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Abstract

The study of patterns in permutations is a very active area of
current research. Klazar defined and studied an analogous notion
of pattern for set partitions. We continue this work, finding exact
formulas for the number of set partitions which avoid certain specific
patterns. In particular, we enumerate and characterize those par-
titions avoiding any partition of a 3-element set. This allows us to
conclude that the corresponding sequences are P-recursive. Finally,
we define a second notion of pattern in a set partition, based on its
restricted growth function. Related results are obtained for this new
definition.
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1 Introduction

The study of patterns in permutations has been very active of late; see the
article of Wilf [41] for a survey. Klazar [20, 21, 22] defined and investigated
what it means for a set partition to avoid a pattern, generalizing Kreweras’s
much-studied notion of a noncrossing partition [24]. Recently, Klazar and
Marcus [23] proved a generalization of the Marcus-Tardos Theorem [27]
(which itself provided a demonstration of the Füredi-Hajnal and Stanley-
Wilf Conjectures), that in particular gives the asymptotic growth rate of
the number of set partitions avoiding a given pattern. Here, our focus
will be on exact enumeration. To make things precise, we will need some
definitions.

Let P and N denote the positive and nonnegative integers, respectively.
For m,n ∈ N we have the interval [m,n] = {m,m + 1, . . . , n} with special
case [n] = [1, n]. If S is any set, then a partition π of S is a set of nonempty
subsets B1, B2, . . . , Bk of S such that ]iBi = S (disjoint union). We will
write π ` S and π = B1/B2/ . . . /Bk. The subsets are called blocks and
the number of blocks will be denoted b(π). Most often we will also not
use set braces and commas in the blocks unless they are needed for clarity.
For example, if π = 14/2/356 then π ` [6] and b(π) = 3. We will use the
notation

Πn = {π : π ` [n]} and Π =
⊎
n≥0

Πn. (1)

In order to connect Klazar’s definition of pattern with the usual one for
permutations, it is convenient to introduce a standardization map. If S is
any subset of the integers with cardinality #S = n then the corresponding
standardization map is the unique order-preserving bijection stS : S → [n].
When S is clear from context, we will drop the subscript. We let stS
act element-wise on objects built using S as label set. For example, if
S = {3, 4, 6} then st(3) = 1, st(4) = 2, st(6) = 3. Consequently, for the
sequence p = 4346 we have st(p) = 2123 and for the partition π = 36/4 we
have st(π) = 13/2. The definition of pattern containment for permutations
can now be stated as follows: If p = a1a2 . . . ar and q = b1b2 . . . bs are
permutations, then q contains p as a pattern if there is a subsequence
q′ = bi1bi2 . . . bir of q with st(q′) = p. Otherwise q avoids p. Given a
pattern permutation p, we let

Sn(p) = {q ∈ Sn : q avoids p},

where Sn is the symmetric group on [n]. We will also let S = ]n≥0Sn.
For pattern containment in set partitions, we will need the notion of

a subpartition. A subpartition of σ is a partition σ′ such that each block
of σ′ is contained in a different block of σ. For example, σ = 14/236/5

2



has σ′ = 26/4 as a subpartition, but not 26/3 since both 26 and 3 are in
the same block of σ. If π and σ are set partitions, then σ contains π as a
pattern if there is a subpartition σ′ of σ with st(σ′) = π. Also, σ′ is called
a copy of π in σ. If σ has no copies of π then it avoids π. Continuing our
example, σ = 14/2/356 contains four copies of the pattern 13/2, namely
14/2, 14/3, 35/4, and 36/4. On the other hand, σ avoids 134/2 since any
copy of this pattern would have to have 356 as a block and then there is
no integer that can take the place of the 2 in the pattern. Parallel to the
notation above, given a pattern π we let

Πn(π) = {σ ∈ Πn : σ avoids π} and Π(π) =
⊎
n≥0

Πn(π).

