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Let G = (V, E) be a finite graph with vertices V and edges E. If
S is a set (the color set), then a coloring of G is a function

c:V—-S.
The coloring is proper if
uv e E = c(u) # c(v).

Ex. Let S=[3] ={1,2,3}.

2 1 1 1
IZ: is proper, Z is not proper, chr(G) = 3.
3 1 3 2

The chromatic number of G is
chr(G) = smallest #8S such that there is a properc: V — S.

Theorem (Four Color Theorem, Appel-Haken, 1976)

If G is planar (can be drawn in the plane with no edge
crossings), then
chr(G) < 4. O



For a positive integer t, the chromatic polynomial of G is
p(G) = p(G; t) = # of proper colorings ¢ : V — [t].

Ex. Coloring vertices in the order v, w, x, y gives choices
t—1 t

WIZV p(G:t) = t{t—1)(t-2)(t - 1)
_ 443 2 _
X y =" —41° 4 5t — 2t
t—2 t—1
Note 1. This is a polynomial in ¢.
2. chr(G) is the smallest positive integer with p(G; chr(G)) > 0.
3. p(G; t) need not be a product of linear factors.
Ex. Coloring vertices in the order v, w, x, y gives choices

t—1 t



If G=(V,E)isagraph and e € E then let
G — e = G with e deleted.
G/e = G with e contracted to a vertex ve.
Any multiple edge in G/e is replaced by a single edge.

Ex. 2 1 2 1 2 ’
L el e
3 2 3 2 2

Lemma (Deletion-Contraction, DC)
IfG=(V,E) is any graph and e € E then

p(G;t) = p(G—e;t) — p(G/e; 1).
Proof.
Let e = uv. It suffices to show p(G — e) = p(G) + p(G/e).
p(G — e) = (# of proper ¢ : G — e — [t] with c(u) # c(v))
+ (# of proper ¢ : G — e — [t] with c(u) = ¢(v))

=p(G) + p(G/e)
as desired. m



p(G;t) = p(G— e t) — p(G/e; 1).
Corollary (Birkhoff-Lewis, 1946)
For any graph G = (V, E), p(G; t) is a polynomial in t.

Proof.

Let |V| = n,|E| = m. Induct on m. If m = 0 then p(G) = t".
If m > 0, then pick e € E. Both G — e and G/e have fewer
edges than G. So by DC and induction

p(G) = p(G—e)—p(G/e) = polynomial—polynomial = polynomial

as desired. m
e

S (DA

=t(t—1)°2 —t(t—1)(t - 2).



If Pis a poset and x, y € P then an x—y chain of length r is
C:XxX=X<X1<Xp<--<X=Y.

So C = C,. We say C is saturated if it is of the form
C:x=X<X1<4X<...<dX =Y.

Call P ranked if P has a 0 and, for any x € P, all saturated 0—x
chains have the same length. In this case, the rank of x, p(x),
is this common length and

p(P) = max p(x).

Ex. Posets C,, By, Dy, are all ranked.

i€ Cp = pli)=
SeB, = p(S)= \S\
p(d)

d= Hpm’eDn )=>_m.
i



The characteristic polynomial of a ranked poset P is

x(P) Pt)—ZN tp(P)p

xeP

Ex. We have the following characteristic polynomials.

n
= p(iT =1t =t (1),
i=0

n

8= 3 sy =3 -y

SeBy k=0

Note 1. x(Cp) and x(Bp) factor with nonnegative integer roots.
2. The corank, p(P) — p(x), is used to make x(P; t) monic: the
element with the largest corank is x = 0 and x(0) = 1.

Proposition

Let P, Q be ranked posets.

1.P=Q = x(P;t)=x(Q:?).

2. P x Qisranked and x(P x Q;t) = x(P; t)x(Q; t). O



If Pis a poset then x, y € P have a greatest lower bound or
meet if there is an element x A y in P such that

1. xAy<xandxAy<y,

2. ffz<xandz<ythenz<xAy.
Also x, y € P have a least upper bound or join if there is an
element x v y in P such that

1. xvy>xandxVy>y,

2. ffz>xandz>ythenz>xAy.
Call P a lattice if every x, y € P have both a meet and a join.
Ex. 1. C,is a lattice with i A j = min{/,j} and i v j = max{i, j}.
2. Byis alatticewith SAT=8SNnTand SVvT=SUT.
3. Dy is a lattice with ¢ A d = ged{c,d} and ¢ v d = lem{c, d}.

Note 1. Any finite lattice L always has a 0, namely 0 = A, x,
anda 1, namely 1 =\/,, x.

2. If Pis a finite poset with a i and every pair of element has a
meet, then P is a lattice with join

XVy= /\ Z.

Z2X,y



If P is a poset with 0 then then atom set of P is
A(P)={acP : a0}

Lattice L is atomic if every x € L is a join of atoms.
Ex. A(By) ={S C[n] : |S| =1} and B, is atomic for all n.
A ranked lattice is semimodular if, for all x,y € L,

p(X N y)+ p(xVy) < p(x)+ p(y).
Ex. C,, By, and D, are all semimodular. For example, in B,
p(SAT)+p(SVT)=|SNT|+|SUT| = |S|+|T| = p(S)+p(T).
Proposition

Lattice L is semimodular <= forall x,y € L:ifx,y coverx Ay
then x VvV y covers x. y.

