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Abstract

Ascent sequences were introduced by Bousquet-Mélou, Claesson, Dukes and Ki-
taev in their study of (2 + 2)-free posets. An ascent sequence of length n is a nonneg-
ative integer sequence x = x1x2 . . . xn such that x1 = 0 and xi 6 asc(x1x2 . . . xi−1)+
1 for all 1 < i 6 n, where asc(x1x2 . . . xi−1) is the number of ascents in the sequence
x1x2 . . . xi−1. We let An stand for the set of such sequences of legth n and use An(p)
for the subset of sequences avoiding a pattern p. Similarly, we let Sn(τ) be the set
of τ -avoiding permutations in the symmetric group Sn. Duncan and Steingŕımsson
have shown that the ascent statistic has the same distribution over An(021) as over
Sn(132). Furthermore, they conjectured that the pair (asc, rmin) is equidistributed
over An(021) and Sn(132), where rmin is the right-to-left minima statistic. We
prove this conjecture by constructing a bistatistic-preserving bijection.

Keywords: 021-avoiding ascent sequence, 132-avoiding permutation, right-to-left
minimum, number of ascents, bijection
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1 Introduction

The objective of this paper is to establish a bijection which leads to the equidistribution of
the pair of statistics (asc, rmin) over 021-avoiding ascent sequences and over 132-avoiding
permutations. This confirms a conjecture posed by Duncan and Steingŕımsson [5].

Let us give an overview of the notation and terminology. Let Sn denote the set
of permutations of [n], where [n] = {1, 2, . . . , n}. Given a permutation π ∈ Sn and a
permutation τ ∈ Sk, we say that a subsequence πi1πi2 . . . πik , 1 6 i1 < i2 < · · · < ik 6 n,
of π is of pattern τ if it is order isomorphic to τ , that is, this subsequence has the same
relative order as τ . If π does not contain any subsequence of pattern τ , then we say that π
avoids τ , or π is τ -avoiding. We denote by Sn(τ) the set of τ -avoiding permutations in Sn.
For example, the permutation 763894512 contains the subsequence 3952 of pattern 2431,
but it is 1234-avoiding. Pattern avoiding permutations have been intensively studied in
recent years from many points of view, see [1, 6, 8].

Ascent sequences were introduced by Bousquet-Mélou, Claesson, Dukes and Kitaev [2].
For a sequence x = x1x2 . . . xn of nonnegative integers, we say that an index i (1 6 i < n)
is an ascent if xi < xi+1. We denote by asc(x) or merely ascx the number of ascents of
x. A sequence x = x1x2 . . . xn is called an ascent sequence if x1 = 0 and

xi 6 asc(x1x2 . . . xi−1) + 1

for all 1 < i 6 n. For example, x = 010122 is an ascent sequence while x = 010142 is not
since x5 = 4 > asc(0101)+1 = 3. We let An denote the set of ascent sequences of length n.
For an ascent sequence, a pattern is a word on a nonnegative integers {0, 1, . . . , k}, where
each element i appears at least once. Containment and avoidance of patterns for ascent
sequences are defined in the same way as for permutations. For example, the ascent
sequence 01231234 has five occurrences of the pattern 001, namely, the subsequences
112, 113, 114, 223, 224, and the ascent sequence 01012203 is 021-avoiding. We denote by
An(p) the set of ascent sequences of length n avoiding pattern p.

In addition to the ascent statistic, we will be interested in the number of right-to-left
minima. A right-to-left minimum of any sequence x of nonnegative integers is an index
i such that xi < xj for all j > i. The number of right-to-left minima of x is denoted by
rmin(x) or rminx. For example, rmin(010122) = 3.