Note that the noncrossing partitions may be defined as those in Π(13/24).
In the following section we will provide exact formulas and generating

functions for #Πn(π) for various patterns π, including all π ` [3]. Ges-
sel [16] and Noonan-Zeilberger [29] initiated the study of P-recursiveness
and its relationship to patterns in permutations. In section 3 we consider
analogous results for set partitions. The section after that uses restricted
growth functions to give a second definition of pattern in a set partition,
and various results using this new notion are presented. We end with a
section outlining future work and open problems.

2 Enumeration

As is often the case when dealing with set partitions, exponential generating
functions will be useful. So we begin by setting up some notation for them.

If I is a set of nonnegative integers, then let

FI(x) =
∑
i∈I

xi

i!
. (2)

We will also use the following notation for a special case of (2) which will
appear repeatedly

expm(x) =
m∑
n=0

xn

n!
.

The next result follows from standard manipulation of exponential gener-
ating functions (see Wilf’s book [40, Chapter 3]), so we omit the proof.

Proposition 2.1. Let

aIn,l = #{σ = C1/C2/ . . . /Cl ∈ Πn : #Cj ∈ I for 1 ≤ j ≤ l}.
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It follows that
∞∑
n=0

aIn,l
xn

n!
=
FI(x)l

l!
.

Finally, given a pattern π, we let

Fπ(x) =
∞∑
n=0

#Πn(π)
xn

n!
.

This will cause no confusion with (2), since the context will always make it
clear whether the subscript refers to an index set or a partition.

For our first result, we will consider the extreme cases where π has only
singleton blocks or is itself a single block. When π = 1/2/ . . . /m, σ contains
a copy of π if and only if σ has at least m blocks from which to take the
singletons. Similarly, if π = 12 . . .m then a copy of π can come from any
block of σ having at least m elements. Combining these observations with
the previous proposition proves the following.

Theorem 2.2. We have

Π(1/2/ . . . /m) = {σ ∈ Π : b(σ) < m},

F1/2/.../m(x) = expm−1(exp(x)− 1),

Π(12 . . .m) = {σ ∈ Π : #C < m for all C ∈ σ},

F12...m(x) = exp(expm−1(x)− 1).

In what follows, we will often abbreviate

0̂m = 1/2/ . . . /m and 1̂m = 12 . . .m.

This is because these elements are the unique minimum and maximum of
the partition lattice.

We can characterize the set partitions which avoid another infinite fam-
ily of patterns. Suppose that σ = C1/C2/ . . . /Cl ` S and T ⊆ S. Then
the restriction of σ to T is the partition σT whose blocks are the nonempty
sets of the form Ci ∩ T , 1 ≤ i ≤ l. Using σ = 14/2/356 as usual and
T = {3, 4, 6}, we obtain σT = 36/4. Note that σ′ is a subpartition of σ if
and only if σ′ = σT for some T . If σ ` [n] then we will use the abbreviations
σ≤k and σ>k for the cases when T = [k] and T = [k + 1, n], respectively.
In the following theorem, we use the falling factorial notation

〈k〉i = k(k − 1) · · · (k − i+ 1)

as well as the aIn,l as defined in Proposition 2.1.
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Theorem 2.3. We have

Π(12/3/4/ . . . /m) = {σ ∈ Π : ∃k 3 σ≤k = 0̂k, b(σ>k) < m− 1}, (3)

#Πn(12/3/4/ . . . /m) = 1 +
n−1∑
k=1

m−2∑
j=1

aP
n−k,j

j∑
i=1

(
j − 1
i− 1

)
〈k〉i. (4)

Proof Suppose σ ` [n]. If σ = 0̂n then clearly σ is a member of both
sets in (3). So assume σ 6= 0̂n. Define k to be the largest integer such that
all the elements of [k] are minima of their blocks in σ. Then σ≤k = 0̂k, and
k + 1 is in a block of σ which also contains an element s ≤ k.

Suppose first that σ ∈ Π(12/3/4/ . . . /m). To show that σ must then
be in the right-hand side of (3) we assume, towards a contradiction, that
b(σ>k) ≥ m − 1. But then σ>k contains a copy, σ′, of 0̂m−1 and we can
take that copy to contain k + 1 since the minima of any m− 1 blocks will
do. Inserting the element s into the block of k + 1 in σ′ gives a copy of
12/3/4/ . . . /m in σ, a contradiction.

