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a b s t r a c t

Two well-known polytopes whose vertices are indexed by permu-
tations in the symmetric group Sn are the permutohedron Pn and
the Birkhoff polytope Bn. We consider polytopes Pn(Π ) and Bn(Π ),
whose vertices correspond to the permutations in Sn avoiding a
set of patterns Π . For various choices of Π , we explore the Ehrhart
polynomials and h∗-vectors of these polytopes as well as other
aspects of their combinatorial structure.

For Pn(Π ), we consider all subsets Π ⊆ S3 and are able
to provide results in most cases. To illustrate, Pn(123, 132) is a
Pitman–Stanley polytope, the number of interior lattice points in
Pn(132, 312) is a derangement number, and the normalized volume
of Pn(123, 231, 312) is the number of trees on n vertices.

The polytopes Bn(Π ) seem much more difficult to analyze, so
we focus on four particular choices of Π . First we show that the
Bn(231, 321) is exactly the Chan–Robbins–Yuen polytope. Next we
prove that for any Π containing {123, 312} we have h∗(Bn(Π )) =

1. Finally, we study Bn(132, 312) and B̃n(123), where the tilde
indicates that we choose vertices corresponding to alternating
permutations avoiding the pattern 123. In both cases we use order
complexes of posets and techniques from toric algebra to construct
regular, unimodular triangulations of the polytopes. The posets
involved turn out to be isomorphic to the lattices of Young dia-
grams contained in a certain shape, and this permits us to give an
exact expression for the normalized volumes of the corresponding
polytopes via the hook formula. Finally, Stanley’s theory of (P, ω)-
partitions allows us to show that their h∗-vectors are symmetric
and unimodal.

Various questions and conjectures are presented throughout.
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1. Introduction

Let Sn denote the symmetric group on 1, 2, . . . , n and S = ∪n≥0Sn. Let π ∈ Sk and σ ∈ Sn. We
say that σ contains the pattern π if there is some substring σ ′ of σ whose elements have the same
relative order as those in π . Alternatively, we view σ ′ as standardizing to π by replacing the smallest
element of σ ′ with 1, the next smallest by 2, and so on. If there is no such substring then we say that
σ avoids the pattern π . If Π ⊆ S, then we say σ avoids Π if σ avoids every element of Π . We will use
the notation

Avn(Π ) := {σ ∈ Sn | σ avoids Π}.

Note this is not the avoidance class of Π which is the union of these sets over all n.
A polytope P ⊆ Rn is the convex hull of finitely many points, written P = conv{v1, . . ., vk}.

Equivalently, a polytope may be described as a bounded intersection of finitely many half-spaces.
The dimension of P is the dimension of its affine span. We think of vectors in Rn as columns and use
aTb to denote the usual inner product of a, b ∈ Rn. An affine hyperplaneH determined by the equation
aT x = b for some a, b ∈ Rn is called supporting if aTp ≥ b for every p ∈ P . Some texts, such as [19],
insist that H ∩ P be nonempty; our definition aligns with those found in [6,37]. If H is a supporting
hyperplane, then the set H ∩ P is called a face of P and is a subpolytope of P . Faces of dimension 0
are vertices, faces of dimension 1 are called edges, and faces of dimension dim P − 1 are called facets.
Additionally, we say a polytope is a lattice polytope if each vertex is an element ofZn. Lattice polytopes
have long found connections with permutations, in particular via the permutohedron and Birkhoff
polytope.

The permutohedron is defined as

Pn := conv{(a1, . . ., an) | a1 · · · an ∈ Sn}.

We will often make no distinction between a permutation and its corresponding point in Rn. This
polytope was first described in [30] and has connections to the geometry of flag varieties as well as
representations of GLn. We refer to [42] for general background regarding permutohedra.

The Birkhoff polytope is the polytope

Bn := conv

⎧⎨⎩X = (xi,j) ∈ (R≥0)n×n
|

n∑
i=1

xi,j =

n∑
j=1

xi,j = 1 for all i, j

⎫⎬⎭ .

The Birkhoff–von Neumann Theorem states that the vertices of Bn are the permutation matrices.
In this article, we describe a natural blending of pattern avoidance with the permutohedron and

the Birkhoff polytope. Specifically, for any set of patterns Π , we define Pn(Π ) to be the subpolytope
of Pn obtained by taking the convex hull of those vertices corresponding to permutations in Avn(Π ).
The polytope Bn(Π ) is defined similarly. We study the Ehrhart polynomials and h∗-vectors of these
polytopes as well as other aspects of their combinatorial structure.

The rest of this paper is organized as follows. In Section 2 we review some basic notions about
pattern avoidance and polytopes which will be needed throughout. Section 3 focuses on the per-
mutohedron case Pn(Π ). We first show in Proposition 3.2 that the action of a certain subgroup of
the dihedral group of the square produces unimodularly equivalent polytopes. We then consider
all possible Π ⊆ S3 and are able to provide results for most of the orbits of this action. Specific
propositions are listed in Table 1. As a sampling, Pn(123, 132) is a Pitman–Stanley polytope, the
number of interior lattice points in Pn(132, 312) is a derangement number, and the normalized volume
of Pn(123, 231, 312) is the number of trees on n vertices.

The Π-avoiding Birkhoff polytope appears to be much harder to analyze in general. So we
concentrate on four specific examples. In Section 4, we show that Bn(231, 321) is a polytope studied
by Chan, Robbins, and Yuen. Next we prove that for any Π containing the permutations 123 and
312 we have h∗(Bn(Π )) = 1. In Section 5 we begin our study of Bn(132, 312) and B̃n(123), the tilde
indicating that we choose vertices corresponding to alternating permutations avoiding the pattern
123. In both cases we use order complexes of posets and techniques from toric algebra to construct
regular, unimodular triangulations of the polytopes. The posets involved turn out to be isomorphic



50 R. Davis, B. Sagan / European Journal of Combinatorics 74 (2018) 48–84

Table 1
The choices of Π ⊆ S3 that result in unimodularly distinct Pn(Π ), and
references to the results proven about them.

Π Relevant result(s) for Pn(Π )

∅ Pn(Π ) = Pn
{123} –
{132} –
{123, 132} Theorem 3.16
{123, 231} –
{123, 321} Pn(Π ) = ∅ for n ≥ 5
{132, 213} Conjecture 3.19
{132, 231} –
{132, 312} Proposition 3.9
{123, 132, 213} –
{123, 132, 231} Proposition 3.21
{123, 132, 312} Proposition 3.20
{123, 231, 312} Proposition 3.22
{132, 213, 231} Proposition 3.23
{123, 132, 213, 231} Proposition 3.24
{123, 132, 231, 312} Proposition 3.24
{132, 213, 231, 312} Proposition 3.24
{123, 132, 213, 231, 312} Pn(Π ) = {(n, n − 1, . . . , 1)}

to the lattices of Young diagrams contained in a certain shape, and this permits us to give an exact
expression for the normalized volumes of the corresponding polytopes via the hook formula. Finally,
in Section 6, Stanley’s theory of (P, ω)-partitions is applied to show that the h∗-vectors of these two
polytopes are symmetric and unimodal.

Various conjectures and questions are scattered through the paper.

2. Preliminaries

There are a number of concepts to which we refer throughout the paper. In this section, we collect
the most frequent of these notions.

2.1. Diagrams, Wilf equivalence, and grid classes

Let π = a1 · · · ak ∈ Sk. Sometimes for clarity wewill insert commas andwrite π = a1, . . . , ak. The
diagram of a permutation π is the set of points with Cartesian coordinates (i, ai) for i = 1, . . . , k. An
example diagram is given in Fig. 1. When no confusion will result, we make no distinction between
a permutation and its diagram. Diagrams of permutations provide an easy way to see how certain
permutations can be related geometrically. For example, the diagrams of π and π−1 are related by
reflection across the line y = x. With both the Π-avoiding permutohedra and Π-avoiding Birkhoff
polytopes, many results will be true not only for the choice ofΠ in their statement, but also for certain
other subsets of permutations whose diagrams are related to those in Π .

Two permutations π1 and π2 are called Wilf equivalent, written π1 ≡ π2, if |Avn(π1)| = |Avn(π2)|
for all n. For example, any two permutations inS3 are Wilf equivalent. This is indeed an equivalence
relation. Although proving π1 ≡ π2 may be quite difficult, in some instances the Wilf equivalence of
two permutations follows quickly from observing that their diagrams are related by a transformation
in the dihedral group of the square.

Let D4 = {R0, R90, R180, R270, r−1, r0, r1, r∞}, where Rθ is rotation counterclockwise by an angle
of θ degrees and rm is reflection across a line of slope m. A couple of these rigid motions have easy
descriptions in terms of the one-line notation for permutations. If π = a1a2 . . . ak then its reversal is
π r

= ak . . . a2a1 = r∞(π ), and its complement is π c
= k+1−a1, k+1−a2, . . . , k+1−ak = r0(π ).

Note that for any f ∈ D4, one has σ ∈ Avn(π ) if and only if f (σ ) ∈ Avn(f (π )), and hence π ≡ f (π ).
For this reason, the equivalences induced by the dihedral action on a square are often referred to as
the trivial Wilf equivalences.
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Fig. 1. The diagram of the permutation 2 641 753.

Call polytopes P and Q unimodularly equivalent if one can be taken into the other by an affine
transformation whose linear part is representable by an n × n matrix with integer entries and
determinant ±1. We will see in Propositions 3.2 and 4.2 that certain trivial Wilf equivalences imply
unimodular equivalence of the corresponding polytopes.

In subsequent sections, it will be helpful to describe classes of permutations in the following way:
Let A = (ai,j) be a k × l matrix with entries in {0, ±1}. We say that a permutation σ is A-griddable in
R2 if the diagram C of σ can be partitioned into rectangular regions Ci,j using horizontal and vertical
lines in such a way that

C ∩ Ci,j is

⎧⎨⎩
increasing if ai,j = 1,
decreasing if ai,j = −1,
empty if ai,j = 0.

If C∩Ci,j contains one element or no elements, it may be considered as either increasing or decreasing.
For example, if

A =

[ 0 1
−1 −1
0 −1

]
,

then σ = 4 261 573 is A-griddable, as demonstrated in Fig. 2. For a particular matrix A, the grid class
of A is the set of permutations that are A-griddable. We will occasionally use grid classes to more
conveniently describe the structure of permutations used as the vertices of our polytopes.

2.2. Ehrhart polynomials and volume

For a lattice polytope P ⊆ Rn, consider the counting function LP (m) := |mP ∩Zn
|, wheremP is the

mth dilate of P . This function is a polynomial in m, although not obviously so; it is called the Ehrhart
polynomial of P . In particular, two well-known theorems due to Ehrhart [16] and Stanley [34] imply
that the Ehrhart series of P ,

EP (t) := 1 +

∑
m≥1

LP (m)tm,
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Fig. 2. An A-gridding of 4 261 573.

may be written in the form

EP (t) =

∑d
j=0 h

∗

j t
j

(1 − t)dim P+1

for some nonnegative integers h∗

0, . . . , h
∗

d with h∗

0 = 1, h∗

d ̸= 0, and d ≤ dim P .
We say the polynomial h∗

P (t) :=
∑d

j=0h
∗

j t
j is the h∗-polynomial of P and the vector of coefficients,

h∗(P), is the h∗-vector of P . The h∗-vector of a lattice polytope P is a fascinating invariant, and ob-
taining a general understanding of h∗-vectors of lattice polytopes and their geometric/combinatorial
implications is currently of great interest.

A standard result of Ehrhart theory is that the leading coefficient of LP (m) gives the volume of P .
We note, though that when a polytope P ⊆ Rn is not full-dimensional, some extra care is needed
when discussing volume. Usual Euclidean volume would dictate that the volume of a polytope that
is not full-dimensional is zero. However, we are typically interested in the relative volume, that is,
the volume of the polytope with respect to the lattice (aff P) ∩ Zn where aff P is the affine subspace
spanned by P . When P does have full dimension, the notions of volume and relative volume coincide.
Throughout this paper, ‘‘volume’’ is understood to mean the relative volume.

The normalized volume of a lattice polytope P ⊆ Rn is defined as Vol P := (dim P)!vol(P), where
vol(P) is the usual relative volume of P . A lattice simplex Σ ⊆ Rn with vertex set V = {v0, . . . , vk} is
unimodular with respect to the lattice L if it has smallest possible relative volume with respect to L. If L
is not specified, then it is assumed that L = (aff V ) ∩ Zn. Equivalently, Σ is unimodular with respect
to L if the set of emanating vectors {v1 − v0, . . . , vk − v0} forms a Z-basis of L− v0. In particular, if P is
unimodular, then it has a normalized volume of 1. We refer to Section 5.4 of [6] for a more thorough
discussion of these details.

3. Permutohedra

The permutohedron has been generalized in multiple ways, including the permuto-associahedron
of Kapranov [21], whichwas first realized as a polytope by Reiner and Ziegler [29], and the generalized
permutohedra studied by Postnikov [26]. Here, we study yet another generalization of the permuto-
hedron by looking at Pn from the perspective of pattern avoidance.
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Table 2
Experimental data for Pn(123) and Pn(132) for n = 3, 4, 5, 6. We use the notation fn−2 to denote the number of facets of the
polytope.

Π n fn−2 LPn(Π )(m) Vol(Pn(Π ))

{123} 3 5 1 +
5
2m +

5
2m

2 5

4 13 1 +
11
3 m + 9m2

+
31
3 m3 62

5 43 1 +
65
12m + 1218m2

+
511
12 m3

+
479
8 m4 1437

6 215 1 +
71
6 m +

117
4 m2

+
413
6 m3

+
1019
4 m4

+
1339
3 m5 53560

{132} 3 5 1 +
5
2m +

5
2m

2 5
4 11 1 + 4m + 9m2

+ 10m3 60
5 27 1 + 6m + 372m2

+ 43m3
+

109
2 m4 1308

6 84 1 +
521
60 m +

283
8 m2

+
197
2 m3

+
2089
8 m4

+
22399
60 m5 44798

Definition 3.1. Let Π ⊆ Sn and define

Pn(Π ) := conv{(a1, . . . , an) | a1 . . . an ∈ Avn(Π )}

to be the Π-avoiding permutohedron. If Π = {π} then we write Pn(π ) for Pn(Π ).

Notice that if Π = ∅, then Pn(Π ) = Pn and each permutation is a vertex of Pn. Since Pn(Π ) is
obtained by taking a convex hull of a subset of these vertices, the elements of Avn(Π ) will also be
vertices of Pn(Π ). For example, if π ∈ S3 then, as previously remarked, |Avn(π )| = Cn where Cn is the
nth Catalan number, so Pn(π ) has a Catalan number of vertices.

