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Let G = (V ,E) be a finite graph with vertices V and edges E . If
S is a set (the color set), then a coloring of G is a function

c : V → S.

The coloring is proper if

uv ∈ E =⇒ c(u) 6= c(v).

Ex. Let S = [3] = {1,2,3}.

3 1

2 1
is proper,

3 2

1 1
is not proper, chr(G) = 3.

The chromatic number of G is

chr(G) = smallest #S such that there is a proper c : V → S.

Theorem (Four Color Theorem, Appel-Haken, 1976)
If G is planar (can be drawn in the plane with no edge
crossings), then

chr(G) ≤ 4.



For a positive integer t , the chromatic polynomial of G is

p(G) = p(G; t) = # of proper colorings c : V → [t ].

Ex. Coloring vertices in the order v ,w , x , y gives choices

x y

w v
tt − 1

t − 2 t − 1

p(G; t) = t(t − 1)(t − 2)(t − 1)

= t4 − 4t3 + 5t2 − 2t

Note 1. This is a polynomial in t .
2. chr(G) is the smallest positive integer with p(G; chr(G)) > 0.
3. p(G; t) need not be a product of linear factors.

Ex. Coloring vertices in the order v ,w , x , y gives choices

x y

w v
tt − 1

t − 1 ?



If G = (V ,E) is a graph and e ∈ E then let

G − e = G with e deleted.
G/e = G with e contracted to a vertex ve.

Any multiple edge in G/e is replaced by a single edge.
Ex.

G = e
3 2

2 1
G − e =

3 2

2 1

1 2

2 1
G/e = ve

1

2

2

Lemma (Deletion-Contraction, DC)
If G = (V ,E) is any graph and e ∈ E then

p(G; t) = p(G − e; t)− p(G/e; t).
Proof.
Let e = uv . It suffices to show p(G − e) = p(G) + p(G/e).

p(G − e) = (# of proper c : G − e→ [t ] with c(u) 6= c(v))
+ (# of proper c : G − e→ [t ] with c(u) = c(v))

= p(G) + p(G/e)
as desired.



p(G; t) = p(G − e; t)− p(G/e; t).

Corollary (Birkhoff-Lewis, 1946)
For any graph G = (V ,E), p(G; t) is a polynomial in t.

Proof.
Let |V | = n, |E | = m. Induct on m. If m = 0 then p(G) = tn.
If m > 0, then pick e ∈ E . Both G − e and G/e have fewer
edges than G. So by DC and induction

p(G) = p(G−e)−p(G/e) = polynomial−polynomial = polynomial

as desired.

Ex.
P

( e )
= P

( )
− P

( )
= t(t − 1)3 − t(t − 1)(t − 2).



If P is a poset and x , y ∈ P then an x–y chain of length r is

C : x = x0 < x1 < x2 < · · · < xr = y .

So C ∼= Cr . We say C is saturated if it is of the form

C : x = x0 � x1 � x2 � . . .� xr = y .

Call P ranked if P has a 0̂ and, for any x ∈ P, all saturated 0̂–x
chains have the same length. In this case, the rank of x , ρ(x),
is this common length and

ρ(P) = max
x∈P

ρ(x).

Ex. Posets Cn,Bn,Dn are all ranked.

i ∈ Cn =⇒ ρ(i) = i .
S ∈ Bn =⇒ ρ(S) = |S|.

d =
∏

i

pmi
i ∈ Dn =⇒ ρ(d) =

∑
i

mi .



The characteristic polynomial of a ranked poset P is

χ(P) = χ(P; t) =
∑
x∈P

µ(x)tρ(P)−ρ(x).

Ex. We have the following characteristic polynomials.

χ(Cn) =
n∑

i=0

µ(i)tn−i = tn − tn−1 = tn−1(t − 1).

χ(Bn) =
∑

S∈Bn

µ(S)tn−|S| =
n∑

k=0

(−1)k
(

n
k

)
tn−k = (t − 1)n.

Note 1. χ(Cn) and χ(Bn) factor with nonnegative integer roots.
2. The corank, ρ(P)− ρ(x), is used to make χ(P; t) monic: the
element with the largest corank is x = 0̂ and µ(0̂) = 1.