Ascent sequences are closely connected to (2 + 2)-free posets [2], upper-triangular
matrices [4], Stoimenow’s matchings [3], and the Catalan numbers Cn [5]. In particular, a
poset is called (2 + 2)-free if it does not contain an induced subposet which is isomorphic
to the disjoint union of two 2-element chains. Bousquet-Mélou, Claesson, Dukes and
Kitaev [2] found a bijection from (2 + 2)-free posets to ascent sequences which maps
the number of levels of the poset to the number of ascents of the sequence. Dukes and
Parviainen [4] established a bijection between ascent sequences and nonnegative upper-
triangular matrices. Duncan and Steingŕımsson [5] have shown that #An(p) = Cn for
any of the patterns p = 101, 0101, or 021. Mansour and Shattuck [7] have shown that
#A0123(n) equals the number of Dyck paths of semilength n and height at most 5, as
conjectured by Duncan and Steingŕımsson. It is well known that #Sn(132) = Cn. Duncan
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and Steingŕımsson also proved that the ascent statistic is equidistributed over An(021)
and Sn(132). Furthermore, they proposed the following conjecture.

Conjecture 1. The bistatistic (asc, rmin) has the same distribution over An(021) and
Sn(132).

The objective of this paper is to give a bijective proof of above conjecture.

2 Proof of the conjecture

In order to construct our bijection, we will need the concept of the tight maximum value
of an ascent sequence x = x1x2 . . . xn. Call xi tight if

xi = asc(x1x2 . . . xi−1) + 1 (1)

giving us equality in the defining relation for an ascent sequence. The tight maximum
value of x is the largest integer M such that there is a tight xi with xi = M . To illustrate
the notion, if x = 01013312434 then M = 3. Note that, except for the zero sequence,
M will always exist since the first 1 in any nonzero sequence satisfies (1). So we define
M = 0 for a zero sequence.

Also define a tight maximum index as an index i where xi satisfies xi = M as well
as condition (1). The first index i with xi = M is always a tight maximum index. In
fact, if [i, j] is the largest interval of indices starting with the first tight maximum index
and satisfying xi = xi+1 = · · · = xj = M then we claim that these are exactly the tight
maximum indices. To see this, first note that if k ∈ [i, j] then k is a tight maximum index
because

xk = xi = asc(x1x2 . . . xi−1) + 1 = asc(x1x2 . . . xk−1) + 1

since there are no ascents between xi and xk. To see that no other index can be tight
maximum, suppose xk = M with k > j+ 2. Now xj > xj+1 because if xj < xj+1 then the
tight maximum value would be at least M + 1. Thus there must be an ascent between
xj+1 and xk so that (1) is no longer an equality when i = k. Call the tight maximum
value unique if there is only one tight maximum index and repeated otherwise.

Theorem 2. The bistatistic (asc, rmin) has the same distribution over An(021) and
Sn(132).

Proof. We will inductively build a bijection φn : An(021) → Sn(132) preserving the
bistatistic. To do so, we will need decompositions of An(021) and Sn(132) into pieces
indexed by smaller subscripts. We will start on the ascent side.

A simple but important observation for what follows is that p ∈ An(021) if and only
if the nonzero entries of p are weakly increasing. We will use this fact to construct a
bijection f = fn between An(021) and the set of pairs

n⋃
i=1

Ai−1(021)×An−i(021).
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Consider x ∈ An(021) and suppose first that x has a repeated tight maximum value
M . Let k be any of the tight maximum indices and define

f(x) = (ε, z)

where ε is the empty sequence and z is x with xk removed. For example, if x =
01013300304 then z = 0101300304. Clearly z still avoids 021 since its nonzero entries
still increase and, since x’s tight maximum value was repeated, z still has M as its tight
maximum value. Since the tight maximum value does not change, one can construct an
inverse map from A0(021)×An−1(021) back to the elements of An which have a repeated
tight maximum in the obvious way. Finally note that in this case

ascx = asc z and rminx = rmin z.