Proposition 3.2. If Π ⊆ S, then Pn(f (Π )) is unimodularly equivalent to Pn(Π ) for any f ∈

{R0, R180, r0, r∞}. So their face lattices, volumes, and Ehrhart series are all equal.

Proof. For ease of notation, we prove this in the case that Π = {π}. The general demonstration is
similar. Recall that π r

= r∞(π ) and π c
= r0(π ).

From the discussion above, Pn(π r ) is the image of Pn(π ) under the map f (v) = Av, where A =[
en · · · e1

]
and the ei are the standard unit column vectors. Since A is a permutation matrix, this

is a unimodular transformation.
Also, Pn(π c) is the image of Pn(π ) under the map

g(x1, . . . , xn) = (n + 1 − x1, . . . , n + 1 − xn) = (n + 1, . . . , n + 1) − (x1, . . . , xn),

which is again clearly unimodular. Finally, notice that R180(π ) = f ◦ g(π ) and so R180 gives rise to a
unimodular equivalence as well. □

Notice that

• two permutations π and π ′ may be Wilf equivalent without Pn(π ) and Pn(π ′) being unimod-
ularly equivalent. For example, 123 and 132 are Wilf equivalent, but P4(123) has 13 facets
whereas P4(132) has only 11.

• two permutations π and π ′ may even be trivially Wilf equivalent without Pn(π ) and Pn(π ′)
being unimodularly equivalent. For example, π = 1423 and π ′

= 2431 are related by a 90-
degree rotation, however P5(1423) has 48 facets while P5(2431) only has 46.

Proposition 3.2 allows us to choose Π more efficiently; a summary of the choices of Π ⊆ S3
leading to potentially distinct Pn(Π ), and the corresponding results, are given in Table 1. Certain
entries in the table have no corresponding result or conjecture provided; this is because no clear
structure of Pn(Π ) is apparent in these cases. See Table 2 for experimental data, computed via LattE [3],
regarding these two polytopes for small n.
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3.1. Avoiding two patterns inS3

We begin by noting that if Π = {123, 321} then Avn(Π ) = ∅ for n ≥ 5. This is because of the
Erdős–Szekeres theorem which states that any permutation in Smn+1 contains either an increasing
subsequence of lengthm+ 1 or a decreasing subsequence of length n+ 1. The same is clearly true for
any Π containing {123, 321}. So we do not need to consider polytopes for such avoidance classes.

The following result will be useful when considering Π = {132, 312} in both the permutohedron
and Birkhoff polytope cases. It follows easily from the proof of Proposition 5.2 in [15].

Lemma 3.3. The permutations in Avn(132, 312) are the permutations of Sn in the grid class of the matrix

A =

[
1

−1

]
. □

Proposition 3.4. The polytope Pn(132, 312) is a rectangular parallelepiped (parallelotope). Specifically,
the polytope is contained in the hyperplane

∑
xi =

(n+1
2

)
, and its facet-defining inequalities are⏐⏐⏐⏐⏐

j∑
i=1

(xi − xj+1)

⏐⏐⏐⏐⏐ ≤

(
j + 1
2

)
(1)

as j ranges over 1, . . . , n − 1.

Proof. Consider the polytope P defined by the given inequalities and lying in the given hyperplane.
Each inequality in (1) gives a pair of parallel faces of P because of the absolute value signs. It is also easy
to check that the normal vectors are pairwise orthogonal and also orthogonal to the vector (1, . . . , 1)
which defines the hyperplane

∑
xi =

(n+1
2

)
. Thus P is an (n − 1)-dimensional parallelotope.

The polytope P will have 2n−1
= |Avn(132, 312)| vertices. So to demonstrate that P = Pn(132, 312)

it suffices to prove that every σ = a1a2 · · · an ∈ Avn(132, 312) is a vertex of P . It follows from
Lemma 3.3 that the elements of this avoidance class are characterized by the fact that for each
j = 1, . . . , n − 1, we have aj+1 is either one greater than the largest previously-appearing entry
or one less than the smallest previously-appearing entry. Note that if it is smaller, then σ satisfies∑j

i=1(xi − xj+1) =
(j+1

2

)
, and if it is larger then σ satisfies

∑j
i=1(xi − xj+1) = −

(j+1
2

)
. These equalities

hold because the summands are exactly the integers 1, . . . , j in the first case and −1, . . . ,−j in the
second. Since this is true for all j, σ is a vertex of P . □

Corollary 3.5. The volume of Pn(132, 312) is (n − 1)!.

Proof. By the previous proposition, the volume of P = Pn(132, 312) may be computed directly by
choosing a base vertex, taking the product of the lengths of the edges incident to it, and then dividing
by an appropriate factor to account for the relative volume. For the scaling factor, it is well-known
that for a (measurable) subset S ⊆ Rm and a linear function f : Rm

→ Rn, with m ≤ n,

vol(f (S)) =

√

det ATA vol(S),

where A is the matrix for f and volume is taken with respect to the usual Euclidean measure. In our
case, a Z-basis for aff P ∩ Zn is e1 − ej for j = 2, . . . , n, so these vectors form the columns of A. It is
straightforward to check that ATA = Jn−1 + In−1 where Jn−1 is the (n− 1)× (n− 1) matrix with every
entry 1. Furthermore, one easily sees that Jn−1+In−1 has one eigenvalue equal to n (with corresponding
eigenspace spanned by the all-ones vector) and the rest equal to 1 (with corresponding eigenspace
the subspace of vectors with coordinate sum zero). Thus det ATA = n. So to find the relative volume
of P , we must divide the usual (n − 1)-dimensional volume of P by

√
n.

Now, a convenient choice of base vertex is the permutation σ = 12 · · · n. Using the hyperplane
description of the previous result, this vertex is adjacent to the permutations σj = 2, . . . , j, 1, j +

1, . . . , n for each j = 2, . . . , n. It is straightforward to compute that |σj − σ | =
√
j(j − 1), so taking

the product of these lengths and then dividing by
√
n yields vol(P) = (n − 1)! as desired. □
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Remark 3.6. We would like to note a connection between permutations avoiding {132, 312} and
the world of polytopes. The permutations of Avn(132, 312) can be considered as elements of a
type-A Coxeter group. Thought of in this way, the elements of Avn(132, 312) are an example of
c-singletons (where c = s1s2s3), that is, their inverses form vertices of both the permutohedron
and Loday’s realization of the associahedron; see [23,20]. It would be interesting to define pattern-
avoiding polytopes for other Coxeter groups and see if there is any relationshipwith the corresponding
c-singletons.

Postnikov [26] defined generalized permutohedra and showed that they encompass associahedra,
cyclohedra, Stanley–Pitman polytopes, and graphical zonotopes. So one could ask if Pn(Π ) is always a
generalized permutohedron, since we would then immediately know its volume and, in some cases,
its Ehrhart polynomial. However wewill show that this is not the case for Π = {132, 312}. To do this,
we need a few more tools.

A fan in Rn consists of a set of polyhedral cones F = {Cα} in Rn, each containing 0, such that

• if Cα ∈ F and Cβ is a face of Cα , then Cβ ∈ F , and
• for any α and β , Cα ∩ Cβ is a face of both Cα and Cβ .

Using the notation

|F| :=

⋃
F∈F

F ,

we say a fan F ′ refines F if |F ′
| = |F| and if each cone in F ′ is contained in a cone in F . We note that

the literature also uses the notation
⋃

F for |F|.
Let w ∈ Rn and let P ⊆ Rn be any polytope. Define

facew(P) := {u ∈ P | wTu ≥ wTv for all v ∈ P}.

In other words, facew(P) is the face of P for which the linear form defined by w is maximized. If F is a
face of a polytope P , the normal cone of F at P is

NP (F ) := {w ∈ Rn
| facew(P) = F}.

In particular, if F is a facet of P , then NP (F ) is a ray. The collection of all NP (F ), ranging over all faces of
P , is the normal fan of the polytope, and is denoted N(P).

In our case, the inequalities of (1) provide the rays of the normal fan for Pn(132, 312). We will
compare this normal fan with a certain other fan, defined in the following way. The braid arrangement
inRn/(1, . . . , 1)R is the set of hyperplanes {xi = xj}1≤i<j≤n. These hyperplanes partition the space into
theWeyl chambers

Cσ := {(x1, . . . , xn) ∈ Rn
| xσ (1) ≤ · · · ≤ xσ (n)},

where σ ∈ Sn. The collection of these chambers and their lower-dimensional faces is the braid
arrangement fan. The following result of Postnikov, Reiner, and Williams, allows us to see that
Pn(132, 312) does not fall into the class of generalized permutohedra.

Proposition 3.7 ([27, Proposition 3.2]). A polytope P in Rn is a generalized permutohedron if and only if
its normal fan, reduced by (1, . . . , 1)R, is refined by the braid arrangement fan. □

Using the hyperplane description from Proposition 3.4, we can see immediately that the rays of
N(Pn(132, 312)) are not all rays of the braid arrangement fan. It follows that the braid arrangement
fan cannot be a refinement of N(Pn(132, 312)). See Fig. 3 for an example.

The Ehrhart polynomial of Pn is known to be
∑n−1

i=0 Fim
i, where Fi is the number of forests with i

edges on vertex set {1, 2, . . . , n} (see Exercise 4.64(a) in [37]). The technique in this exercise can also
be used to find the Ehrhart polynomial of Pn({132, 312}). Our first step in this direction will use the
following result, due to Stanley.
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Fig. 3. Viewed from (1, 1, 1), the rays N(P3(132, 312)) are solid, while the rays of the braid arrangement fan are dashed.

Theorem 3.8 ([36, Theorem 2.2]). Suppose P is a lattice zonotope, that is, P can be written in the form

P = {a1v1 + · · · + akvk | 0 ≤ ai ≤ 1},

where each vi belongs to Zn. The Ehrhart polynomial of P is

LP (m) =

∑
X

g(X)m|X | (2)

where the sum ranges over all linearly independent subsets X of {v1, . . . , vk} andwhere g(X) is the greatest
common divisor of all full minors of the matrix whose columns are the elements of X. □

To state the next result elegantly we define, for nonnegative integers n and k, the falling factorial

n↓k = n(n − 1) . . . (n − k + 1).

Proposition 3.9. The polytope P = Pn(132, 312) has Ehrhart polynomial

LP (m) =

n−1∑
k=0

(n − 1)↓km
k.

Proof. From the half-space and hyperplane description given in Proposition 3.4, we can see that P is,
up to a translation by (1, 2, . . . , n), the zonotope

Z = {a1v1 + · · · + an−1vn−1 | 0 ≤ ai ≤ 1} ⊆ Rn

where vj =
∑j

i=1(ei − ej+1) for j = 1, . . . , n − 1. By applying the transformation x ↦→ Ax, where A is
the n × n upper-triangular matrix with −1 in all positions along and above the diagonal, we see that
Z is unimodularly equivalent to

Ẑ = {a1w1 + · · · + an−1wn−1 | 0 ≤ ai ≤ 1} ⊆ Rn
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where

wj =

j+1∑
i=1

(i − 1)ei

for each j = 1, . . . , n − 1. Note that the set of all wj is linearly independent.
We will now complete the proof using Eq. (2) on the wj basis. First, however, we need to set up

some notation. For X as in (2)wewill use X to stand for both the subset and thematrixwhose columns
are the elements of X . For any family F of subsets X we define

g(F) =

∑
X∈F

g(X).

We also let Fn,k be the family of all k-element subsets of w1, . . . , wn−1 and g(n, k) = g(Fn,k). So we
will be done ifwe can prove that g(n, k) = (n−1)↓k. In fact, wewill show that the following recurrence
relation holds:

g(n + 1, k) = g(n, k) + n(g(n, k − 1) − g(n − 1, k − 1)) + g(n − 1, k − 1). (3)

It is easy to verify that (n − 1)↓k satisfies the same recursion for n ≥ 2. So induction on n completes
the proof once we have verified the base case n = 1. But P = P1(132, 312) is a single vertex so that
LP (m) = 1 which agrees with the fact that 0↓k = δ0,k where the latter is the Kronecker delta.

To prove (3), partition Fn+1,k into the three subsets

F1 = {X ∈ Fn+1,k | X does not contain wn},

F2 = {X ∈ Fn+1,k | X contains both wn−1 and wn},

F3 = {X ∈ Fn+1,k | X contains wn but not wn−1}.

From the definitions, one has

g(n + 1, k) = g(F1) + g(F2) + g(F3).

We now show that each of these summands equals the corresponding summand in (3).
The matrices in F1 are the same as those for Fn,k except with a last row of zeros. Clearly this row

does not contribute any nonzero minors so g(F1) = g(n, k), giving the first summand.
Now consider the minors of a matrix X ∈ F2, letting M be the submatrix of the minor. An

example follows the proof to elucidate the method. If M does not contain the last row of X , then
its last two columns are equal and detM = 0. So the only M contributing to g(F2) are those
whose last row is the final row of X which is all zero except for a last entry of n. It follows that
|detM| = n|detM ′

| where M ′ is obtained by removing the last row and column of M . The possible
M ′ which can appear are exactly those occurring in elements X ′

∈ Fn,k−1 such that wn−1 ∈ X ′. Using
the reasoning of the previous paragraph and complementation, we see that such |detM ′

| contribute
exactly g(n, k− 1)− g(n− 1, k− 1) to the desired sum. Thus g(F2) = n(g(n, k− 1)− g(n− 1, k− 1)).

Finally take X ∈ F3 so that X ends with a sequence of at least two rows each of which has a sole
nonzero entry at the end. Keeping the notation and reasoning of the previous paragraph, we see that
if detM ̸= 0 then M must contain exactly one row from this final sequence. Let m1, . . . ,mr be the
minors which can be obtained from all nonzero minors containing the last row of X . Then for all i
we have mi = nm′

i where m′

1, . . . ,m
′
r are exactly the nonzero minors of X ′

∈ Fn−1,k−1 obtained by
removing the last row and column of X . So

gcd(m1, . . . ,mr ) = n gcd(m′

1, . . . ,m
′

r ) = ng(X ′).

Now repeat this process, but using the penultimate row of X , giving minors mr+1, . . . ,m2r with
greatest commondivisor (n−1)g(X ′). Butn andn−1 are relatively prime, so gcd(m1, . . . ,m2r ) = g(X ′).
Continuing in this way, we see that g(X) = g(X ′). Summing over all possible X gives g(F3) =

g(n − 1, k − 1) and completes the proof. □
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To illustrate this demonstration, take n = 5 and k = 4 . Then a typical element of F2 is

X =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0
1 1 1 1
0 2 2 2
0 0 3 3
0 0 4 4
0 0 0 5

⎤⎥⎥⎥⎥⎥⎦ .

