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Abstract

Let (P,≤) be a finite poset (partially ordered set), where P has cardinality n.
Consider linear extensions of P as permutations x1x2 · · ·xn in one-line notation. For
distinct elements x, y ∈ P , we define P(x ≺ y) to be the proportion of linear extensions
of P in which x comes before y. For 0 ≤ α ≤ 1

2 , we say (x, y) is an α-balanced pair
if α ≤ P(x ≺ y) ≤ 1 − α. The 1/3–2/3 Conjecture states that every finite partially
ordered set which is not a chain has a 1/3-balanced pair. We make progress on this
conjecture by showing that it holds for certain families of posets. These include lattices
such as the Boolean, set partition, and subspace lattices; partial orders that arise from
a Young diagram; and some partial orders of dimension 2. We also consider various
posets which satisfy the stronger condition of having a 1/2-balanced pair. For example,
this happens when the poset has an automorphism with a cycle of length 2. Various
questions for future research are posed.

1 Introduction

Let (P,≤) be a poset, and let n be the cardinality of P . A linear extension is a total order
x1 ≺ x2 ≺ · · · ≺ xn on the elements of P such that xi ≺ xj if xi <P xj; more compactly, we
can view a linear extension as a permutation x1x2 · · ·xn in one-line notation. For distinct
elements x, y ∈ P , we define P(x ≺ y) to be the proportion of linear extensions of P in which
x comes before y. For 0 ≤ α ≤ 1

2
, we say (x, y) is an α-balanced pair if

α ≤ P(x ≺ y) ≤ 1− α,

and that P is α-balanced if it has some α-balanced pair. Notice that if (x, y) is α-balanced,
then (y, x) is α-balanced as well.
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Figure 1: A poset P with 6 elements and a matrix counting its linear extensions

Conjecture 1.1 (The 1/3–2/3 Conjecture). Every finite partially ordered set that is not a
chain has a 1/3-balanced pair.

We can see, for instance, that the conjecture holds for the poset P depicted in Figure 1.
This poset has 15 linear extensions, which are

123456, 123465, 123645, 124356, 124365,
124536, 142356, 142365, 142536, 213456,
213465, 213645, 214356, 214365, 214536.

The matrix on the right in the figure has as its (i, j) entry the number of linear extensions
of P where i comes before j. The entries in bold give the pairs (i, j) whose number of
linear extensions with i ≺ j is between 1/3(15) = 5 and 2/3(15) = 10, thus satisfying the
conjecture.

Conjecture 1.1 was first proposed by Kislitsyn [Kis68] in 1968, although a number
of resources attribute it to Fredman [Fre76] and it was also independently discovered by
Linial [Lin84]. There are many types of posets for which the conjecture has already been
proven. This includes posets of up to 11 elements [Pec06], posets with height 2 [TGF92],
semiorders [Bri89], posets with each element incomparable to at most 6 others [Pec08], N -free
posets [Zag12], and posets whose Hasse diagram is a tree [Zag16]. If the conjecture is true,
the bounds are best possible, as seen by the poset T in Figure 2. While the proof of the 1/3
bound for a general poset remains elusive, in 1984 Kahn and Saks [KS84] proved that for any
poset P , there is some pair x, y ∈ P such that 3

11
< P(x ≺ y) < 8

11
. In 1995, Brightwell, Fel-

sner, and Trotter [BFT95] improved the bound to be 5−
√
5

10
≤ P(x ≺ y) ≤ 5+

√
5

10
. In [BFT95],

Conjecture 1.1 is described as “one of the most intriguing problems in combinatorial theory”.
The interested reader can refer to Brightwell’s 1999 survey [Bri99] for more information.

An alternative way of talking about this conjecture is as follows. We define the balance
constant of P to be

δ(P ) = max
x,y∈P

min{P(x ≺ y),P(y ≺ x)}

For any poset P not a chain, it must be that 0 < δ(P ) ≤ 1/2. In the example in Figure 1,
P has a balance constant of 7

15
≈ 0.4667. So P has a 1/3-balanced pair if and only if P has

a balance constant δ(P ) ≥ 1/3. We will use these two phrases interchangeably, as does the
literature.