For the reverse inclusion, take σ 6= 0̂n in the right-hand set of (3). We
again proceed by contradiction, assuming that σ contains a copy, σ′, of
12/3/4/ . . . /m . Let k′ be the element of σ′ playing the role of the 2 in
12/3/4/ . . . /m. Then k′ > k since the elements of [k] are all in separate
blocks of σ. Thus the elements of σ′ corresponding to the elements [2,m]
in 12/3/4/ . . . /m are all in σ>k, and are also all in separate blocks. This
contradicts b(σ>k) < m− 1 and finishes the proof of (3).

To obtain the count (4), we enumerate the elements in the right-hand
set of (3). The 1 in the sum accounts for the partition σ = 0̂n. Let k be
as defined in the first paragraph of the proof. Then 1 ≤ k ≤ n − 1 since
we are now considering σ 6= 0̂n. Let j = b(σ>k) so, by definition of the
σ being counted, 1 ≤ j ≤ m − 2. Every block of σ is of one of the three
forms {s}, C, or C ∪ {s} where s ≤ k and C ∈ σ>k. Let i be the number
of blocks of the third type. So i ≥ 1 since, by maximality of k, the block
of σ containing k + 1 must be of this form. Also i ≤ j by their definitions.
Thus we have verified the limits on the summations in (3).

To count the number of σ for given i, j, k we first note that the choice
of σ≤k is unique and there are aP

n−k,j choices for σ>k. To determine σ
from these two subpartitions, it suffices to specify the blocks of type three.
We already know that the block containing k + 1 must be of this type, so
there are

(
j−1
i−1

)
ways to choose the rest of the blocks of σ>k that will be

used. Now these blocks (including the one containing k + 1) can each be
unioned with a unique element s ≤ k in a total of 〈k〉i ways. This gives
the summand in (3) and completes the proof of this equation and of the
theorem.
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Representing a permutation p by its permutation matrix, the dihedral
group of the square acts on Sn. The number of permutations avoiding a
pattern is the same for any two patterns in the same orbit. More generally,
two permutations p, q are called Wilf equivalent if #Sn(p) = #Sn(q) for
all n ≥ 0. For example, it is well known that any two permutations in S3

are Wilf equivalent.
Only one of the symmetries for permutations remains for set partitions.

Given π = B1/ . . . /Bk ` [m], define its complement to be the partition
πc = Bc1/ . . . /B

c
k where

Bci = {m+ 1− b : b ∈ Bi}

for 1 ≤ i ≤ k. For example, (14/2/356)c = 63/5/421. The proof of the
next result is trivial and so is omitted.

Lemma 2.4. For any pattern π, we have

Πn(πc) = {σc : σ ∈ Πn(π)},
#Πn(πc) = #Πn(π).

We will call partitions π, σ Wilf equivalent if #Πn(π) = #Πn(σ) for all
n ≥ 0. So, for example, the preceding lemma gives us the Wilf equivalence

#Πn(1/2/ . . . /m− 2/m− 1 m) = #Πn(12/3/4/ . . . /m)

with the cardinality of the right-hand side being given in (4).
We will now give a complete characterization and enumeration of Πn(π)

for all π ` [3]. To do so, it will be useful to have a few more definitions.
Call σ a matching if #C ≤ 2 for all C ∈ σ. Also, define the double factorial

(2i)!! = 1 · 3 · 5 · · · (2i− 1),

which is the number of matchings on 2i elements where every block has size
two. Finally, we say that σ it layered if it has the form

σ = [i, j]/[j + 1, k]/[k + 1, l]/ . . . /[m+ 1, n]

for certain i, j, k, l, . . . ,m, n.
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Theorem 2.5. We have

Πn(1/2/3) = {σ ∈ Πn : b(σ) ≤ 2}, (5)

#Πn(1/2/3) = 2n−1, (6)