Considering the submatrix M obtained by picking rows 2, 3, 5, and 6 of X and expanding around the
last row we get detM = 5 detM ′ where

M ′
=

[1 1 1
0 2 2
0 0 4

]
.

Note thatM ′ is also a submatrix of the matrix

X ′
=

⎡⎢⎢⎢⎣
0 0 0
1 1 1
0 2 2
0 0 3
0 0 4

⎤⎥⎥⎥⎦ ∈ F5,3

and w4 ∈ X ′. The reader should now find it easy to construct a similar example for the argument
concerning X ∈ F3 if need be.

A standard fact from Ehrhart theory states that the leading coefficient of LP (m) is the volume of
P , so Corollary 3.5 is reaffirmed by the previous result. Moreover, knowing the Ehrhart polynomial
allows us to deduce an interesting fact about the interior lattice points of Pn(132, 312).

Corollary 3.10. The number of lattice points interior to Pn(132, 312) is equal to the number of derange-
ments inSn−1.

Proof. Let P = Pn(132, 312) and P◦ be the interior of P . By Proposition 3.9 and Ehrhart–Macdonald
reciprocity [6, Theorem 4.1],

LP◦ (m) = (−1)n−1
n−1∑
k=0

(n − 1)↓k(−m)k.

Evaluating atm = 1, we get

LP◦ (1) = (−1)n−1
n−1∑
k=0

(n − 1)↓k(−1)k,

which is the well-known inclusion–exclusion formula for derangements. □

Question 3.11. Is there a natural bijection between the interior points of Pn(132, 312) and the
derangements inSn−1?

In the case of Pn(132, 312), the Ehrhart polynomial was simple enough to compute directly. Since
the coefficients can be explicitly determined, one may also determine the h∗-vector of Pn(132, 312)
by a change-of-basis, although there does not seem to be a simple formula for its components.

Although finding explicit formulas for h∗-vectors is usually challenging in general, there are other
methods for determining certain properties it might possess. A recent result due to Beck, Jochemko,
andMcCullough [4] states that lattice zonotopes always have a unimodal h∗-vector. Thus the following
result follows from Proposition 3.4.

Corollary 3.12. For all n ≥ 1, h∗(Pn(132, 312)) is unimodal. □
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Question 3.13. For which Π-avoiding permutohedra P is h∗(P) unimodal?

We will next consider a Π-avoiding permutohedron whose Ehrhart polynomial is easily com-
putable due to results of Pitman and Stanley [25]. Given a sequence of nonnegative real numbers
c = (c1, . . . , cn), there is a corresponding Pitman–Stanley polytope PSn(c) defined by

PSn(c) :=

{
x ∈ Rn

| xi ≥ 0 and
j∑

i=1

xi ≤

j∑
i=1

ci for all 1 ≤ j ≤ n

}
.

Pitman–Stanley polytopes are connectedwithmultiple combinatorial objects. For example, recall that
a polyhedral subdivision of a polytope P is a collection of subpolytopes P1, . . . , Pk ⊆ P whose union is
P , and Pi ∩Pj is a face of both Pi and Pj for all i, j. Pitman and Stanley showed that PSn(c) has polyhedral
subdivisionswhosemaximal elements correspond to certain plane trees; Vol(PSn(c)) can be expressed
in terms of parking functions; the number of lattice points of PSn(c) can be expressed in terms of plane
partitions of a particular shape. The key result for us is the following.

Theorem 3.14 (Pitman and Stanley, [25]). Let a, b be positive integers, and set c = (a, b, . . . , b) ∈ Zn.
The Ehrhart polynomial of PSn(c) is

LPSn(c)(m) =
am + 1

n!

n∏
j=2

((a + nb)m + j) . □

Before continuing, we need a little background. The face lattice of a polytope is the poset of its faces
ordered by inclusion. Two polytopes are combinatorially equivalent if their face lattices are isomorphic.
As proven in Theorem 19 of [25], whenever c has positive entries, PSn(c) is combinatorially equivalent
to an n-cube.

Lemma 3.15. When c has positive entries, the vertices of PSn(c) are exactly the vectors v = (v1, . . . , vn)
constructed, component-wise from left to right, by either setting vj = 0 or setting vj = cj + cj−1 +· · ·+ ci,
where vi−1 is the previous nonzero entry of v.

Proof. Since c has positive entries, PSn(c) is a combinatorial cube, hence the set of facets may be
partitioned into n non-intersecting pairs. In particular, the pairs correspond to the hyperplanes xj = 0
and x1 + · · · + xj = c1 + · · · + cj. Again, since PSn(c) is a combinatorial cube, a vertex v will lie on
exactly one of the facets of each pair. From these two facts, the conclusion follows. □

Theorem 3.16. The polytope P = Pn(123, 132) is a combinatorial cube with Ehrhart polynomial

LP (m) =
m + 1
(n − 1)!

n−1∏
j=2

(nm + j).

Proof. Wewill show that P is related to PSn−1(1, . . . , 1) in such a way that its face lattice and Ehrhart
polynomial are preserved. Then the theorem will follow from the statement just before Lemma 3.15,
and by setting a = b = 1 in Theorem 3.14.

We first need a description of the vertices of P . By reversing the permutations in Proposition 4.2
of [15], we note that the diagram for a vertex v = (v1, . . . , vn) of Pn(123, 132) consists of a decreasing
sequence of blocks where each block is the pattern k(k − 1) · · · 1(k + 1) for some k. Define a function
f : Rn

→ Rn−1 by

f (a1, . . . , an) = (a1, . . . , an−1) − (n − 1, n − 2, . . . , 1).

We claim that f maps the vertices of P to the vertices of PSn−1(1, . . . , 1). Indeed, suppose the first
block of a vertex v of P is of the form (n − 1, n − 2, . . . , n − k, n). Then under f this maps to the
sequence (0, 0, . . . , 0, k + 1) with k initial zeros. But, by Lemma 3.15, this is the prefix of a vertex of
PSn−1(1, . . . , 1). Continuing in thisway, we see that f (v) will indeed be a vertex of this Pitman–Stanley
polytope. Reversing the argument shows that f is, in fact, a bijection on the vertex sets.
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Since P is a subpolytope of the usual permutohedron, the projection to the first n − 1 coordinates
preserves the face lattice and Ehrhart polynomial, as does lattice translation. This verifies the claim in
the first sentence of the proof. □

From the Ehrhart polynomial, we can immediately determine the volume and number of lattice
points in the polytope.

Corollary 3.17. The normalized volume of Pn(123, 132) is nn−2 and the number of lattice points it contains
is the Catalan number

Cn =
1

n + 1

(
2n
n

)
.

Proof. To calculate the normalized volume, one takes the leading coefficient of the Ehrhart polynomial
in Theorem 3.16 and multiplies by (n − 1)! since dim Pn(123, 132) = n − 1. To calculate the number
of lattice points, one just plugsm = 1 into this polynomial. □

We end this section with a question and a conjecture.

Question 3.18. The normalized volume in Corollary 3.17 is just the number of trees on n vertices
and this quantity will also appear as a normalized volume in Proposition 3.22. And there are many
combinatorial interpretations of the Catalan numbers. This raises the question of whether there is a
combinatorial proof of Corollary 3.17 or Proposition 3.22.

The conjecture that follows makes a statement similar to that of Theorem 3.16. However, we have
been unable to provide a proof.

Conjecture 3.19. For all n, Pn(132, 213) is a combinatorial cube with normalized volume 2n−1nn−3.

3.2. Avoiding three or four patterns fromS3

When Π contains at least three or four patterns of S3, there are relatively few vertices of Pn(Π ).
Consequently, Pn(Π ) can be a fairly simple object such as a simplex or line segment.

Proposition 3.20. The Ehrhart polynomial for P = Pn(123, 132, 312) is (1 + m)n−1 and so h∗

P (t) is the
Eulerian polynomial An−1(t).

Proof. As noted in [9], it is implied by [13] that the simplex P ′
n whose vertices are the set

Ln := {en} ∪

⎧⎨⎩
n∑
j=i

jej | i = 1, . . . , n − 1

⎫⎬⎭
has Ehrhart polynomial (1+m)n−1. Since the degree of the Ehrhart polynomial is the dimension of the
polytope, P ′

n is an (n− 1)-dimensional simplex. In particular, note that each (x1, . . . , xn) ∈ Ln satisfies
the equation xn − xn−1 = 1. So, projecting P ′

n to Rn−1 by forgetting the last coordinate one obtains P ′′
n ,

which has the same Ehrhart polynomial as P ′
n. Transforming P ′′

n by f : x ↦→ Ax, where A is the matrix
with jth column ej − ej+1 for j = 1, . . . , n − 2 and last column en−1, results in the simplex whose
vertices are 0 and iei +

∑n−1
j=i+1ej for i = 1, . . . , n − 1.

As stated in the proof Proposition 16* from the paper of Simion and Schmidt [31], the n permuta-
tions inAvn(123, 132, 312) are those obtained by inserting n in all possibleways (between elements or
at the beginning or end) into the decreasing sequence n−1, n−2, . . . , 1. So f (P ′′

n ) can also be obtained
from P by dropping the last coordinate and translating by −(n − 1, n − 2, . . . , 1). Since each of these
operations is a unimodular transformation, P has the same Ehrhart polynomial and h∗-polynomial as
P ′
n, which are (1 + m)n−1 and An−1(t), respectively. □
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Recall that the (n − 1)-dimensional standard simplex is the simplex ∆n−1 ⊆ Rn whose vertices are
the standard basis vectors of Rn.

Proposition 3.21. For all n, Pn(123, 132, 231) is unimodularly equivalent to ∆n−1.

Proof. Again from the proof of [31, Proposition 16*] we see that the elements of Avn(123, 132, 231)
are exactly the permutations of the form

σ = n, n − 1, . . . , k + 1, k − 1, k − 2, . . . , 1, k

for 1 ≤ k ≤ n. Consider the transformation f : Rn
→ Rn, defined by f (x) = Ax − v, where

column i of A is en−i − en−i+1 + en for 1 ≤ i < n, column n of A is en, and v = (1, . . . , 1,
(n
2

)
)T . It

is straightforward to check that det A = (−1)n−1, so that f is a unimodular transformation, and that
f (Pn(123, 132, 231)) = ∆n−1. □

Proposition 3.22. For all n, Pn(123, 231, 312) is a simplex with normalized volume nn−2.

Proof. Using the proof of Proposition 16* in [31] again, the elements of the set Avn(123, 231, 312) are

σ = k, k − 1, . . . , 1, n, n − 1, . . . , k + 1

for 1 ≤ k ≤ n. Consider the transformation f : Rn
→ Rn, defined by f (x) = Ax + v, where the

first column of A is −e1 − en, column i of A is ei−1 − ei for 1 < i < n, column n of A is en−1, and
v = (1, . . . , 1, n). It is easy to see that det A = (−1)n, so f is a unimodular transformation. Moreover,

P ′
= f (Pn(123, 231, 312)) = conv({0} ∪ {nei + (n − i)en | 1 ≤ i < n}).

So, Pn(123, 231, 312) is a simplex lying in the hyperplane H determined by the equation

(n − 1)x1 + (n − 2)x2 + · · · + xn−1 − nxn = 0.

The lattice H ∩ Zn has a Z-basis

{ei − (n − i)en−1 | 1 ≤ i ≤ n − 2} ∪ {nen−1 + en}.

Therefore, the normalized volume of P ′ is the same as the normalized volume of the polytope whose
vertices are the coordinate vectors of the vertices of P ′ expressed in this basis. These vertices are 0,
en−1, and nei + (n − i)en−1 for 1 ≤ i ≤ n − 2. Thus, the normalized volume is

det[ne1 + (n − 1)en−1, ne2 + (n − 2)en−1, . . . , nen−2 + 2en−1, en−1] = nn−2,

as desired. □

Proposition 3.23. For all n, Pn(132, 213, 231) is a simplex with normalized volume (n − 1)!.

Proof. Again, the proof of [31, Proposition 16*] shows that the elements of Avn(132, 213, 231) are
exactly the permutations of the form

σ = n, n − 1, . . . , k + 1, 1, 2, . . . , k − 1, k

for 1 ≤ k ≤ n. Consider the transformation f : Rn
→ Rn, defined by f (x) = Ax, where row 1 of

A is the all-ones vector, row 2 of A is en, and row i for 2 < i ≤ n is ei−1 − ei. It is routine to verify
(say, by cofactor expansion along row 2) that det A = (−1)n, hence f is a unimodular transformation.
Also, it is straightforward to check that f (Pn(132, 213, 231)) lies on the hyperplane x1 =

(n+1
2

)
, so that

projecting f (Pn(132, 213, 231)) onto its last n − 1 coordinates results in a polytope P ′
n with the same

normalized volume. Furthermore, the translation P ′
n + v, where v = (−n, 1, . . . , 1)T ∈ Rn−1, gives a

polytope whose vertices are v0, . . . , vn−1, where v0 is the origin, v1 = −e1, and

vi = −ie1 + (n − i + 1)ei + 2
i−1∑
j=2

ej
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Table 3
The Ehrhart polynomial of Pn(132, 213, 231) for 3 ≤ n ≤ 8.

n Ehrhart polynomial of Pn(132, 213, 231)

3 1 + 2m + m2

4 1 + 2m + 2m2
+ m3

5 1 +
7
3m + 3m2

+
8
3m

3
+ m4

6 1 + 3m +
9
2m

2
+

9
2m

3
+ 3m4

+ m5

7 1 +
46
15m +

31
6 m2

+
41
6 m3

+
19
3 m4

+
18
5 m5

+ m6

8 1 +
91
30m +

19
3 m2

+
125
12 m3

+
35
3 m4

+
171
20 m5

+ 4m6
+ m7

for i = 2, . . . , n − 1. The matrix M with columns v1, . . . , vn−1 is diagonal with |detM| = (n − 1)!
which simultaneously proves that Pn(132, 213, 231) is a simplex and has the correct normalized
volume. □

Although we have proven that Pn(132, 213, 231) has the same combinatorial structure and vol-
ume as Pn(123, 132, 312), these two polytopes are not unimodularly equivalent. This can be seen
from comparing their Ehrhart polynomials, which are distinct; some of the Ehrhart polynomials of
Pn(132, 213, 231) for small n are given in Table 3. There does not appear to be any obvious formula
for their coefficients.