Proposition
Let P,Q be ranked posets.
1. P ∼= Q =⇒ χ(P; t) = χ(Q; t).
2. P ×Q is ranked and χ(P ×Q; t) = χ(P; t)χ(Q; t).



If P is a poset then x , y ∈ P have a greatest lower bound or
meet if there is an element x ∧ y in P such that

1. x ∧ y ≤ x and x ∧ y ≤ y ,
2. if z ≤ x and z ≤ y then z ≤ x ∧ y .

Also x , y ∈ P have a least upper bound or join if there is an
element x ∨ y in P such that

1. x ∨ y ≥ x and x ∨ y ≥ y ,
2. if z ≥ x and z ≥ y then z ≥ x ∧ y .

Call P a lattice if every x , y ∈ P have both a meet and a join.

Ex. 1. Cn is a lattice with i ∧ j = min{i , j} and i ∨ j = max{i , j}.
2. Bn is a lattice with S ∧ T = S ∩ T and S ∨ T = S ∪ T .
3. Dn is a lattice with c ∧ d = gcd{c,d} and c ∨ d = lcm{c,d}.
Note 1. Any finite lattice L always has a 0̂, namely 0̂ =

∧
x∈L x ,

and a 1̂, namely 1̂ =
∨

x∈L x .
2. If P is a finite poset with a 1̂ and every pair of element has a
meet, then P is a lattice with join

x ∨ y =
∧

z≥x ,y

z.



If P is a poset with 0̂ then then atom set of P is

A(P) = {a ∈ P : a � 0̂}.

Lattice L is atomic if every x ∈ L is a join of atoms.
Ex. A(Bn) = {S ⊆ [n] : |S| = 1} and Bn is atomic for all n.
A ranked lattice is semimodular if, for all x , y ∈ L,

ρ(x ∧ y) + ρ(x ∨ y) ≤ ρ(x) + ρ(y).

Ex. Cn, Bn, and Dn are all semimodular. For example, in Bn,

ρ(S∧T )+ρ(S∨T ) = |S∩T |+ |S∪T | = |S|+ |T | = ρ(S)+ρ(T ).

Proposition
Lattice L is semimodular ⇐⇒ for all x , y ∈ L: if x , y cover x ∧ y
then x ∨ y covers x , y.
Proof. “ =⇒ ” x , y � x ∧ y implies ρ(x) = ρ(y) = r and
ρ(x ∧ y) = r − 1 for some r . So x ‖ y and ρ(x ∨ y) ≥ r + 1. But

ρ(x ∨ y) ≤ ρ(x) + ρ(y)− ρ(x ∧ y) = r + r − (r − 1) = r + 1.

Thus ρ(x ∨ y) = r + 1 and x ∨ y covers x , y .
A geometric lattice is both atomic and semimodular.





Graph H is a subgraph of G, H ⊆ G, if V (H) ⊆ V (G) and
E(H) ⊆ E(G). Call H spanning if V (H) = V (G). Call H
induced if, for all v ,w ∈ V (H),

vw ∈ E(G) =⇒ vw ∈ E(H).

Ex.
G = H = induced, H = not induced.

Given v ,w ∈ V (G), a v–w walk is

W : v = v0, v1, . . . , vt = w

where vivi+1 ∈ E(G) for all i . Call G connected if there is a
v–w walk for all v ,w ∈ V (G). A component of G is K ⊆ G
which is connected and contained in no larger connected
subgraph. Let

k(G) = # of components of G.

Ex.
k

( )
= 4.



A bond of graph G is a spanning H ⊆ G such that each
component of H is induced. The bond lattice of G, L(G), is the
set of bonds partially ordered by the subgraph relation.
Ex.

G =

L(G) =

1

−1 −1 −1 −1

2 1 1 1

−2

χ(L(G; t)) = t3 − 4t2 + 5t − 2

p(G; t) = t4 − 4t3 + 5t2 − 2t



Theorem
For any graph G, the poset L(G) is a geometric lattice.