Now suppose that x has a unique tight maximum value xi = M . Here we let

f(x) = (y, z)

where y = x1 . . . xi−1 and z is obtained from x′ = xi+1 . . . xn by subtracting M − 1 from
all the nonzero entries. To illustrate, if x = 0101300304 then y = 0101 and z = 00102.
It is clear that y ∈ Ai−1(021). To show that z ∈ An−i(021), we first note that z still
has weakly increasing nonzero elements and so avoids 012. We must also demonstrate
that z is an ascent sequence. Since the defining condition for an ascent sequence is trivial
for zero elements, we need only consider zr 6= 0. But since we have subtracted the same
amount from all nonzero entries of x′, the index r is an ascent of z if and only if the
index r + i is an ascent of x′. Also, since M was the tight maximum value of x, we have
asc(x1 . . . xi) = M , xi > xi+1 and xr+i 6 asc(x1x2 . . . xr+i−1) for any r > 1. It follows that
for any zr 6= 0 we have

zr = xr+i −M + 1

6 asc(x1 . . . xr+i−1)−M + 1

= asc(x1 . . . xi) + asc(xi+1 . . . xr+i−1)−M + 1

= asc(z1 . . . zr−1) + 1

which is what we wished to prove. Constructing the inverse of this part of the map is
similar to what was done in the first case.

It will be useful to record what happens to our two statistics in the second case defining
f . For the ascent statistic, we have everything in place from the previous paragraph and
the fact that, by definition of M , xi > xi−1. Thus

ascx = asc(x1 . . . xi) + asc(xi+1 . . . xn)

= asc(x1 . . . xi−1) + 1 + asc(xi+1 . . . xn)

= asc y + asc z + 1.
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In terms of right-to-left minima, we distinguish two subcases. If i 6 n − 1 then, since
xi+1 = 0, the right-to-left minima of x must occur in the sequence xi+1 . . . xn. Since the
subtraction of M − 1 does not change the positions of these minima, we have

rminx = rmin z.

On the other hand, if i = n then z = ε and xn is a right-to-left minimum, giving

rminx = rmin y + 1.

We will now review the standard decomposition of Sn(132) which gives a bijection g
from this set to

n⋃
i=1

Si−1(132)× Sn−i(132).

If π ∈ Sn(132) then we write π = πLnπR where πL, πR are the elements to the left and right
of n, respectively. Define the index i by πi = n. Then it is well known that π ∈ Sn(132)
if and only if πL, πR avoid 132 and every element of πL is bigger than every element of
πR. So we let

g(π) = (ρ, σ)

where ρ ∈ Si−1(132) and σ ∈ Sn−i(132) are order isomorphic to πL and πR, respectively.
As with the ascent sequence decomposition, we have to consider what happens to our

statistics in two separate cases. The first is when ρ = ε, equivalently, i = 1. So π = nπR
and so n makes no contribution either to the ascents or right-to-left minimum. It follows
that

ascπ = ascσ and rminπ = rminσ

just as in the corresponding case for ascent sequences.
Now suppose 1 < i 6 n. So there will be an ascent ending at n and all other ascents

of π correspond to ascents of ρ or ascents of σ. It follows that

ascπ = asc ρ+ ascσ + 1.

For the right-to-left minima we again break into two subcases depending on whether the
second component of our bijection is ε or not. If σ 6= ε then i < n and the right-to-left
minima of π are all in πR because of the relative sizes of the elements of πR and πL. This
gives

rminπ = rminσ.

Now consider σ = ε so that π = πLn. Thus n is a right-to-left minimum of π as is every
right-to-left minimum of πL. So in this subcase

rminπ = rmin ρ+ 1.

Finally, we construct φn : An(021) → Sn(132) as follows. Start with φ0(ε) = ε. As-
suming that φi has been defined for all i < n, we define φn to be the composition

An(021)
f→

n⋃
i=1

Ai−1(021)×An−i(021)
h→

n⋃
i=1

Si−1(132)× Sn−i(132)
g−1

→ Sn(132)
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where the restriction of h to Ai−1(021)×An−i(021) is φi−1×φn−i. It should be clear from
the equations derived for asc and rmin when defining f and g that this bijection preserves
the bistatistic.
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