The last result of this section is included for completeness.

Proposition 3.24. For all n, each of the polytopes Pn(123, 132, 213, 231), Pn(123, 132, 231, 312), and
Pn(132, 213, 231, 312) is a line segment.

Proof. By [31, Proposition 17], |Avn(Π )| = 2 for each of these Π . The claim follows immediately. □

4. The Birkhoff polytope

We come now to our second mixing of polytopes and avoidance classes of permutations by
generalizing the Birkhoff polytope Bn in the following way.

Definition 4.1. Let Π be any set of permutations. The Π-avoiding Birkhoff polytope is

Bn(Π ) := conv{M ∈ Rn×n
| M a permutation matrix for some σ ∈ Avn(Π )}.

Despite its simple description, the Birkhoff polytope has shown a reluctance to provide researchers
with information about certain elements of its structure. For example, although its h∗-vector is known
to be symmetric and unimodal [1], its volume is only known for n ≤ 10 [5].

Studying variations of the Birkhoff polytope is not uncommon. For example, permutation polytopes,
subpolytopes of Bn whose vertices form a subgroup ofSn, have been studied by, for example, Burggraf,
De Loera, andOmar [11],who studied their volumes, andOnn [24],who studied their low-dimensional
skeletons and combinatorial types. Another important variation is the class of transportation polytopes,
in which row and column sums may be numbers other than 1, and two rows or columns do not
necessarily need to sum to the same value. See [14] for a nice survey of these polytopes.

For compatibility with diagrams of permutations, we will henceforth use the nonstandard con-
vention of indexing our matrices using Cartesian coordinates, using the convention for permutation
diagrams. So if M = (mx,y) is a matrix then mx,y refers to the entry which is in the xth column
from the left and yth row from the bottom. By way of illustration, in a 3 × 3 matrix we would
have

M =

[m1,3 m2,3 m3,3
m1,2 m2,2 m3,2
m1,1 m2,1 m3,1

]
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Table 4
Data for Bn(123) and Bn(132) for n = 3, 4, 5.

P dim P f -vector of P h∗(P) Vol P

B3(123) 4 (1, 5, 10, 10, 5, 1) (1) 1
B4(123) 9 (1, 14, 83, 275, 565, 752, 654, 363, 120, 20, 1) (1, 4, 6, 4, 1) 16
B5(123) 16 ? ? 13890
B3(132) 4 (1, 5, 10, 10, 5, 1) (1) 1
B4(132) 9 (1, 14, 85, 290, 610, 822, 714, 390, 125, 20, 1) (1, 4, 7, 5, 1) 17
B5(132) 16 ? ? 21043

If σ ∈ Sn is a permutation and we refer to its matrix, we mean the permutation matrix (mx,y) ∈

Rn×n such that mx,y = 1 if and only if (x, y) is in the diagram of σ . For example, if σ = 132 then the
corresponding matrix is[0 1 0

0 0 1
1 0 0

]
Note that we will use the term ‘‘main diagonal’’ to refer to the longest diagonal going from northwest
to southeast in a square matrix, the same as when normal matrix coordinates are used.

Similarly to Pn(Π ), Bn(Π ) has the permutation matrices in Avn(Π ) as its vertices. Aside from this,
though, there is very little in common between Pn(Π ) and Bn(Π ). One additional similarity is that, just
as in case of Pn and Bn themselves, Pn(Π ) is the image of Bn(Π ) via the projection

(mx,y)1≤x,y≤n ↦→

∑
1≤x,y≤n

mx,yex = (y1, y2, . . . , yn)

where ei denotes the ith standard basis vector in Rn and yi is the unique index such that mxi,yi = 1
for 1 ≤ i ≤ n. However, unlike the Π-avoiding permutohedron, we will see that all trivial Wilf
equivalences of permutations yield unimodular equivalences of the corresponding polytopes.

Proposition 4.2. If Π ⊆ S, then Bn(f (Π )) is unimodularly equivalent to Bn(Π ) for any f in the dihedral
group of the square.

Proof. Because f is a dihedral action on the square, there is an obvious corresponding action on the
vertices of Bn(Π ) to obtain the vertices of Bn(f (Π )). This action is a particular permutation of the
elements of each matrix, which is itself a unimodular transformation. Applying the action to the full
polytope Bn(Π ) results in a unimodular transformation whose image is Bn(f (Π )). □

This characterization of unimodularly equivalent polytopes allows us to more efficiently study
Bn(Π ), as did Proposition 3.2. However, as the reader will see in the following sections, the analysis
of Bn(Π ) appears to be much more difficult than it was for Pn(Π ). So we will content ourselves with
describing a few special cases.

We begin again with the most natural starting point: choosing Π to be a single element of
S3. By Proposition 4.2, there are only two such classes to consider, which are that of Bn(123) and
Bn(132). Although 123 and 132 are Wilf equivalent, they are not trivially Wilf equivalent and their
corresponding Birkhoff polytopes are not unimodularly equivalent. Table 4 provides experimental
data for these two polytopes when n is small.

We can say more about Bn(Π ) for certain two-element subsets Π ⊆ S3. For the first such, we
recall a well-known polytope, introduced in [12].

Definition 4.3. The Chan–Robbins–Yuen polytope is the polytope in Rn×n defined as

CRYn := conv
{
M = (mx,y) |

M a permutation matrix and
mx,y = 0 for all x ≥ n + 3 − y

}
.
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One of the most fascinating aspects of CRYn is that its volume is known to be a product of
consecutive Catalan numbers, but this fact has only been established via analytic techniques [41]. It
remains an openproblem to find a combinatorial proof. Inwhat follows,wewill say that a permutation
matrix Mσ contains a pattern π if σ contains π and similarly for other definitions from pattern
theory.

Proposition 4.4. For all n we have Bn(123, 213) = CRYn.

Proof. To establish the equality, wewill show that the polytopes have the same vertex sets. In fact, we
prove the contrapositive:Mσ contains a 123or 213pattern if andonly ifmx,y = 1 for some x ≥ n+3−y.
Assume first that we have mx,y = 1 where x ≥ n + 3 − y. The number of ones in a row below row y
is y − 1. And the number of ones in a column to the right of column x is n − x ≤ y − 3. It follows that
there must be at least two ones below and to the left ofmx,y. Thus these three ones form a copy of 123
or 213.

For the converse, let mx,y = 1 be the one which is furthest to the right in any copy of 123 or 213.
It follows that all ones to the right of mx,y must be in lower rows, else mx,y is not rightmost. Since we
know there are at least two elements to the left of mx,y which are smaller, the number of columns to
the right of column x is bounded by the number of rows below yminus 2. Equivalently n − x ≤ y − 3
as we wished to prove. □

We next consider Π = {123, 312}. First, we will need a lemmawhich will be helpful for a number
of our results.

Lemma 4.5. Suppose n ≥ d + 1 and let P be a polytope in Rn with vertices v1, . . . , vd+1 of the
form

vj = (

j−1  
0, . . . , 0, 1, ∗, . . . , ∗)T (4)

for 1 ≤ j ≤ d + 1 where the stars represent arbitrary integers. Then P is unimodularly equivalent
to ∆d.

Proof. Let A be the square matrix whose jth column is vj for 1 ≤ j ≤ d + 1, and is ej for j > d + 1. By
definition of the vj, we have that A has a main diagonal of ones with zeros above it. So det A = 1. Also,
by construction, we have Aej = vj for 1 ≤ j ≤ d + 1 and the lemma follows. □

Proposition 4.6. The polytope Bn(123, 312) is unimodularly equivalent to ∆(n2)
. Thus, for any Π ⊆ S

containing 123 and 312 we have h∗(Bn(Π )) = 1.

Proof. Using the proof of [31, Proposition 13] and complementation, we see that the permutations
σ ∈ Avn(123, 312) are exactly the elements ofSn in the grid class of the matrix

A =

[ 0 −1 0
−1 0 0
0 0 −1

]
.

So the elements below the main diagonal of Mσ are precisely those corresponding to the −1 in the
first column of A, and once those elements are determined the rest of Mσ is fixed. Furthermore, if we
know the coordinates of the southeast-mostmx,y = 1 in the sequence corresponding to that −1 in A,
then the whole sequence is determined because it must be

mx,y,mx−1,y+1, . . . ,m1,x+y−1. (5)

To summarize, there is a unique vertex of Bn(123, 312) associatedwith each coordinate pair (x, y) with
x+ y ≤ n, together with a last vertex corresponding to σ = n, n− 1, . . . , 1 which has no entry below
the main diagonal.
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To verify the first statement of the proposition, we will use Lemma 4.5. To bring our matrices to
the form in Eq. (4) we reorganize the coordinates according to the map Rn×n

→ Rn2 given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z(n2)+1 ∗ ∗ . . . ∗ ∗ ∗ ∗

zn−1 ∗ ∗ . . . ∗ ∗ ∗ ∗

z2n−3 zn−2 ∗ . . . ∗ ∗ ∗ ∗

z3n−6 z2n−4 zn−3 . . . ∗ ∗ ∗ ∗

...
...

...
. . .

...
...

...
...

z(n2)−3 z(n2)−7 z(n2)−12 . . . z3 ∗ ∗ ∗

z(n2)−1 z(n2)−4 z(n2)−8 . . . zn+1 z2 ∗ ∗

z(n2) z(n2)−2 z(n2)−5 . . . z2n−2 zn z1 ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
↦→ (z1, z2, . . . , z(n2)+1, ∗, . . . , ∗)T ,

where the coordinates with stars are rearranged in a fixed but arbitrary manner. It is now an easy
matter to verify that the hypothesis of the lemma is satisfied if vj is the image of the Mσ with
sequence (5) ending at position zj for 1 ≤ j ≤

(n
2

)
, and for j =

(n
2

)
+ 1 we take Mσ to be the matrix

with ones on the main diagonal.
For the second claim, since Bn(123, 312) is a unimodular simplex and Bn(Π ′) is a subpolytope if

{123, 312} ⊆ Π ′, Bn(Π ′) is a face of Bn(123, 312). Thus Bn(Π ′) is a lattice simplex of some dimension
k ≤ n, and is unimodular (with respect to its affine span). So, using the equivalencewe just established,
if Π ′ contains 123 and 312 then h∗(Bn(Π ′)) = 1. □

5. The polytopes Bn(132, 312) and B̃n(123)

The remainder of this paper will be devoted to studying Bn(132, 312) and one other class of poly-
topes. For this final class we will require some more definitions and notation. We say a permutation
σ = a1 · · · an is alternating, or up–down, if a1 < a2 > a3 < · · · . In the literature, ‘‘alternating’’
sometimes includes down–up permutations, where the previous inequalities are all reversed. It is
worth noting that alternating permutations may be expressed in terms of vincular patterns, which
are patterns requiring certain elements to occur consecutively. To indicate this, the portion of the
pattern which must be consecutive is underlined. For example, 4 261 573 contains five instances of
the vincular pattern 231, namely 261, 461, 473, 573, and 673; the subsequence 453 is not an instance
of the vincular pattern 231 since 5 and 3 do not occur consecutively. The study of vincular patterns
was introduced in [2] and has since been extended to bivincular patterns, mesh patterns, and other
generalizations.We refer to [38] formore information about each of these avoidance classes, including
assorted open problems.

Alternating permutations in Sn are exactly the elements σ = a1 · · · an ∈ Avn(ε21, 123, 321). The
‘‘ε’’ at beginning of the vincular pattern denotes the ‘‘empty permutation’’ which has length 0 and is
to be treated as preceding a1. So σ containing the pattern ε21 is equivalent to a1 > a2, and avoiding it
forces a1 < a2. In the interest of compact notation, wewill write Ãvn(Π ) for Avn({ε21, 123, 321}∪Π )
and B̃n(Π ) for the analogous variation of Bn(Π ).

We now introduce the final class of polytopes that we will study, B̃n(123). We claim that if n is
even, then the number of 123-avoiding alternating permutations is the same in Sn and Sn−1. To see
this, note that in any permutation avoiding 123 the 1 cannot be followed by two elements forming
an increasing subsequence. So if n is even and σ = a1a2 · · · an is alternating and 123-avoiding, then
an−1 = 1. Furthermore, since σ avoids 123 and an−3 < an−2 we must have an−2 > an. It follows
that standardizing σ ′

= a1a2 . . . an−2an gives a bijection between the two sets of permutations in
question. Thus, the projection of B̃n(123) to B̃n−1(123), defined by dropping row n and column n − 1
of the matrices, preserves the Ehrhart polynomial.

To study the Ehrhart theory of Bn(132, 312) and B̃n(123), we use the following outline:

1. Let P be either Bn(132, 312) or B̃n(123).
2. In Proposition 5.4, we will construct a set of simplices, each contained in P , such that each

simplex S is unimodular with respect to the lattice aff(S) ∩ Zn×n.
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3. Using toric algebra, we will separately construct a triangulation of P in Theorem 5.11.
4. Finally, we will observe that the simplices from Theorem 5.11 are exactly those formed in

Proposition 5.4. Therefore, the triangulations obtained in step 3 are unimodular with respect
to the lattice aff(P) ∩ Zn×.

5.1. Sublattices of the weak order

In order to prove interesting results about the Ehrhart theory of Bn(132, 312) and B̃n(123), we will
first showhow the polytopesmay be decomposed by putting a partial order on their vertex sets. These
posets (partially ordered sets) are themselves highly structured and interact in a natural way with
the geometry of the polytopes. We refer the reader to [37, Chapter 3] for the necessary background
regarding posets.

Our posetswill be constructed usingweak Bruhat order.Wewill compose permutations from right
to left. A permutation σ = a1 . . . an ∈ Sn has inversion set

Inv(σ ) = {(i, j) | i < j and ai > aj},

and inversion value set

Invv(σ ) = {(aj, ai) | i < j and ai > aj}.

The number of inversions of σ is inv(σ ) = |Inv(σ )| = |Invv(σ )|.
The right (respectively, left) weak (Bruhat) order on Sn is defined by the cover relations σ1 ⋖ σ2

if there is a simple transposition si such that σ1si = σ2 (respectively, siσ1 = σ2) and inv(σ2) =

inv(σ1) + 1. For example, if σ = 2 613 754, then σ s3 = 2 631 754, and s3σ = 2 614 753 and in
both cases the number of inversions increases. The left and right weak orders are isomorphic by the
order-preservingmap σ ↦→ σ−1, but it will be important for the reader to keep inmind the distinction
between left and right in what follows.