Proof. “ — " x,y > x A y implies p(x) = p(y) = r and
p(x ANy)=r—1forsomer.So x | yand p(xVy)>r+1.But
p(XVy)<p(x)+py) —p(XxAy)=r+r—(r—1)=r+1.

Thus p(x Vy)=r+1and x V y covers x, y. O
A geometric lattice is both atomic and semimodular.






Graph H is a subgraph of G, H C G, if V(H) C V(G) and
E(H) C E(G). Call H spanning if V(H) = V(G). Call H
induced if, for all v,w € V(H),

w € E(G) = vw € E(H).

Ex.
G= IZ H = i induced, H = ; not induced.

Given v,w € V(G), a v—w walk is
W:v=wvy,vy,...,Vi =W

where v;v; 1 € E(G) forall i. Call G connected if there is a
v—w walk for all v,w € V(G). A component of Gis KC G
which is connected and contained in no larger connected
subgraph. Let

k(G) = # of components of G.

7T )



A bond of graph G is a spanning H C G such that each
component of H is induced. The bond lattice of G, L(G), is the
set of bonds partially ordered by the subgraph relation.

p(G;t) = t* — 413 + 51> — 2t



Theorem
For any graph G, the poset L(G) is a geometric lattice.

Proof.

L(G) is finite and has a 1, namely G. So to show it is a lattice, it
suffices to show if H, K € L(G) then H A K exists. @ Let J C G
be the spanning graph with E(J) = E(H) N E(K). Then Jis a
bond and is the meet of H and K.

To show L(G) is geometric, we first need to prove it is atomic.
But A € A(L(G)) iff A= Ag is a spanning subgraph of G with
exactly one edge e € E(G). Thus for any H € L(G) we have
H= \/eeE(H)He-

To show L(G) is semimodular, € suppose H,K > H A K and
let the components of H A K have vertices Vi, ..., V.. Then the
vertices of the components of H are obtained by taking the
union of some V; and V; and leaving the rest alone, € and
similarly for the vertices of components of K some V) asnd V,.
So the vertices of the components of H \V K are obtained by
doing both unions so Hv K> H, K. O



Theorem

For any graph G we have p(G; t) = t*(C)x(L(G); 1).

Proof. A coloring ¢ : V(G) — [t], defines a spanning H, C G by
wv € E(H;) <= vw € E(G) and ¢(v) = ¢c(w).

Then H. is a bond: If v, w are in the same component of H,

then c(u) = ¢(v). Soif vw € E(G) then vw € E(H,).

Define f,g : L(G) — R by

f(H) = (#ofc:V(G)—[f]suchthat H, > H) = th(H),
g(H) = (#of c: V(G) — [t] such that H, = H).

Now f(H) = Y x> 9(K). By MIT and p(K) = |V(G)| - k(K),

p(G) =g(0) = > u(K)f(K)= Y (Kt

K>0 KelL(G)
_ tk(G) Z“’ tk(K —k(G) _ k(@) ZM(K tp )—p(K)
K

= f"(G)x(L(G)) O



Let X = {x1, X2, ... }. Coloring ¢ : V(G) — P has monomial
x¢ = H XC(V)'
veV(G)
The chromatic symmetric function of G (Stanley, 1995) is
X(G) = X(G;x) = > X,
c: V(G) — P proper
Note 1. Permuting colors in a proper coloring gives a proper
coloring, so X(G; x) is a symmetric function.

2. lf x;=1fori<tand x; =0fori >t then X(G;x) = p(G; ).
6

Ex. ——
1 2 1 3 1 3

G= c: 2 1 3 1 2 2
1 2 1 3 3 1

X(GiX) = X2xo+-X1 X5 +X2 X3 +X1 X2 + -+ + BX1 XoXz + - - -



Bases for the algebra of symmetric functions are indexed by
integer partitions A = (\q,...,A\x) where \y > --- > \c arein P.
For example, the power sum basis is defined by

Pn(X) = X{'+X3+Xx5+...,
PA(X) = PxPxrg---Pag-
If G has components Gy, Go, ..., Gk then let

AG) = (IV(G), IV(G2)l, - -, [V(GK)D)-

Theorem (Stanley)
For any graph G we have

X(G:x) = Z 1(K)Pak)- [
KelL(G)

If x; =1fori<tand x; =0 fori > tthen p,(x) =t and
pa(x) = tX where A = (\q,..., \x). So the above theorem gives

PGt)= > K9,
Kel(G)



Let V(G) = [n]. Coloring ¢ : V(G) — P has ascent number
ascG=#{w e E(G)): v<wandc(v) < c(w)}.

Replacing vw € E(G) with v < w by an arc vw, the arc of an
ascent points from a smaller vertex to a larger. The chromatic
quasisymmetric function of G (Shareshian-Wachs, 2014) is

X(G;x,t) = Z fascGyc.
c: V(G) — P proper
Note 1. An order-preserving permutation of colors preserves

ascents, so the coefficient of t* in X(G; x, t) is quasisymmetric.
2. X(G,x,1) = X(G; x).

Ex. 2 1 2 1 1 2 2 3 3
G= 03 cCc: 2 1 e 2 3 1 3 1 2
1 1 2 3 2 3 1 2 1

X(Gix,t) =x2xp+x1X5 4+ (t+ P+ 1+ P+ 1+ Dxyxoxg+-
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