Πn(123) = {σ ∈ Πn : σ is a matching}, (7)

#Πn(123) =
∑
i≥0

(
n

2i

)
(2i)!!, (8)

Πn(12/3) = {σ ∈ Πn : ∃k 3 σ≤k = 0̂k, σ>k = [k + 1, n]}, (9)

#Πn(12/3) = 1 +
(
n

2

)
, (10)

Πn(1/23) = {σ ∈ Πn : ∃k 3 σ≤k = [1, k], st(σ>k) = 0̂n−k}, (11)

#Πn(1/23) = 1 +
(
n

2

)
, (12)

Πn(13/2) = {σ ∈ Πn : σ is layered}, (13)

#Πn(13/2) = 2n−1. (14)

Proof All these equations except the last two are easy consequences
of Theorems 2.2 and 2.3 and Lemma 2.4.

To prove (13), first note that it is clear from the definition of “layered”
that such a partition can not have a copy of the pattern 13/2. For the
reverse direction, suppose σ avoids 13/2 and let C be the block of σ con-
taining 1. Also, let i = maxC. We claim that C = [1, i]. This is clear if
i = 1. If i > 1 then suppose, towards a contradiction, that there is some
j with 1 < j < i and j 6∈ C. But then 1i/j is a copy of 13/2 in σ, a
contradiction. Considering the block of σ with minimum i+1 and iterating
this process completes the proof of (13).

To prove (14), just note that any layered partition can be obtained from
the sequence 12 . . . n by inserting slashes in the n − 1 spaces between the
numbers.

We should note that Klazar also mentioned (7) in [21, Example 1], thus
showing that π = 123 is a set partition with superexponential growth rate.
(Something which can not happen for permutations.)

7



3 P-recursion

We now use the results of the previous section to investigate when vari-
ous sequences of the form #Πn(π), n ≥ 0, are P-recursive. A sequence
(an)n≥0, is P-recursive (polynomially recursive) if there are polynomials
P0(n), P1(n), . . . , Pk(n) (not all zero) such that

P0(n)an + P1(n)an+1 + · · ·+ Pk(n)an+k = 0

for all n ≥ 0. As a simple example, the sequence with elements an = n! is
P-recursive since we always have (n+ 1)an − an+1 = 0.

Gessel [16] first mentioned the problem of determining for which per-
mutations p the sequence an = #Sn(p), n ≥ 0, is P-recursive. Noonan
and Zeilberger [29] conjectured that the sequence is P-recursive for all p,
although later evidence has caused Zeilberger to change his mind [14] and
conjecture that it is not P-recursive for p = 1324. For set partitions, the
numbers #Πn(π) do not always form a P-recursive sequence, as we will
show shortly. To do so, we need to introduce some ideas from the theory
of D-finite power series.

Let f(x) be a formal power series. Then f(x) is D-finite (differentiably
finite) if there are polynomials p0(x), p1(x), . . . , pk(x) (not all zero) such
that

p0(x)f(x) + p1(x)f ′(x) + · · ·+ pk(x)f (k)(x) = 0. (15)

A simple example is the function f(x) = ex which satisfies f(x)−f ′(x) = 0.
Stanley [36] was the first to bring the theory of D-finite series, which had
long been used for differential equations, to bear on combinatorial problems.
We will need the following two results of his, the first of which can also be
found in the work of Jungen [19].

Theorem 3.1 (Jungen [19], Stanley [36]). A sequence (an)n≥0 is P-recursive
if and only if its ordinary generating function f(x) =

∑
n≥0 anx

n is D-
finite.

Theorem 3.2 (Stanley [36]). If (an)n≥0 and (bn)n≥0 are P-recursive se-
quences, then so is their point-wise product (anbn)n≥0.

Corollary 3.3. A sequence (an)n≥0 is P-recursive if and only if its expo-
nential generating function F (x) =

∑
n≥0 anx

n/n! is D-finite.