LetQn(Π ) denote the poset obtained by restricting the rightweak order to Avn(Π ). Similarly define
Q̃n(Π ) for the left weak order on Ãvn(Π ).

IfΠ is chosen arbitrarily, then there is no reason to expect these posets to have especially pleasant
structure. We will see, though, that specific choices of Π may result in interesting classes of posets.
Fig. 4 shows the posets Q5(132, 312) and Q̃8(123).

We will define two well-known posets and prove that these are isomorphic to the posets just
defined. To do so, we first need to introduce certain kinds of Young diagrams. Given a strictly
decreasing partition λ = (λ1, . . . , λl), its shifted Young diagram is an array of boxes such that row
i contains λi boxes and begins in column i. LetM(n) denote the poset of shifted Young diagrams with
largest part at most n, ordered by inclusion that is, (λ1, . . . , λl) < (λ′

1, . . . , λ
′

k) if and only if l ≤ k
and λi ≤ λ′

i for each i = 1, . . . , l. These are the posets described in Exercise 3.187(a) in [37] and
studied using linear algebra in [28]. In particular, the previously cited exercise establishes that M(n)
is a distributive lattice.

For the other class of useful posets, recall that a Dyck path, p, of length 2k is a lattice path from
(0, 0) to (k, k) using steps (1, 0) and (0, 1), which never goes below the line y = x. We say the steps
(1, 0) and (0, 1) are east steps and north steps, respectively. Let Dk denote the poset of Dyck paths of
length 2k, where if d1, d2 ∈ Dk, then d1 ≤ d2 if d1 lies weakly to the right of d2. The posets Dk were
shown to be distributive lattices in [17].

For an arbitrary poset P , we denote the dual poset by P∗. We may equivalently describe D∗

k as
the poset of (left-justified) Young diagrams fitting inside the shape (k − 1, k − 2, . . . , 1), ordering by
inclusion. This equivalence is easily seen by identifying a Dyck pathwith the region bounded between
it, the y-axis, and the line y = k.

Before proving our isomorphisms, we should make some comments about order polytopes. Let
Q = {q1, . . . , qs} be a poset, and let IQ be the distributive lattice of order ideals of Q . If I ∈ IQ , let
χI = (χI (q1), . . . , χI (qs)) where

χI (qi) =

{
0 if qi ̸∈ I
1 if qi ∈ I.
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Fig. 4. Hasse diagrams of posets Q5(132, 312) and Q̃8(123).

The order polytope of Q is

O(Q ) = conv{χI ∈ R|Q |
| I ∈ IQ }.

Using results from [35], if we could show that Bn(132, 312) or B̃n(123) are order polytopes, then
certain triangulations, volumes, and other properties of the polytopes would follow immediately. For
example, one might try to show that Bn(132, 312) is unimodularly equivalent to O(Irr(M(n − 1))),
where Irr(M(n − 1)) is the poset of irreducibles of M(n − 1). Indeed, this appears to be the case
for n ≤ 5 for Bn(132, 312) and n ≤ 8 for B̃n(123) when comparing face vectors. However, since
Bn(132, 312) ⊆ Rn×n and O(Irr(M(n − 1))) ⊆ R2n−1

, for example, it is not obvious how to find a
specific unimodular equivalence. One possible approach would be to take some subset S ⊆ [n] × [n]
of size 2n−1, project Bn(132, 312) to R2n−1

onto coordinates according to the indices in S, and find
the reduced form of the matrix XS := [v1 v2 . . . v2n−1 ], where v1, . . . , v2n−1 are the projections of the
vertices of Bn(132, 312). One can then check for unimodular equivalence by computing row-reduced
echelon forms. However, an exhaustive search of all possible S for small n reveals no choice thatworks.
It is for this reason that we have resorted to other means.

Question 5.1. Are Bn(132, 312) or B̃n(123) unimodularly equivalent to order polytopes?

Our next result will provide isomorphisms of both Qn(132, 312) and Q̃n(123) with the lattices of
certain Young diagrams.

Proposition 5.2. For all n, Qn(132, 312) ∼= M(n − 1) and Q̃n(123) ∼= D∗

⌈n/2⌉. Thus, Qn(132, 312) and
Q̃n(123) are distributive lattices. Also, the covers in both posets are also covers in weak Bruhat order.
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Proof. First note that the statement about distributive lattices will follow immediately once we have
proved the isomorphisms.

We begin by proving that Qn(132, 312) ∼= M(n − 1). Let Des(σ ) denote the descent set of σ =

a1 . . . an, namely,

Des(σ ) = {i ∈ [n − 1] | ai > ai+1}.

Note that if σ , τ ∈ Avn(132, 312) are distinct permutations, then it follows from Lemma 3.3 that
Des(σ ) ̸= Des(τ ). Combined with the fact that |Qn(132, 312)| = 2n−1

= |M(n − 1)|, we have that
Des : Qn(132, 312) → M(n−1) is a bijection, where wewrite the descent set in decreasing order and
consider it the shape of a shifted Young diagram.

To show that Des and its inverse are order preserving, let ti,j denote the transposition inSn which
interchanges i and jwhere 1 ≤ i < j ≤ n. Given σ ∈ Sn, we consider the set

TL(σ ) = {ti,j | inv(ti,jσ ) < inv(σ )}.

We are interested in TL(σ ) because of the fact [8, Proposition 3.1.3] that σ ≤ τ in right weak order if
and only if TL(σ ) ⊆ TL(τ ). It is easy to see that

TL(σ ) = {ti,j | (i, j) ∈ Invv(σ )}

and this is the description of TL(σ ) which we will use.
Now suppose Des(σ ) = λ where σ = a1 . . . an and λ = (λ1, . . . , λl) is the shape of a shifted Young

diagram. We will show that there is a bijection between the ti,j ∈ TL(σ ) and the squares of λ where
we index those squares using matrix coordinates and also use λ to stand for the set of squares. An
example follows the proof. Using the description of σ in Lemma 3.3 we see that k ∈ Des(σ ) = λ if and
only if ak+1 is on the −1 side of the grid (where, by convention, a1 is on the +1 side). And in this case
am > ak+1 for every m ≤ k, whereas elements on the +1 side of the grid are the second coordinate
in no inversion value pairs. Also the elements before ak+1 form the interval [ak+1 + 1, ak+1 + k]. In
addition, the elements on the −1 side of the grid are exactly the l smallest elements of σ , where l is
the number of parts of λ. So, letting i = ak+1,

Invv(σ ) = {(i, j) | 1 ≤ i ≤ l and i + 1 ≤ j ≤ i + k}.

Comparing this to the set of squares of λ which is

{(i, j) | 1 ≤ i ≤ l and i ≤ j ≤ i + k − 1}

we have the obvious bijection between TL(σ ) ↔ λ given by ti,j ↔ (i, j − 1).
We can now show that Des and Des−1 are order preserving. Suppose that Des(σ ) = λ and

Des(τ ) = µ. Then σ ≤ τ if and only if TL(σ ) ⊆ TL(τ ). But from the previous paragraph, this is
equivalent to λ ⊆ τ as Young diagrams and that is the partial order on M(n − 1). We also obtain
the statement in the theorem about covers. For, using the previous notation, we have a cover in right
weak order if and only if TL(τ ) is obtained from TL(σ ) by adding a single transposition. But the covers
in M(n − 1) occur precisely when µ is obtained from λ by adding a single square. By the bijection
TL(σ ) ↔ λ, the covers inM(n − 1) become covers in Q (132, 312).

Showing Q̃n(123) ∼= D∗

⌈n/2⌉ requires a bit more care. We will first show that Q̃2k(123) ∼= Q̃2k−1(123)
under the map

ϕ(a1, a2, . . . , a2k) = a1 − 1, . . . , a2k−2 − 1, a2k − 1.

That this map is a bijection follows from the discussion when we first defined B̃n(123). Moreover, any
σ = a1 . . . a2k always has a2k−1 = 1. So onewill never apply s1 toσ . And applying si, i ≥ 2, corresponds
to acting on ϕ(σ ) with si−1. From this the isomorphism follows. Therefore wemay henceforth assume
that n = 2k for some integer k.

Define a function f : Q̃n(123) → D∗

k where the path f (a1 . . . a2k) = p is constructed by putting
north steps in positions a1, a3, . . . , a2k−1 and east steps in positions a2, a4, . . . , a2k. We must check
that f is well defined in that it stays weakly above the line y = x. Note that since the sequences used
to define the N and E steps are decreasing, the ith step east is in position a2k−2i+2. Since π = a1 . . . a2k
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Fig. 5. The bijections in Proposition 5.2.

is also alternating, a2k−2i+2 is larger than both a2k−2i+1 and all the elements in odd positions to its right.
But these are the positions of the first i north steps, and thus the given E step has sufficiently many N
steps preceding it to make the path Dyck. Directly from its definition, we see that f is injective. So it
must be a bijection since both the domain and range have Ck elements.

We now show that f is order preserving. First of all, instead of TL(σ ) one must use

TR(σ ) = {ti,j | inv(σ ti,j) < inv(σ )} = {ti,j | (i, j) ∈ Inv(σ )}.

One must also be aware that since σ is alternating with a1, a3, . . . , a2k−1 and a2, a4, . . . , a2k decreas-
ing, then the set of pairs

Inv′
= {(2i − 1, 2j − 1) | 1 ≤ i < j ≤ k} ∪ {(2i, j) | 2 ≤ 2i < j ≤ 2k}

is contained in Inv(σ ) for every σ ∈ Q̃ (123). So we need only consider Inv′(σ ) := Inv(σ ) − Inv′. It
follows that every pair in Inv′(σ ) is of the form (2i− 1, 2j) for some i < j. (We cannot have i = j since
σ is alternating.)

Now let f (σ ) = p for a Dyck path p and let λ be the left-justified Young diagram associated with
p as described in the paragraph before the proof of this Proposition. Again, an example follows. There
is a canonical bijection between the squares of λ and pairs consisting of an N step of p together with
an earlier E step, where the square (i, j) is the one in the same row as the N step (which must be
the ith north step reading right-to-left) and the same column of the E step (which must be the jth
east step reading left-to-right). By the way that the steps of p are labeled, it must be that the N step
corresponds to some a2i−1 and the E step to some a2(k−j+1). Furthermore, because p is Dyck, it must be
that (2i − 1, 2(k − j + 1)) ∈ Inv′(σ ). And every element of Inv′(σ ) is realized this way. Thus we have
a bijection between the squares of λ and the elements of TR(σ ) indexed by elements of Inv′(σ ) where
(i, j) ↔ t2i−1,2(k−j+1). The rest of the proof is as in the Qn(132, 312) case. □

To illustrate the bijection for Qn(132, 312), consider the permutation σ = 4 325 167. So Des(σ ) =

(4, 2, 1) = λ whose diagram is displayed on the left in Fig. 5. We also have

DL(σ ) = {t1,2, t1,3, t1,4, t1,5, t2,3, t2,4, t3,4}

and each square of λ is labeled with its corresponding transposition. As for Q̃n(123), consider σ =

78 562 413. So

Inv′(σ ) = {(1, 4), (1, 6), (1, 8), (3, 6), (3, 8)}.

The path p will have its N steps labeled by 1, 2, 5, 7 and its E steps labeled by 3, 4, 6, 8 as on the
right in Fig. 5. As before, each square of the Young diagram of p is labeled with the corresponding
transposition indexed by Inv′(σ ).

We now return to the general development. For a general finite distributive lattice L of rank n,
it is well-known that there exists an n-element poset P for which L ∼= J(P), where J(P) denotes the
lattice of order ideals of P . The poset P can be taken to be the join-irreducible elements of L with
order relations inherited from L. Note that x ∈ L is join-irreducible if and only if x covers exactly one
element. We denote the poset of join-irreducibles of L by Irr(L). To simplify matters, we will identify



70 R. Davis, B. Sagan / European Journal of Combinatorics 74 (2018) 48–84

the join-irreducibles of Qn(132, 312) with the join-irreducibles ofM(n − 1), and likewise identify the
join-irreducibles of Q̃n(123) and D∗

⌈n/2⌉.
Let us now determine the join-irreducibles of our two lattices. Let (b, c) be the box in row b and

column c of a Young diagram λ. (Note that we are taking the diagrams to be in English notation with
the largest row on top.) Call (b, c) an inner corner of the diagram if neither (b+1, c) nor (b, c +1) is in
λ. Using the Young diagram interpretation of our two lattices, an element is join-irreducible precisely
when the shape has exactly one inner corner. Identifying these diagramswith the coordinates of their
unique inner corners, the induced partial order on both posets of join-irreducibles is component-wise.
For the remainder of this paper, the join-irreducibles of Qn(132, 312) and Q̃n(123) will be identified
with the elements of these posets. See Fig. 6 for an example, where for now the label coming after
each coordinate pair can be ignored.

5.2. Triangulations, shellability, and EL-labelings

In this sectionwewill use theposetsQn(132, 312) and Q̃n(123) to carefully decomposeBn(132, 312)
and B̃n(123). First, we recall some definitions and concepts in geometry and poset topology.

A polytopal complex F is a finite nonempty collection of polytopes such that

1. if P ∈ F , then every face of P is in F , and
2. if P,Q ∈ F , then P ∩ Q is a face of both P and Q .

An important polytopal complex is the face complex F(P) of a polytope P , whose faces are the faces of
P . A polytopal complex F is a geometric simplicial complex if every polytope P ∈ F is a simplex.

A triangulation of a polytopal complex F is a geometric simplicial complex ∆ whose vertices are
the vertices of F and underlying space equal to the union of the faces of F , such that every face of ∆

is contained in a face of F . A triangulation of the face complex F(P) of a polytope P is simply called
a triangulation of P . Therefore, if P has a unimodular triangulation T , then its normalized volume is
equal to the number of maximal simplices in T .

The order complex ∆(Q ) of a poset Q is the simplicial complex of chains in Q . A simplicial complex
is shellable if its maximal faces are of the same dimension and can be ordered as F1, . . . , Fk such that
for each i = 1, . . . , k − 1,

Fi+1

⋂⎛⎝ i⋃
j=1

Fj

⎞⎠
is a nonempty union of facets of Fi+1. A poset is called shellable if its order complex is shellable.

Wewill show thatQn(132, 312) and Q̃n(123) are shellable by using a particular labeling of the edges
in their Hasse diagrams.