Proof.
L(G) is finite and has a 1̂, namely G. So to show it is a lattice, it
suffices to show if H,K ∈ L(G) then H ∧ K exists. Let J ⊆ G
be the spanning graph with E(J) = E(H) ∩ E(K ). Then J is a
bond and is the meet of H and K .
To show L(G) is geometric, we first need to prove it is atomic.
But A ∈ A(L(G)) iff A = Ae is a spanning subgraph of G with
exactly one edge e ∈ E(G). Thus for any H ∈ L(G) we have
H = ∨e∈E(H)He.
To show L(G) is semimodular, suppose H,K � H ∧ K and
let the components of H ∧ K have vertices V1, . . . ,Vr . Then the
vertices of the components of H are obtained by taking the
union of some Vi and Vj and leaving the rest alone, and
similarly for the vertices of components of K some Vk asnd Vl .
So the vertices of the components of H ∨ K are obtained by
doing both unions so H ∨ K � H,K .



Theorem
For any graph G we have p(G; t) = tk(G)χ(L(G); t).
Proof. A coloring c : V (G)→ [t ], defines a spanning Hc ⊆ G by

vw ∈ E(Hc) ⇐⇒ vw ∈ E(G) and c(v) = c(w).

Then Hc is a bond: If v ,w are in the same component of Hc
then c(u) = c(v). So if vw ∈ E(G) then vw ∈ E(Hc).
Define f ,g : L(G)→ R by

f (H) = (# of c : V (G)→ [t ] such that Hc ⊇ H) = tk(H),
g(H) = (# of c : V (G)→ [t ] such that Hc = H).

Now f (H) =
∑

K≥H g(K ). By MIT and ρ(K ) = |V (G)| − k(K ),

p(G) = g(0̂) =
∑
K≥0̂

µ(K )f (K ) =
∑

K∈L(G)

µ(K )tk(K )

= tk(G)
∑

K

µ(K )tk(K )−k(G) = tk(G)
∑

K

µ(K )tρ(G)−ρ(K )

= tk(G)χ(L(G))



Let x = {x1, x2, . . . }. Coloring c : V (G)→ P has monomial

xc =
∏

v∈V (G)

xc(v).

The chromatic symmetric function of G (Stanley, 1995) is

X (G) = X (G;x) =
∑

c : V (G)→ P proper

xc .

Note 1. Permuting colors in a proper coloring gives a proper
coloring, so X (G;x) is a symmetric function.
2. If xi = 1 for i ≤ t and xi = 0 for i > t then X (G;x) = p(G; t).

Ex.

G = c :

1

2

1

x2
1 x2X (G;x) =

2

1

2

+x1x2
2

1

3

1

+x2
1 x3

3

1

3

+x1x2
3

. . .

6︷ ︸︸ ︷

3

2

1

. . .

1

2

3

+ · · ·+ 6x1x2x3 + · · ·

. . .



Bases for the algebra of symmetric functions are indexed by
integer partitions λ = (λ1, . . . , λk ) where λ1 ≥ · · · ≥ λk are in P.
For example, the power sum basis is defined by

pn(x) = xn
1 + xn

2 + xn
3 + . . . ,

pλ(x) = pλ1pλ2 . . . pλk .

If G has components G1,G2, . . . ,Gk then let

λ(G) = (|V (G1)|, |V (G2)|, . . . , |V (Gk )|).

Theorem (Stanley)
For any graph G we have

X (G;x) =
∑

K∈L(G)

µ(K )pλ(K ).

If xi = 1 for i ≤ t and xi = 0 for i > t then pn(x) = t and
pλ(x) = tk where λ = (λ1, . . . , λk ). So the above theorem gives

P(G; t) =
∑

K∈L(G)

µ(K )tk(G).



Let V (G) = [n]. Coloring c : V (G)→ P has ascent number

asc G = #{vw ∈ E(G)) : v < w and c(v) < c(w)}.
Replacing vw ∈ E(G) with v < w by an arc ~vw , the arc of an

ascent points from a smaller vertex to a larger. The chromatic
quasisymmetric function of G (Shareshian-Wachs, 2014) is

X (G;x, t) =
∑

c : V (G)→ P proper

tasc Gxc .

Note 1. An order-preserving permutation of colors preserves
ascents, so the coefficient of tk in X (G;x, t) is quasisymmetric.
2. X (G,x,1) = X (G;x).

Ex.

G =

1

3

2

c :

1

2

1

t2x2
1 x2X (G;x, t) =

2

1

2

+x1x2
2

. . .

3

2

1

2

3

1

3

1

2

1

3

2

2

1

3

1

2

3

+ · · ·+ (t + t2 + 1 + t2 + 1 + t)x1x2x3 + · · ·

. . .
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