Proof We will only prove the reverse implication, as the forward direc-
tion is obtained from that proof by just reversing the steps. So suppose F (x)
is D-finite. Then by Theorem 3.1 the sequence (an/n!)n≥0 is P-recursive.
Also, we have already seen that the sequence (n!)n≥0 is P-recursive. Thus,
by Theorem 3.2, (an)n≥0 is P-recursive.
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For an example where the #Πn(π) do not form a P-recursive sequence,
consider the pattern π = ε, the empty partition. So Πn(ε) = Bn, the nth
Bell number.

Proposition 3.4. The sequence #Πn(ε), n ≥ 0, is not P-recursive.

Proof Suppose, towards a contradiction, that this sequence is P-
recursive. Using Proposition 2.1, we get the well-known generating function
for the Bell numbers

Fε(x) = ee
x−1.

By the previous corollary, Fε(x) must be D-finite and so must satisfy (15)
for certain polynomials pi(x). Taking the derivatives and dividing by Fε(x)
which is never zero, we get an equation of the form

q0(x) + q1(x)ex + q2(x)e2x + · · ·+ qk(x)ekx = 0 (16)

where
qi(x) = pi(x) +

∑
j>i

ai,jpj(x)

for certain constants ai,j . So since the pi(x) are polynomials which are not
all zero, the same must be true of the qi(x). But this implies that ex is an
algebraic function, a contradiction.

Question 3.5. For what set partitions π is the sequence Πn(π), n ≥ 0,
P-recursive?

We will now show that all of the patterns considered in the previous
section give rise to P-recursive sequences. To do so, we will need a few
more definitions and results. In his work on the growth rate of #Πn(π),
Klazar [21] was lead to consider the following patterns. A sufficiently re-
stricted partition or srp is a matching π such that, if S is the union of the
doubletons in π, then

st(πS) = 1a1/2a2/ . . . /kak

for some permutation a1a2 . . . ak of [k + 1, 2k].

Theorem 3.6 (Klazar [21]). If π is an srp then the ordinary generating
function for the sequence #Πn(π), n ≥ 0, is rational with integer coeffi-
cients. In particular, this sequence is P-recursive.

We will also need the following result.

Theorem 3.7 (Stanley [36]). If f(x) is D-finite and g(x) is algebraic with
g(0) = 0, then the composition f(g(x)) is D-finite.
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Theorem 3.8. For m ≥ 1, the following sequences are P-recursive as n
varies over N:

#Πn(1/2/ . . . /m), #Πn(12 . . .m), and #Πn(12/3/4/ . . . /m).

Furthermore, for any π ` [3] the sequence #Πn(π), n ≥ 0, is P-recursive.

Proof The only one of these sequence which is not covered by The-
orem 3.6 is the one for 12 . . .m. But in Theorem 2.2 we noted that the
exponential generating function for this pattern is exp(expm−1(x)−1). We
have already seen that f(x) = exp(x) is D-finite. And g(x) = expm−1(x)−1
is algebraic since it is a polynomial. So we are done by Theorem 3.7 and
Corollary 3.3.

4 Restricted growth functions

There is a second, natural definition of pattern containment for set par-
titions which arises from considering them as restricted growth functions.
In order to make this connection, we will write all of our partitions π =
B1/B2/ . . . /Bk in canonical order which means that the blocks are indexed
so that

minB1 < minB2 < . . . < minBk. (17)

If S ⊆ Bj for some j then it will also be convenient to use the notation

B(S) = j. (18)

A restricted growth function (RGF) is a sequence r = a1a2 . . . an of
positive integers such that

1. a1=1, and

2. for i ≥ 2 we have ai ≤ 1 + max
j<i

aj .

The number of elements of r is called the length of r and denoted l(r). For
example, r = 123133 is a restricted growth functions with l(r) = 6, while
r = 123153 is not an RGF because there is no 4 in the prefix before the 5.
Let

Rn = {r : r an RGF with l(r) = n} and R =
⊎
n≥0

Rn.