If Q is a poset, let E(Q ) denote the set

E(Q ) := {(q1, q2) ∈ Q × Q | q1 ⋖ q2},

thought of as the edges of the Hasse diagram of Q . An edge labeling of Q by Z is a function λ : E(Q ) →

Z. A saturated chain q0 ⋖ q1 ⋖ · · · ⋖ qk in Q is called increasing if λ(q0, q1) < λ(q1, q2) < · · · <

λ(qk−1, qk). An EL-labeling of a poset Q , first introduced in [7], is an edge labeling such that every
interval [x, y] in Q has a unique increasing maximal chain, and that chain lexicographically precedes
all othermaximal chains of [x, y]. Posets admitting an EL-labeling are shellable and are usually referred
to as EL-shellable.

We will use EL-shellable posets to decompose Bn(132, 312) and B̃n(123) in specific ways in
Section 6. Fortunately, specific EL-shellings of Qn(132, 312) and Q̃n(123) are available and follow
naturally from [32]. A natural labeling of a poset P with |P| = n is an order-preserving bijection
ω : P → [n]. Let L be a finite distributive lattice so that L ∼= J(P) where P is the poset of join-
irreducibles, and let ω be a natural labeling of P . Then we have a cover of order ideals I ⋖ J in L if and
only if J − I = {x} for some x ∈ P . Give the cover the label λ(I, J) = ω(x).
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Fig. 6. The elements of Irr(Q5(132, 312)) and Irr(Q̃8(123)) along with their images under natural labelings.

Theorem 5.3 (Stanley, see [32]). The edge labeling of a finite distributive lattice L constructed above is an
EL-labeling for L. □

To apply this processwewill use the natural labeling of the irreducibles in both of our posetswhich
is obtained by reading the cells (b, c) in each row of the corresponding triangular diagram left to right,
starting with the first row and moving down. Thus in Irr(Qn(132, 321)) this extension is given by

ω(b, c) = (b − 1)n + c + 1 −

(
b + 1
2

)
and in Irr(Q̃n(123)) for n even by

ω(b, c) =
(b − 1)(n − b)

2
+ c.

Alternatively, one can think of both natural labelings as ordering the elements of the poset lexico-
graphically. Examples of these elements and their associated labels are given in Fig. 6, where the label
is displayed beside each element. An application of the EL-labeling process appears for Q̃8(123) in
Fig. 7. To simplify notation, wewill often identify maximal chains c : q0⋖q1⋖ · · ·⋖qk in Qn(132, 312)
and Q̃n(123) with their sequences of edge labels λ(c) = (λ(q0, q1), λ(q1, q2), . . . , λ(qk−1, qk)).

We now take a first step in constructing a bridge from purely combinatorial information of these
abstract simplicial complexes to geometric information about Bn(132, 312) and B̃n(123). One of our
main goals is to construct triangulations of Bn(132, 312) and B̃n(123). The following proposition
only identifies unimodular simplices which potentially form the simplices of triangulations of these
polytopes. The fact that these do form a triangulation will require toric algebra and so will come in
Section 5.3.

Proposition 5.4. Let f : ∆(Qn(132, 312)) → Rn×n be the function

f ({σ1, . . . , σu}) = conv{Mσ1 , . . .,Mσu},

where Mσi is the matrix for σi. The collection

Tn(132, 312) := {f (Γ ) | Γ ∈ ∆(Qn(132, 312))}
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Fig. 7. Producing an edge labeling on Q̃8(123).

is a set of simplices contained in Bn(132, 312), each f (Γ ) is unimodular with respect to the affine lattice
aff(f (Γ )) ∩ Zn×n and is of dimension

(n
2

)
. The collection T̃n(123), defined similarly, is a collection of

unimodular simplices in B̃n(123) of dimension
( n
⌊n/2⌋

)
.

Proof. First we will focus on Tn(132, 312). Note that it is enough to prove the claim for the simplices
in Tn(132, 312) of maximal dimension, since Γ1 ⊆ Γ2 in ∆(Qn(132, 312)) corresponds to an inclusion
of faces f (Γ1) ⊆ f (Γ2) in Tn(132, 312), and faces of unimodular simplices are again unimodular.

Arrange the maximal chains c1, . . . , cs in Qn(132, 312) lexicographically, and let ∆q
= ∆(cq) be

the corresponding maximal simplex in ∆(Qn(132, 312)). We will prove our claim by induction on q.
First consider the f (∆1). We will use Lemma 4.5 to show that this is a unimodular simplex. Note

that we have chosen the labeling of the irreducibles so that c1 starts with the identity permutation ι
and then one proceeds up the chain by having the element 1 move from the first position to the last,
followed by the element 2 moving to be the penultimate element, and so forth until one reaches the
decreasing permutation. Thus if one rewrites the coordinates of theMσ for σ ∈ c1 using the map⎡⎢⎢⎢⎢⎢⎢⎢⎣

z(n2)+1 ∗ . . . ∗ ∗ ∗

z(n2) ∗ . . . ∗ ∗ ∗

z(n2)−2 z(n2)−1 . . . ∗ ∗ ∗

...
...

. . .
...

...
...

zn zn+1 . . . z2n−3 ∗ ∗

z1 z2 . . . zn−2 zn−1 ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦
↦→ (z1, z2, . . . , z(n2)+1, ∗, . . . , ∗)T ,

and let vj be the image of the element of rank j − 1 in the chain, then it is easy to check that Eq. (4)
holds. So we have shown that f (∆1) is unimodular of the correct dimension. In particular, if we let L1
be the affine span of f (∆1) then the vectors f (β1,r ) − f (ι) for β1,r ̸= ι in c1 form a basis for the lattice
(L1 − f (ι)) ∩ Z(n2).

We will perform the induction step by showing that the remaining maximal simplices in Tn(132,
312) are unimodular transformations of f (∆1). Recall that Qn(132, 312) has an EL-labeling. So, for
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q > 1, each maximal chain cq intersects some earlier maximal chain cp such that they differ by a
single element. So suppose cq intersects with cp such that σ ∈ cp − cq and σ ′

∈ cq − cp. Then σ and σ ′

are incomparable, and

σ ∧ σ ′ ⋖ σ , σ ′ ⋖ σ ∨ σ ′.

So σ , σ ′ can each be obtained from simple transpositions applied to their meet. And since the interval
[σ ∧ σ ′, σ ∨ σ ′

] consists of 4 elements, these transpositions commute. If follows that the relationship
displayed above is captured by f via

f (σ ∧ σ ′) + f (σ ∨ σ ′) = f (σ ) + f (σ ′). (6)

We will use this relationship to create a transformation ϕ : Lp − f (ι) → Lq − f (ι) by defining
its images on the basis vectors βp,r − f (ι) obtained from the inductive assumption. (The map ϕ

implicitly depends on p and q even though that is not reflected in our notation.) This function will
map f (∆p) − f (ι) to f (∆q) − f (ι), and we will show that it is a unimodular transformation. It follows
that ∆q is also unimodular with respect to the affine lattice Lq ∩ Zn×n.

For each r , set

ϕ(f (βp,r ) − f (ι)) = f (βq,r ) − f (ι).

If βp,r ∈ cp ∩ cq, then ϕ acts as the identity on βp,r − f (ι). Otherwise, consider the index t such that
βp,t = σ and use Eq. (6) to write

ϕ(f (βp,t ) − f (ι)) = f (σ ′) − f (ι)
= [f (σ ∧ σ ′) − f (ι)] + [f (σ ∨ σ ′) − f (ι)] − [f (σ ) − f (ι)]
= [f (βq,t−1) − f (ι)] + [f (βq,t+1) − f (ι)] − [f (βq,t ) − f (ι)].

The matrix for ϕ is identical to the identity matrix except in the column corresponding to σ . And
in that column, because of the previously displayed equation, the only nonzero entries are a −1 on
the main diagonal with a 1 just above it and another 1 just below. So, this matrix is unimodularly
equivalent to the identity matrix since it has determinant −1, and ∆q is a unimodular simplex with
respect to Lq ∩ Zn×n.

We then apply induction, using the ϕ constructed above. Since ∆1 is unimodular with respect to L,
so are all of the images of the ϕ, and therefore so are all of the f (∆q). Thus, Tn(132, 312) is a collection
of unimodular simplices.

The case of B̃n(123) is similar. First consider n = 2k and ∆1
= f (c1). In order to apply Lemma 4.5,

read the permutations σ = a1a2 . . . a2k ∈ c1 from the bottom of c1 to the top, concentrating only on
the subsequence a1a3 . . . a2k−1. Recall that we have chosen the labeling ω to add boxes to the Young
diagram row by row, and that a2i+1 is the label of the north step at the end of row i of the Dyck path
boundary of the Young diagram. It follows that a1 will first increase from k to 2k − 1, then a3 will
increase from k−1 to 2k−3, and so forth. This suggests that we use the following map to rewrite the
coordinates, where we will just write out the case n = 8 since the generalization to all even n should
then be clear:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

z3 ∗ ∗ ∗ ∗ ∗ ∗ ∗

z2 ∗ ∗ ∗ ∗ ∗ ∗ ∗

z1 ∗ z5 ∗ ∗ ∗ ∗ ∗

∗ ∗ z4 ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ z6 ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ z7 ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
↦→ (z1, z2, . . . , z7, ∗, . . . , ∗)T .

Now letting vi be the image of the element at rank i − 1 in c1 as before completes the proof of
unimodularity and the corresponding dimension.
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By creating ϕ̃ as in the previous case, it follows by induction that T̃2k(123) is a collection of
unimodular simplices in B̃n(123). As usual, if n is odd, then we use the isomorphism Q̃n(123) ∼=

Q̃n+1(123) and proceed as in the case of even n. □

5.3. Toric algebra

The methods we will use to show Tn(132, 312) and T̃n(123) are unimodular triangulations of
their respective polytopes require a bit of algebra background. Part of the importance of identifying
unimodular triangulations is to show when two constructions based on polytopes agree, and we will
encounter such a situation in this section; the details of this connection are delayed until the end of
the section. The crucial property of a polytope necessary for the constructions to agree is the following.

Definition 5.5. A lattice polytope P ⊆ Rn is said to have the integer decomposition property (or to be
IDP) if, for all positive integersm and any x ∈ mP ∩ Zn, there existm points x1, . . . , xm ∈ P ∩ Zn such
that x =

∑
xi.

Much of the exposition that follows is described in [39, Chapters 4 and 8]; we reproduce the
relevant background below in the interest of self-containment.

First, let A = {l1, . . . , ls} ⊆ Zn. For a field k, we may define a subring k[A] of the ring of
Laurent polynomials k[x±1

1 , . . . , x±1
n ] by k[A] := k[xl1 , . . . , xls ] where x(v1,...,vn) =

∏
xvi
i . Defining

TA = k[t1, . . . , ts] and the map φ : TA → k[A] by φ(ti) = xli , it follows that

TA/kerφ ∼= k[A].

The ideal IA := kerφ is the toric ideal of A, and has been studied extensively in part due to its uses in
algebraic statistics, algebraic geometry, and convex polytopes.

If P is an integral polytope then we set AP = (P, 1) ∩ Zn+1, and

k[cone(P)] := k[xazm | a ∈ mP ∩ Zn
] ⊆ k[x±1

1 , . . ., x±1
n , z],

an algebra graded by the exponent of the newvariable z. Sowhen P is IDPwehave k[cone(P)] = k[AP ].
However, this equality does not hold if P is not IDP, since then the monoid generated by AP does not
generate all elements of cone(P) ∩ Zn+1. To remedy this we have to introduce the Hilbert basis of
cone(P), which is the unique minimal-cardinality set H ⊆ cone(P) ∩ Zn+1 such that every lattice
point of cone(P) is a Z≥0-linear combination of elements of H. The existence and uniqueness of the
Hilbert basis can be proved using the Hilbert Basis Theorem.

This allows us to define the toric ideal IP of a polytope P: Suppose the Hilbert basis of cone(P) is
H = {(v1, w1), . . . , (vr , wr )} ⊆ Zn

× Z. We have

TH/IP ∼= k[cone(P)],

where IP = kerφ is the toric ideal of P . So, if P is IDP, then IP = IAP , but in general we only have
IP ⊇ IAP .

If there is some ν = (ν1, . . . , νn) ∈ Rn such that νT li = 1 for each li ∈ A, we call A a point
configuration, or simply a configuration if there is no risk of confusion. WhenA is a configuration, then
the positive span

pos(A) :=

{
s∑

i=1

λili | λi ≥ 0 for all i

}
⊆ Rn

is a polyhedral cone (differing from cone(A) ⊆ Rn+1) containing no positive-dimensional subspace, so
a Hilbert basis exists. IfA is not a configuration, then no such ν exists. In this case, pos(A) is still a cone
but now contains a nontrivial subspace, so a Hilbert basis does not exist since a minimal generating
set of pos(A)∩Zn is no longer unique. Note that for any polytope P inRn, the setAP is a configuration
since it satisfies eTn+1v = 1 for each v ∈ AP .

Techniques from toric algebra will provide the tools for a critical step in proving that Bn(132, 312)
and B̃n(123) are IDP by showing that the collections of simplices introduced in the previous section
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actually form unimodular triangulations of their respective polytopes. In particular, when P is one
of these polytopes, we will use IAP to identify a triangulation of convAP in which the vertices of
the triangulation use only the elements of AP . In this case, since P is a subpolytope of [0, 1]n×n, it
contains no lattice points other than its vertices. So,AP consists exactly of the vertices of (P, 1), and a
triangulation of convAP is automatically a triangulation of (P, 1),which in turn induces a triangulation
of P by projecting each simplex back into Rn×n. The triangulation of P will be unimodular with
respect to the lattice generated by Z-linear combinations of the elements of P . Observing that this
triangulation consists exactly of the simplices in Tn(132, 312) (respectively, T̃n(123)), Proposition 5.4
will show that the triangulations are unimodular with respect to the affine lattice Bn(132, 312)∩Zn×n

(respectively, B̃n(123) ∩ Zn×n).
Returning to the general development, when S ⊆ Rn is a unimodular simplex, it is not difficult to

show thatAS is theHilbert basis of cone(S).When P is a general lattice polytope, we only know a priori
thatAP must be contained in the Hilbert basis of cone(P). When a triangulation T of P is known, each
lattice point x ∈ cone(P) lies in cone(S) for some S ∈ T . If S is unimodular, then xmay be written as a
sum of just the elements in (S, 1) ∩ Zn+1

⊆ AP . Thus, if T is a unimodular triangulation, x can always
be expressed as a sum of elements in AP , so AP is exactly the Hilbert basis of cone(P). Therefore, in
this case, any properties of (T , 1) as a unimodular triangulation with respect to affAP ∩ Zn+1 carry
over to T as a unimodular triangulation of P .

