly decreasing iff $r(\overline{F}_j) = \overline{F}_j$. " \Longrightarrow " (" \Leftarrow " is similar) Suppose $F_j : x_0 \lhd \ldots \lhd x_n$ is strictly decreasing. We must show that given any $x_r \in \overline{F}_j$ there is F_i with i < j and $F_i \cap F_j = F_j - \{x_r\}$. Now $x_{r-1} \lhd x_r \lhd x_{r+1}$ is strictly decreasing. Let $x_{r-1} \lhd y_r \lhd x_{r+1}$ be the weakly increasing chain in $[x_{r-1}, x_{r+1}]$. Then $F_i = F_j - \{x_r\} \cup \{y_r\}$ is lexicographically smaller than F_j . So i < j and $F_i \cap F_j = F_j - \{x_r\}$.

Corollary (a) $\mu(C_n) = 0$ if $n \ge 2$. (b) $\mu(B_n) = (-1)^n$, (c) $\mu(D_n) = \begin{cases} (-1)^k & \text{if } n = p_1 \dots p_k \text{ distinct primes,} \\ 0 & \text{else.} \end{cases}$ (d) $\mu(\Pi_n) = (-1)^{n-1}(n-1)!$

Proof. (a) C_n has a single chain which is weakly increasing. So it has no strictly decreasing chain and $\mu(C_n) = (-1)^n \cdot 0 = 0$. (b) The $\ell(F_i)$ are in bijection with the permutations of $\{1, \ldots, n\}$. The unique strictly decreasing permutation is (n, n-1, ..., 1). (c) Combine the proofs in (a) and (b). (d) The $\ell(F_i)$ are permutations of $\{2, \ldots, n\}$. Suppose $\ell(F_i) = (n, n-1, ..., 2)$ where $F_i = \pi_0 < < \pi_1 < ... < \pi_{n-1}$. Then π_1 is obtained from π_0 by merging $\{n\}$ with another block, aiving n-1 choices. So n-1 is still a minimum of some block which must be merged with one of the n-2 other blocks to form π_2 . Continuing in this manner gives (n-1)! chains.