There is a well-known bijection ρ : Πn → Rn. Given π ∈ Πn in canonical
order, we let ρ(π) = a1a2 . . . an where

ai = B(i). (19)
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If one considers the example partition π = 14/2/356 = B1/B2/B3 from the
introduction, then ρ(π) = 123133 (the example RGF above). The defini-
tion (17) of “canonical order” ensures that ρ(π) is an RGF. Furthermore,
it is easy to construct an inverse for ρ using (19). So we can work with a
partition or its RGF interchangeably.

We now define pattern containment in R analogously to the way it is
defined for permutations. If r ∈ Rk is the pattern RGF, then we say that
s = b1b2 . . . bn ∈ Rn contains r if there is a subsequence bi1bi2 . . . bik of s
which standardizes to r. Otherwise s avoids r. By way of illustration, if
r = 121 then there are two copies of r in b1b2b3b4b5b6 = 123133, namely
b1b2b4 = 121 and b1b3b4 = 131.

If π and σ are such that ρ(σ) contains ρ(π) then we say that σ R-contains
π, and that σ R-avoids π otherwise. We will also add an “R” prefix to other
terms defined in the introduction in order to refer to this new definition.
We can see R-containment directly in terms of partitions as follows: σ
R-contains π if and only if σ has a subpartition σ′ = C ′1/C

′
2/ . . . /C

′
k (in

canonical order) with st(σ′) = π and

B(C ′1) < B(C ′2) < . . . < B(C ′k). (20)

For example, of the four copies of 13/2 in 14/2/356 only two of them,
namely 14/2 and 14/3, are R-copies. In fact, this is just a restatement in
terms of partitions of the example at the end of the previous paragraph.
Given a set partition. π we let

Rn(π) = {s ∈ Πn : σ R-avoids π} and R(π) =
⊎
n≥0

Rn(π).

The next proposition is clear from the definitions.

Proposition 4.1. For every π ∈ Π and every n ≥ 0,

Rn(π) ⊇ Πn(π),
#Rn(π) ≥ #Πn(π).

Note that if π = 0̂m or 1̂m then (20) is automatic. So the next result
follows immediately from the previous proposition and, because of Theo-
rem 2.2, the corresponding enumerations have already been done.

Theorem 4.2. We have

R(1/2/ . . . /m) = {σ ∈ Π : b(σ) < m},

R(12 . . .m) = {σ ∈ Π : #C < m for all C ∈ σ}.
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We now turn to R-avoidance of patterns in Π3. In this context, comple-
mentation does not necessarily preserve the number of avoiding partitions.
So it is somewhat surprising that four of the five elements of Π3 are R-Wilf
equivalent.

Theorem 4.3. We have

Rn(1/2/3) = {σ ∈ Πn : b(σ) ≤ 2},

#Rn(1/2/3) = 2n−1,

Rn(123) = {σ ∈ Πn : σ is a matching},

#Rn(123) =
∑
i≥0

(
n

2i

)
(2i)!!,

Rn(12/3) =
{
σ ∈ Πn : ∃k 3 σ≤k = 0̂k,
σ>k = D1/ . . . /Dk layered, B(D1) > . . . > B(Dk)} ,

#Rn(12/3) = 2n−1,

Rn(1/23) = {σ = C1/ . . . /Cl ∈ Πn : #Ci = 1 for i ≥ 2},

#Rn(1/23) = 2n−1,

Rn(13/2) = {σ ∈ Πn : σ is layered},

#Rn(13/2) = 2n−1.

Proof The equations involving the patterns 1/2/3 and 123 follow from
Theorems 2.5 and 4.2.

Now suppose σ ∈ Rn(12/3) and let k be the largest integer such that
the elements of [k] are the minima of their blocks in σ. So either k = n (and
σ = 0̂n) or k+ 1 is in a block Ci of σ where i ≤ k. Let m be the maximum
of Ci. We claim that Ci = {i} ] [k + 1,m]. If this were not the case then
there would have to be some l with k+1 < l < m and with l ∈ Cj for j 6= i.
If j < i then jl/m is an R-copy of 12/3 in σ, and if j > i then i, k + 1/l
is such an R-copy. So in either case we have a contradiction. Iterating this
argument shows that σ has the form described in the theorem. It is also
clear that partitions of this form do not have any R-copies of 12/3, so this
completes the characterization of such partitions.