Before continuing with toric ideals, let us first recall some additional definitions. Let ∆ be an
abstract simplicial complex on vertex set {v1, . . . , vs} and let T = k[t1, . . . , ts]. The Stanley–Reisner
ideal of ∆ is

I∆ := (ti1 · · · tij | {i1, . . . , ij} ̸∈ ∆),

where the parentheses represent the ideal of T generated by these monomials. We use this ideal to
define the Stanley–Reisner ring, T/I∆, whosemonomials are thosewith support corresponding to faces
of ∆. The numerator of its Hilbert series is called the h-polynomial of ∆. If P is a polytope and ∆ is a
unimodular triangulation of P , then the h-polynomial of ∆ and the h∗-polynomial of P coincide.

Note that the Stanley–Reisner ideal of a simplicial complex accounts for the combinatorial struc-
ture of the complex and does not inherently reflect any geometric properties. To overcome this
limitation, we will express the Stanley–Reisner ideal as the result of operations on a different ideal,
designed with geometric properties in mind.

Suppose ≺ is a monomial order on T , that is, a total well-ordering of the monomials of T which
respects multiplication. Consider any ideal I of T . Each f ∈ I then has an initial or leading term with
respect to ≺, denoted in≺(f ), which is the term of f that is greatest with respect to ≺. The initial ideal
of I with respect to ≺ is the ideal generated by the initial terms of polynomials in I , that is,

in≺(I) := (in≺(f ) | f ∈ I).

A Gröbner basis of I is a finite generating set G for I such that in≺(I) = (in≺(g) | g ∈ G). Since I is
assumed to be an ideal of a noetherian ring, a Gröbner basis always exists andmay be computed from
a given finite set of generators for I using the well-known Buchberger algorithm. Say G is reduced if
each element has a leading coefficient of 1 and for any g1, g2 ∈ G, in≺(g1) does not divide any term of
g2. Given an ideal I ⊆ T and a fixed monomial ordering on T , there are many Gröbner bases of I but
there is exactly one reduced Gröbner basis of I .

Theorem 5.6 ([39, Corollary 4.4 and Lemma 4.14]). Let A = {l1, . . . , ls} ⊆ Zn. The reduced Gröbner basis
G of the toric ideal IA consists of binomials of the form tu − tv for u, v ∈ Zs

≥0, where the monomials tu
and tv have no variable in common. Moreover, the binomials of G are homogeneous if and only if A is a
configuration.

There aremany additional nice results connecting Gröbner baseswith combinatorics, one of which
involves types of triangulations that we define now. Suppose P ⊆ Rn is an n-dimensional lattice
polytope and P ∩ Zn

= {l1, . . . , ls}. Choose a vector w = (w1, . . . , ws) ∈ Rs such that the polytope

Pw := conv{(l1, w1), . . ., (ls, ws)} ⊆ Rn+1
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is (n + 1)-dimensional, i.e., Pw does not lie in an affine hyperplane of Rn+1. Certain facets of Pw have
outward-pointing normal vectors with a negative last coordinate; projecting these facets back to Rn

provides the facets of a polytopal decomposition of P . If the facets are themselves simplices, then the
decomposition is a triangulation, and will be denoted Υw(P). Any triangulation that can be obtained
in this way for an appropriate choice of w is called regular.

For a configuration A ⊆ Zn of size s, there is a close connection between regular triangulations of
conv(A) and initial ideals of IA. First, we note that each monomial ordering ≺ on TA = k[t1, . . . , ts]
can be represented by a sufficiently genericweight vector w ∈ Rs such that, for all u, v ∈ Zs

≥0, t
u

≺ tv

if and only if wTu < wTv. Next, we define the initial complex ∆≺(I) of an ideal I ⊆ TA with respect to
≺ to be the simplicial complex on [s] such that F is a face of ∆≺(I) if and only if there is no monomial
in in≺(I) whose support is F . Using linear programming, one may show the following.

Theorem 5.7 ([39, Theorem 8.3]). Let A ⊆ Zn be a configuration. If w is the weight vector for a monomial
order ≺ on TA then the abstract simplicial complex∆≺(IA) is, in fact, a geometric simplicial complexwhich
is the regular triangulation Υw(conv(A)). That is, the set

Υw(conv(A)) = {conv(F ) | F ∈ ∆≺(IA)}

is a regular triangulation of conv(A). □

To state the next result we will need, recall that an ideal I ⊂ TA having a minimal generating set
of monomials is squarefree if no square divides any of these generating monomials.

Theorem 5.8 ([39, Corollaries 8.4 and 8.9]). For any monomial order ≺ and corresponding weight vector
w, the radical rad(in≺(IA)) is the Stanley–Reisner ideal of Υw(conv(A)). Moreover, in≺(IA) is squarefree
if and only if the triangulation Υw(conv(A)) is unimodular with respect to the affine lattice generated by
Z-linear combinations of lattice points in A. □

The triangulations Tn(132, 312) and T̃n(123) will turn out to have evenmore properties than those
already discussed. A triangulation is called flag if all itsminimal nonfaces have two elements. Thismay
be detected algebraically by proving the existence of an initial ideal generated by squarefree quadratic
monomials. We will demonstrate the flag property by taking the vertices of P = Bn(132, 312)
(respectively, P = B̃n(123)) and imposing the graded reverse lexicographic (grevlex)monomial ordering
on TAP /IAP induced from Qn(132, 312) (respectively, Q = Q̃n(123)) as follows. Let T = k[t1, . . . , ts]
and give the variables the total order t1 ≻ t2 ≻ · · · ≻ ts. Given a monomial ta we let |a| denote the
sum of the exponents. Grevlex extends the order on the variables to all monomials of k[t1, . . . , ts] by
insisting that ta ≻grevlex tb if |a| > |b| or if both |a| = |b| and the rightmost nonzero entry of a − b
is negative. To apply this to TAP , we must first place an order on the vertices of P; for notational
convenience, since our variables correspond to permutation matrices, we will frequently use the
notation tσ to denote the variable corresponding the matrix for the permutation σ . To define grevlex
order onmonomials in these variables, wemust first specify the ordering of the variables themselves.
Write σ ′>lexσ if σ ′ is lexicographically greater than σ as words. In this case we define tσ ′ ≻grevlex tσ .

This allows us to define a reverse lexicographic, or pulling, triangulation of a lattice polytope P ,
which is any triangulation whose Stanley–Reisner ideal is rad

(
in≺grevlex (IP )

)
. Thus, a triangulation of

P is reverse lexicographic if its maximal simplices are the projections of the appropriate facets of Pw

where w is a weight vector for ≺grevlex. See [22], for example, for a recursive geometric description of
how to create reverse lexicographic triangulations.

Before we prove the main theorem of this section, we will need two more lemmas. Recall that a
poset is graded if all of its maximal chains have the same length.

Lemma 5.9. Let Mσ denote the matrix corresponding to a permutation σ . For any σ , σ ′ that are both in
Qn(132, 312) or in Q̃n(123), we have

Mσ + Mσ ′ = Mσ∧σ ′ + Mσ∨σ ′ . (7)
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Proof. Our lattices are distributive and thus graded. Let r and r ′ be the lengths of maximal chains
in the intervals [σ ∧ σ ′, σ ] and [σ ∧ σ ′, σ ′

], respectively. Without loss of generality, we can assume
r ≥ r ′. We induct on the pairs (r, r ′) in lexicographic order. The case when r ′

= 0 in trivial, and the
case (r, r ′) = (1, 1) is covered by Eq. (6). So take a permutation τ in the interval [σ ∧ σ ′, σ ] which is
covered by σ . Assume r ≥ 2. First compare τ and σ ′. By choice of τ , we have τ ∧ σ ′

= σ ∧ σ ′. And
since the lattice is semimodular [37, Proposition 3.3.2], the length of a maximal chain in [τ , τ ∨ σ ′

] is
r ′. Comparing σ and τ ∨ σ ′ we see that, since we are in a distributive lattice,

σ ∧ (τ ∨ σ ′) = (σ ∧ τ ) ∨ (σ ∧ σ ′) = τ .

Also clearly σ ∨ (τ ∨σ ′) = σ ∨σ ′. Because of thewaywe have chosen r and r ′, we can apply induction
to the pair τ , σ ′ and to the pair σ , τ ∨ σ ′, giving

Mτ + Mσ ′ = Mσ∧σ ′ + Mτ∨σ ′ and Mσ + Mτ∨σ ′ = Mτ + Mσ∨σ ′ .

Adding these two equations and canceling finishes the proof. □

Lemma 5.10. For each permutation σ = a1 . . . an define

µi(σ ) = min{a1, . . . , ai}.

Suppose σ ≤ τ in either left or right (weak) Bruhat order. It follows that µi(σ ) ≤ µi(τ ) for all i.

Proof. The proof follows quickly by induction if we can prove it for σ ⋖ τ . In this case, τ was
obtained from σ by interchanging two elements ar and as where r < s and ar < as. Consider the
sets A = {a1, . . . , ai} and B = {b1, . . . , bi}. If i < r < s or r < s ≤ i then A = B and so the lemma is
trivial. The only remaining possibility is r ≤ i < s. But in that case B is obtained from A by replacing
ar with a larger element as. So the minimum can only weakly increase in passing from A to B and the
proof is complete. □

We are now ready to prove the main result of this section.

Theorem 5.11. The sets Tn(132, 312) and T̃n(123) are regular, flag, unimodular reverse lexicographic
triangulations of Bn(132, 312) and B̃n(123), respectively.

Proof. First consider P = Bn(132, 312), and let A = P ∩ Zn×n, so that AP = {(l, 1) | l ∈ A}.
Our strategy will be to construct the reduced Gröbner basis G of IAP with respect to ≺ which we
are taking the grevlex order. By Theorem 5.7, the initial complex ∆≺(IAP ) is a regular triangulation
Υw(AP ) of conv(AP ) = (P, 1), which induces a regular triangulation Υw(P) of P . We will see that G
consists of binomials whose initial terms are products of distinct pairs of variables corresponding to
incomparable elements of Qn(132, 312). Thus, by Theorem 5.8 and the comment directly afterwards,
since in≺(IAP ) is the Stanley–Reisner ideal for Υw(P), the triangulation is flag and unimodular with
respect to the affine lattice aff(P) ∩ Zn×n. By our description of the minimal non-faces of this
triangulation, wewill know that the simplices inΥw(P) are exactly the elements of Tn(132, 312). Since
we saw in Proposition 5.4 that eachΓ ∈ Tn(132, 312) is unimodular with respect to (affΓ )∩Zn×n, we
have that Tn(132, 312) is actually a triangulation of P with respect to the lattice (aff P)∩Zn×n. Because
of how we defined ≺, the triangulation Tn(132, 312) is reverse lexicographic as well.

We know by Theorem 5.6 that G consists of binomials whose structure we will now examine.
Consider the set of monomials tσ tσ ′ in TAP such that σ and σ ′ are incomparable in Qn(132, 312).
Because of Eq. (7), we know that tσ tσ ′ − tσ∧σ ′ tσ∨σ ′ ∈ IAP . By the way we defined ≺, on monomials
it is a linear extension of the partial order in Qn(132, 312). So the smaller of the two terms is the one
containing tσ∧σ ′ . Thus tσ tσ ′ is the initial term of the binomial. Since thismonomial is quadratic, itmust
be the initial term of some binomial in G. It quickly follows from the definition of a reduced Gröbner
basis that there can be no binomial in G of degree 3 or greater whose initial term contains a pair of
variables tσ , tσ ′ corresponding to incomparable elements σ , σ ′ in Qn(132, 312). Otherwise, this initial
term would be divisible by tσ tσ ′ , which is itself an initial term of a binomial in G.
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Nowwewill show that there are no binomials of degree 2 or greater in G with initial term tu1σ1 . . . turσr
such that σ1 < · · · < σr in Qn(132, 312). If we assume there is such a binomial, let tv1

σ ′
1
. . . tvs

σ ′
s
be the

other term in the binomial. By Theorem 5.6 again, we know the binomial is homogeneous and that the
two monomials have no common factors. So in the noninitial term there is some variable, which we
may take to be tσ ′

1
, such that tσ ′

1
≺grevlex tσi for all i. So, by definition of this monomial order, σ ′

1<lexσi

for all i. Letting σ1 = a1 . . . an and σ ′

1 = c1 . . . cn, denote by j the smallest index for which cj < aj. Now
r∑

i=1

uiMσi =

s∑
i=1

viMσ ′
i
,

and we know from Theorem 5.6 yet again that all the ui, vi can be taken to be positive. Thus the
entry with coordinates (j, cj) in the matrix for the right-hand summust be positive. Comparison with
the left-hand side shows that there is some other σp = b1 . . . bn for which bj = cj and σ1 < σp in
Qn(132, 312).

We will show cj is equal to some element in c1 . . . cj−1 = a1 . . . aj−1 and so σ ′

1 is not a permutation,
the desired contradiction. Using Lemma 5.10 and the definition of j we have

min{a1, . . . , aj} = µj(σ1) ≤ µj(σp) ≤ bj = cj < aj.

But from Lemma 3.3, it is clear that any prefix of σ1 forms an interval. So the above inequalities show
that cj ∈ {a1, . . . , aj−1} = {c1, . . . , cj−1}. So cj is repeated in σ ′

1 forcing it not to be a permutation, the
desired contradiction.

We have shown that the binomials in G have initial terms that are products of variables that
correspond to pairwise incomparable elements inQn(132, 312). So, the initial ideal of IAP is radical and
therefore, by Theorem 5.8, is the Stanley–Reisner ideal of a regular triangulation of conv(AP ) which
induces a triangulation of conv(A) = P .

Since the minimal non-edges of the triangulation are pairs of incomparable elements, any chain
σ1 < · · · < σr in Qn(132, 312) induces a face {Mσ1 , . . . ,Mσr } of the triangulation. The set of all
such faces is exactly Tn(132, 312), implying that Tn(132, 312) is actually a regular triangulation of
Bn(132, 312). By Proposition 5.4, this triangulation is unimodular with respect to (aff P) ∩ Zn×n,
and since the minimal non-faces are edges, this triangulation is flag. Because this triangulation
was the result of taking an initial ideal with respect to a grevlex order, the triangulation is reverse
lexicographic.