To enumerate Rn(12/3), keep k as in the previous paragraph. Then
the number of σ for a given k is just the number of ways to distribute the
elements of σ>k among the k blocks. Since σ>k is layered, this is equivalent
to counting the number of compositions (ordered integer partitions) of n−k
into k parts where 0 is allowed as a part. It is well-known that the number
of such compositions is

(
n−1
k−1

)
. So the total number of σ is

∑
k

(
n−1
k−1

)
= 2n−1.
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Next consider Rn(1/23). Clearly σ = C1/ . . . /Cl can not contain an
R-copy of 1/23 if all blocks other than C1 are singletons. And if some block
of σ other than C1 contains two elements i, j then 1/ij is an R-copy of 1/23
in σ. So this gives us the required set equality. Also, the number of such
σ is just the number of choices for C1, which is 2n−1 since we must have
1 ∈ C1 for the blocks to be canonically ordered.

Finally, look at Rn(13/2). From Theorem 2.5 and Proposition 4.1 we
have that Rn(13/2) contains every layered permutation. The proof of the
reverse containment is the same as that given for the corresponding con-
tainment in (13), just noting that the copy of 13/2 constructed there is, in
fact, an R-copy. Of course, this means that the enumeration is the same as
well.

Since no numerically new sequences have been discussed in this section,
we can use Theorem 3.8 to conclude the following.

Theorem 4.4. For m ≥ 1, the following sequence are P-recursive when n
varies over N:

#Rn(1/2/ . . . /m) and #Rn(12 . . .m).

Also, for any π ` [3] the sequence #Rn(π), n ≥ 0, is P-recursive.

5 Open problems and new directions

5.1 The patterns 12/3/4/ . . . /m and 1/23 . . . m

We were unable to simplify the summation given for #Πn(12/3/4/ . . . /m).
It would be interesting to do so, or to use them to find the corresponding
exponential generating function.

We have given characterizations of Π(π) where π is the minimum, max-
imum, or one of the atoms in the partition lattice. It is also possible to do
so for the coatom 1/23 . . .m. We did not mention this earlier because the
description is not used for any of the other results presented. But we will
give it here in case it turns out to be useful in later work. To describe the
σ = C1/ . . . /Cl in Π(1/23 . . .m) we assume, as usual, that σ is written in
canonical form. We will also need the parameter c = c(σ) which will be the
(m− 1)st largest element of C1, or 0 if #C1 < m− 1. Then

Π(1/23 . . .m) =

{σ = C1/ . . . /Cl ∈ Π : #Ci < m− 1 for i ≥ 2, and minC2 > c(σ)}.

The proof of this equality is much like the one for (3), where the first
restriction on σ ensures that there can be no copy of the pattern where the
subset corresponding to 23 . . .m is in a block of index at least two, and the
second restriction does the same for C1.
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5.2 Wilf equivalence

As previously mentioned, any two permutations in S3 are Wilf equivalent.
Babson and West [2] showed that 123a3 . . . an and 321a3 . . . an are Wilf
equivalent for any permutation a3 . . . an of [4, n]. This work was later gen-
eralized by Backelin, West, and Xin [3]. Are the Wilf equivalences that
appeared for both containment and R-containment isolated incidents or
part of a larger picture?

5.3 Multiple restrictions

Let P ⊆ S be any set of permutations and define

Sn(P) = {q ∈ Sn : q avoids p for all p ∈ P}.

Simion and Schmidt [33] enumerated all such sets where P ⊆ S3. Similarly,
for P ⊆ Π one can let

Πn(P) = {σ ∈ Πn : σ avoids π for all π ∈ P}.

Goyt [17] has considered the analogous question for Πn(P) where P ⊆ Π3.
For example,

Πn(123, 13/2) = Fn (21)

where Fn is the nth Fibonacci number.

5.4 Statistics

The inversion number of p = a1a2 . . . an ∈ Sn is

inv p = #{(ai, aj) : i < j and ai > aj}.

Also, the major index of p is defined to be

maj p =
∑

ai>ai+1

i.

It is well-known, and easy to prove, that if q is a variable then∑
π∈Sn

qinv π =
∑
π∈Sn

qmajπ = 1(1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1).

A statistic on Sn with this generating function is said to be Mahonian in
honor of Major Percy MacMahon [26] who made the first systematic study
of inv and maj. And the polynomial product above is called a q-analogue
of the integer n!
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Babson and Steingŕımsson [1] defined generalized permutation patterns
by insisting that certain elements of the pattern be adjacent in the larger
permutation. They then showed that most Mahonian statistics in the lit-
erature can be written as linear combinations of the statistics defined by
generalized patterns.

The Stirling numbers of the the second kind, S(n, k), count the number
of set partitions of [n] with k blocks. Carlitz [9, 10] introduced a q-analogue,
Sq(n, k), of S(n, k). Milne [28], Garsia and Remmel [15], Leroux [25], and
Wachs and White [38] have all given set partition analogues of the inv
statistic whose generating function is Sq(n, k), possibly up to a factor of
q(

k
2). Sagan [30] and later White [39] gave maj statistics for set partitions.

In the previously mentioned paper of Goyt [17], generalized patterns for
set partitions are defined. He then uses them to obtain various statistics in
the literature as well as enumerates the number of partitions which avoid
them.

Carlitz [11] was also the first to define a q-analogue, Fn(q), of the Fi-
bonacci numbers. These polynomials and their generalizations have been
extensively studied by Cigler [13, 12, 13] as well as Shattuck and Wag-
ner [32]. In view of (21), one can define related q-analogues using the
generating functions for various set partition statistics over the family
Πn(123, 13/2). This yields a new and unified approach to the study of
Fn(q) and its relatives which is being pursued by Goyt and Sagan [18].

5.5 Partial orders

The set S of all permutations becomes a poset (partially ordered set) by
defining p ≤ q if and only if there is a copy of p in q. One of the fundamental
invariants of any poset is its Möbius function, µ. See Stanley’s text [37,
Chapter 3] for information about posets in general and the Möbius function
in particular. Wilf asked the following question.

Question 5.1 (Wilf [41]). If p ≤ q in S then what is µ(p, q)?

This question has been partially answered as follows. Call a permutation
p layered if it has the form

p = i, i−1, . . . , 1, i+j, i+j−1, . . . , i+1, i+j+k, i+j+k−1, . . . , i+j+1, . . .

where i, j, k, . . . are called the layer lengths of p. There is a bijection be-
tween the layered permutations in Sn and compositions (ordered integer
partitions) of n gotten by sending p as above to the composition (i, j, k, . . .).
Denoting the set of all compositions by P∗, we have a partial order on this
set induced by the pattern containment order on S. This partial order was
first studied by Bergergon, Bousquet-Mélou, and Dulucq [4] who counted
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its saturated lower chains. Further work in this direction was done by
Snellman [34, 35]. The Möbius function of P∗ was obtained by Sagan and
Vatter [31] in two ways, combinatorially and using discrete Morse theory.
It was also rederived by Björner and Sagan [8] using the theory of regular
languages. This poset turns out to be intimately related to subword order,
whose Möbius function was first completely determined by Björner [5, 6]
and again by Björner and Reutenauer [7].

Of course, we can partially order Π by pattern containment and ask the
same question.

Question 5.2. If π ≤ σ in Π then what is µ(π, σ)?

There is clearly a bijection between layered permutations and layered
partitions. So the work cited above applies to this poset as well. Note
that if we restrict the full poset of compositions to the compositions which
only contain ones and twos, then we get a corresponding partial order
on Π(1/2/3, 13/2) having rank numbers equal to the Fn. Goyt [personal
communication] is currently investigating what can be said in various other
posets related to Π whose rank numbers are given by certain generalized
Fibonacci numbers.
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