The same proof will work in the case of B̃n(123) except during the demonstration that σ ′

1 is not a
permutation where we used the grid class structure of Avn(132, 312). Instead, we show that there is
no such σ ′

1 in Q̃n(123) as follows. If cj occurs among a1, . . . , aj−1 thenwe are done as before. Otherwise,
aj must occur to the right of cj in σ ′

1. Recall that applying a simple transposition si to an element of
Q̃n(123) interchanges i which is in odd position with i + 1 which is in an even position. It follows
that elements in odd positions increase with the partial order while those in even positions decrease.
Since aj > bj, we must have j even. If aj occurs in an even position to the right of cj in σ ′

1, then we have
a contradiction since cj < aj are the elements in even positions form a decreasing sequence. If aj is
in an odd position, then cj−1 > aj since the elements in odd positions are also decreasing. But then
cj−1 > aj > cj which contradicts the fact that σ ′

1 is alternating. This final contradiction finishes the
proof. □

As a first application of this theorem, we will compute the dimensions of our polytopes. Indeed,
since the simplices defined in Proposition 5.4 are those of a regular triangulation, their dimensions
must be that of the corresponding polytopes. So we have shown the following.

Corollary 5.12. We have dim Bn(132, 312) =
(n
2

)
and dim B̃n(123) =

( n
⌊n/2⌋

)
. □

We can also compute the normalized volumes of Bn(132, 312) and B̃n(123).

Corollary 5.13. The normalized volume of Bn(132, 312) is

Vol Bn(132, 312) =

(
n
2

)
!

∏n−1
i=1 (i − 1)!∏n−1
i=1 (2i − 1)!
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The normalized volume of B̃n(123) is

Vol B̃n(123) =

(
k
2

)
!

1∏k−1
i=1 (2i − 1)k−i

,

where k = ⌈n/2⌉.

Proof. Since both Tn(132, 312) and T̃n(123) are unimodular triangulations of Bn(132, 312) and
B̃n(123), the normalized volumes of the polytopes are the total number of maximal simplices in the
respective triangulations. These are enumerated by counting the maximal chains in Qn(132, 312) and
Q̃n(123), which are in bijection with shifted SYT of shape (n − 1, . . . , 1) and left-justified SYT of
shape (k−1, . . . , 1). Such tableaux are counted by the well-known hook formulas, established in [40]
and [18]. □

Because the triangulations in Theorem 5.11 were obtained using the grevlex order, Corollary 2.5
of [34] gives us

h∗(Bn(132, 312)) = h(Tn(132, 312)) = h(∆(Qn(132, 312))),

and likewise for B̃n(123). This fact will come into play in the final section when making statements
about the components of h∗-vectors for our polytopes.

To close this section, we return to the connection between unimodular triangulations and the
integer decomposition property. In particular, we note that not every choice ofΠ produces a polytope
Bn(Π ) with a unimodular triangulation. If a lattice polytope does have a unimodular triangulation,
then it follows quickly that it is also IDP. To outline why the implication holds, suppose v0, . . . , vn are
the vertices of a unimodular simplex S ⊆ Rn. Then x ∈ mS ∩ Zn if and only if (x,m) ∈ cone(S)∩ Zn+1,
where cone(S) denotes the cone in Rn+1 whose ray generators are (v0, 1), . . . , (vn, 1). Since S is a
simplex, each lattice point in the cone is contained in a single translate of the monoid generated by
{(v0, 1), . . . , (vn, 1)}, where the translates are uniquely determined by the lattice points in the half-
open fundamental parallelepiped

ΦS := {x ∈ Rn+1
| x =

n∑
i=0

λi(vi, 1) where 0 ≤ λi < 1}.

For example, given the 1-dimensional simplex [−1, 1], we see that Φ[−1,1] contains two lattice
points, which are (0, 0) and (0, 1). So, every lattice point of cone([−1, 1]) is contained in exactly one
of the translates Z≥0{(−1, 1), (1, 1)} or (0, 1) + Z≥0{(−1, 1), (1, 1)}.

The simplex S is unimodular if and only if ΦS contains exactly one lattice point, which is
necessarily 0. Thus the lattice points of cone(S) are exactly the elements of the single monoid
Z≥0{(v0, 1), . . . , (vn, 1)}, which forces S to be IDP. It follows that a polytope with a unimodular
triangulation must also be IDP.

Directly proving that a lattice polytope has the integer decomposition property is usually very
difficult. It is more usually established as a byproduct of proving that the polytope has a unimodular
triangulation, or simply a unimodular cover.

Conjecture 5.14. If Π ⊆ S3, and Bn(Π ) is nonempty, then Bn(Π ) is IDP.

Computer experiments support this conjecture for all choices of Π satisfying the given conditions
and all n ≤ 5. There do exist choices of Π ⊆ S for which Bn(Π ) is not IDP, though. For example, one
can verify that⎡⎢⎢⎢⎣

0 1 1 2 0
1 0 1 0 2
1 1 0 1 1
2 0 1 0 1
0 2 1 1 0

⎤⎥⎥⎥⎦
is a lattice point of 4B5(2413, 3124) but cannot be written as a sum of four lattice points from
B5(2413, 3124). This raises the following very broad question.
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Question 5.15. For which choices of Π is Bn(Π ) IDP?

6. The Ehrhart theory of Bn(132, 312) and B̃n(123)

The previous section identified shellable, regular, unimodular triangulations of Bn(132, 312) and
B̃n(123) which arose from order complexes of certain distributive lattices; in this section, we use the
EL-labelings of the lattices to study the h∗-vectors of the polytopes. To do so, we require some more
definitions and background.

Suppose P ⊆ Rn is a lattice polytope containing the origin in its interior. We say that P is reflexive
if its polar dual

P∨
:= {x ∈ Rn

| xTy ≤ 1 for all y ∈ P}

is also a lattice polytope. Any lattice translate of a reflexive polytope is also called reflexive. A lattice
polytope P is said to be Gorenstein if kP is reflexive for some k, called the index. A theorem, due to
Stanley, describes exactly the behavior of h∗-vectors for Gorenstein polytopes.

Theorem6.1 ([33, Theorem 4.4]). A lattice polytope is Gorenstein if and only if its h∗-vector is palindromic.

We can use this result together with the following facts about h∗-vectors to determine necessary
conditions for P to be Gorenstein. Let h∗(P) = (h∗

0, . . . , h
∗

d) where P is any lattice polytope. We always
have h∗

0 = 1. Additionally, as a consequence of Ehrhart–Macdonald reciprocity, the first scaling of P
containing an interior lattice point is (dim P −d+1)P , and the number of interior lattice points in this
scaling is h∗

d . Since a Gorenstein polytope has a palindromic h∗-vector, then in order to be Gorenstein,
the first scaling of P with an interior lattice point must have exactly one such point.

Note that not every set of permutations Π will produce a Gorenstein Bn(Π ). Take, for example,
Π = {123, 132} and n = 5. One may verify that the first nonnegative integer scaling mBn(123, 132)
containing an interior lattice point occurs when m = 8, but this scaling contains four interior lattice
points rather than the one needed to be Gorenstein.

The main goal of this section will be to prove the following theorem.

Theorem 6.2. For all n, Bn(132, 312) and B̃n(123) are Gorenstein.

If the hyperplane description of a lattice polytope is known, thenprovingwhether it is Gorenstein is
often a straightforward task. Such a description of Bn(132, 312) and B̃n(123) has been elusive, though,
so we must approach the proof of Theorem 6.2 by showing that their h∗ vectors are palindromic and
then appealing to Theorem 6.1.

One benefit of going through the work of the previous section is that once a Gorenstein polytope
is known to have a regular, unimodular triangulation, it follows that the h∗-vector of the polytope
is unimodal in addition to being palindromic [10]. Thus, using Theorem 6.2, the regular unimodular
triangulations Tn(132, 312) and T̃n(123), as well as the EL-labelings of Qn(132, 312) and Q̃n(123), we
will be able to establish that the h∗-vectors of these two polytopes are palindromic and unimodal.

In a shellable triangulation (which may be either abstract or geometric) with shelling order
F1, . . . , Fs, the restriction of face Fj is the set R(Fj) of vertices v ∈ Fj such that the facet Fj − v is
contained in F1 ∪ · · · ∪ Fj−1. The shelling number of Fj is r(Fj) = |R(Fj)|. The following result of Stanley
shows that the entries of the h∗-vector of the polytope being shelled can be computed using shelling
numbers.

Proposition 6.3 ([34, Corollary 2.6]). Suppose that T1, . . . , Tk is a shelling order of a unimodular
triangulation of a lattice polytope P. Then the component h∗

i of h∗(P) is equal to the number of simplices
Tj such that r(Tj) = i. □

When using EL-shellings, there is an easy way to determine the shelling number of a facet, that is,
of a maximal chain c , from its labeling. In particular, if

λ(c) = (λ(q0, q1), λ(q1, q2), . . . , λ(qk−1, qk))
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then qm ∈ R(c) if and only if we have a descent λ(qm−1, qm) > λ(qm, qm+1) in λ(c). This is the content
of the following lemma of Björner.

Lemma 6.4 ([7, Lemma 2.6]). Let c be a maximal chain of a poset admitting an EL-labeling λ. Then

r(c) = des λ(c)

where des is the number of descents. □

The last link in our chain will come from a result in the theory of (Q , ω)-partitions as developed by
Stanley. A fuller exposition can be found in Chapter 3 of his book [37]. Let Q be a poset with |Q | = n,
and let ω : Q → [n] be a bijection, called a labeling of Q . We say f : Q → Z≥1 is a (dual) (Q , ω)-
partition if

(i) f is order preserving, and
(ii) if s < t and ω(s) > ω(t), then f (s) < f (t).

In a sense one may think of ω as indicating where strict inequalities of f occur, rather than weak
inequalities. If ω itself is order-preserving then, as we have already seen, it is called a natural labeling
of Q . We callω dual natural if its dual labeling ω, defined by the complementationω(q) = n+1−ω(q),
is natural.

We will be concerned with the order polynomial ΩQ ,ω(m) of (Q , ω), which is the number of maps
f : Q → [m] which satisfy conditions (i) and (ii) above. It can be shown that ΩQ ,ω(m) is a polynomial
inm of degree n = |Q |. Equivalently, the generating function for the order polynomial must be in the
form ∑

m≥0

ΩQ ,ω(m)tm =
AQ ,ω(t)

(1 − t)n+1

where AQ ,ω(t) is a polynomial of degree at most n called the Eulerian polynomial of (Q , ω). In fact, one
can give an explicit description of AQ ,ω(t) as follows. Define the Jordan–Hölder set L(Q , ω) of (Q , ω)
to be the set of all permutations of the form w = ω(q1)ω(q2) . . . ω(qn) as q1, q2, . . . , qn runs over all
linear extensions of Q , that is, total orders on Q such that if qi < qj in Q then i < j.

Theorem 6.5 ([37, Theorem 3.15.8]). We have∑
m≥0

ΩQ ,ω(m)tm =

∑
w∈L(Q ,ω) t

1+desw

(1 − t)n+1

where n = |Q |. □

Our next goal is to show that under certain conditions AQ ,ω(t) is palindromic. To do this, we will
need a trio of results. SinceΩQ ,ω(m) is a polynomial it makes sense to talk about its value at a negative
argument. Also, there are many properties of the order polynomial which are true for all natural
labelings ω. In this case, we shorten ΩQ ,ω to ΩQ and similarly for other notation.

Theorem 6.6 ([37, Corollaries 3.15.12 and 3.15.18]). Let Q be a poset with |Q | = n and longest chain of
length l.

(A) (Reciprocity theorem for order polynomials) For all m ∈ Z

ΩQ ,ω(m) = (−1)nΩQ ,ω(−m).

(B) If ω is natural then

ΩQ (0) = ΩQ (−1) = · · · = ΩQ (−l) = 0.

(C) Suppose ω is natural. The poset Q is graded if and only if

ΩQ (m) = (−1)nΩQ (−m − l)

for all m ∈ Z. □
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Theorem 6.7. Let Q be a poset and let ω be a natural labeling of Q . Then the Eulerian polynomial AQ (t)
is palindromic if and only if Q is graded.

Proof. We will prove the backwards direction as going forwards is similar. We will use Q as an
abbreviation for (Q , ω). We also conserve the notation of the previous result. Using Theorem 6.6 (A),
Theorem 6.5, and the definition of ω in turn we get

(−1)n
∑
m≥0

ΩQ (−m)tm =

∑
m≥0

ΩQ (m)tm

=

∑
w∈L(Q ) t

1+desw

(1 − t)n+1

=

∑
w∈L(Q ) t

n−desw

(1 − t)n+1 .

Also using, in turn, parts (C) and (B) of the previous result followed by Theorem 6.5 gives

(−1)n
∑
m≥0

ΩQ (−m)tm =

∑
m≥0

ΩQ (m − l)tm

= t l
∑
m≥0

ΩQ (m)tm

=

∑
w∈L(Q ) t

l+1+desw

(1 − t)n+1 .

Comparison of the final numerators in the last two series of displayed equalities implies that AQ (t) is
a palindrome, as desired. □

We now have all our tools in place. The following result, together with Theorem 6.1, proves
Theorem 6.2.

Theorem 6.8. The vectors h∗(Bn(132, 312)) and h∗ (̃Bn(123)) are palindromic for all n.

Proof. We will only deal with the case of P = Bn(132, 312) as B̃n(123) is similar. Let Q =

Irr(Qn(132, 312)). Letω be the natural labeling ofQ used in the EL-labelingλ ofQn(132, 312). SinceQ is
graded, we know fromTheorem6.7 that AQ (t) is palindromic. So it suffices to show that the coefficient
sequence of AQ (t) equals h∗(P) (where we ignore the constant term of zero in the former). Consider
the unimodular triangulation of P given in Theorem 5.11. This permits us to apply Proposition 6.3 and
Lemma 6.4 to conclude that h∗

i (P) is the number ofmaximal chains c ofQn(132, 312)with des λ(c) = i.
Comparing this with the expression for AQ (t) in Theorem 6.5, we see that it suffices to prove

L(Q ) = {λ(c) | c a maximal chain in Qn(132, 312)}.

But this follows since Qn(132, 312) = J(Q ) so that linear extensions q0, q1, q2, . . . of Q are in bijective
correspondence with maximal chains q0 ⋖ q0 ∨ q1 ⋖ q0 ∨ q1 ∨ q2 ⋖ . . . of Qn(132, 312), and we are
using the same function ω to label both the elements of Q and the covers in the chain. □

Corollary 6.9. The vectors h∗(Bn(132, 312)) and h∗ (̃Bn(123)) are unimodal.

Proof. For each n, Bn(132, 312) and B̃n(123) have regular, unimodular triangulations by Theorem 5.11
and are Gorenstein by Theorem 6.2. By the main result of [10], the h∗-vectors for each polytope are
h-vectors for boundaries of simplicial polytopes, that is, they are unimodal. □
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