The following notation will give us yet another way of discussing the conjecture. Let
E(P ) be the set of linear extensions of P and e(P ) be the cardinality of E(P ). If (P,≤) is
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T

Figure 2: The poset T with three elements and one relation

a poset and x, y ∈ P , let P + xy denote the poset (P,≤′), where ≤′ is the transitive closure
of ≤ extended by the relation x < y. So P(x ≺ y) = e(P + xy)/e(P ). Note also that

e(P + xy) + e(P + yx) = e(P ). (1)

There are ideas of Zaguia which we will find useful in a number of our proofs. The
following definitions were introduced in [Zag16], although here we refer to them with different
names which we find more descriptive. Given x in a poset P we let Lx and Ux denote the
lower and upper order ideals generated by x, that is,

Lx = {y ∈ P | y ≤ x}

and
Ux = {y ∈ P | y ≥ x}.

Definition 1.2. Let P be a poset and x and y be elements of P .

(a) We call the pair (x, y) twin elements if Lx = Ly and Ux = Uy.

(b) We call the pair (x, y) almost twin elements if the following two conditions hold in P or
in the dual of P :

(i) Lx = Ly, and

(ii) Ux \ Uy and Uy \ Ux are chains (possibly empty).

The result of Zaguia’s which we will need is as follows.

Theorem 1.3 ([Zag16]). A finite poset that has an almost twin pair of elements is 1/3-
balanced.

In fact, Zaguia proved a more general result by relaxing the definition of an almost twin
pair. But we will not need that level of generality here. It is important to keep in mind
that many of the known results for the 1/3–2/3 Conjecture are existence proofs and do not
compute P(x ≺ y) exactly for any pair (x, y) in the given poset. This is particularly true
in the case of almost twin pairs of elements. Further, an almost twin pair need not be
1/3-balanced, even though its existence implies that a 1/3-balanced pair exists.

The rest of this paper is structured as follows. In the next section, we will show that
a poset with an automorphism containing a 2-cycle is 1/2-balanced. In particular, every
poset with twin elements is 1/2-balanced. The automorphism result is applied in Section 3
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to various types of lattices including the Boolean lattice, set partition lattice, and subspace
lattice, and certain distributive lattices. We also consider the lattice obtained by taking the
product of two chains. This last example is just the poset of a rectangular Young diagram
and in Section 4 we show that the poset of any Young diagram, including those which are
skew or shifted, is 1/3-balanced. Section 5 is devoted to showing that certain posets of
dimension 2 which satisfy a pattern avoidance condition have balance constant 1/2. We end
with a section discussing posets which have balance constants near, but not equal to, 1/3.
A number of questions concerning future research are scattered throughout.

2 Automorphisms of Posets

We first provide a proof of a simple observation about the linear extensions of a poset with
an automorphism.

Proposition 2.1. An automorphism φ of a poset P induces a bijection on E(P ). Further,
P(x ≺ y) = P(φ(x) ≺ φ(y)) for all x, y ∈ P .

Proof. Let φ : P → P be any automorphism. This means that for x, y ∈ P , x ≤P y
if and only if φ(x) ≤P φ(y). Now, let π = a1a2 · · · an be a linear extension of P , and
by the definition of linear extension, we know that if ai ≤P aj, then i ≤ j. As φ is an
automorphism, then we also have that if φ(ai) ≤P φ(aj), then i ≤ j. This gives us, by
definition, that φ(π) = φ(a1)φ(a2) · · ·φ(an) is a linear extension of P . And the fact that φ
is bijective implies that the induced map on E(P ) is as well.

We can also observe that the linear extensions with x before y map bijectively via φ to the
linear extensions with φ(x) before φ(y). Hence, P(x ≺ y) = P(φ(x) ≺ φ(y)), as desired.

In [GHP87], Ganter, Hafner, and Poguntke prove that posets with a nontrivial automor-
phism satisfy Conjecture 1.1.

Theorem 2.2 ([GHP87]). If a poset P has a non-trivial automorphism, then P is 1/3-
balanced.

We will give a more refined version of this result by giving a condition on the automor-
phism which will ensure a balance constant of 1/2.

Proposition 2.3. If a poset P has an automorphism with a cycle of length 2, then P is
1/2-balanced. Further, if x and y are the elements in the cycle of length 2, then (x, y) is a
1/2-balanced pair.

Proof. Let φ : P → P be an automorphism and x, y ∈ P be such that φ(x) = y and φ(y) = x.
Thus, using Proposition 2.1, we see that

e(P + xy) = e(P + φ(x)φ(y)) = e(P + yx).

Combining this with equation (1), we have

e(P ) = e(P + xy) + e(P + yx) = 2e(P + xy),

and so e(P + xy) = e(P )/2. Hence, (x, y) is a 1/2-balanced pair, as desired.
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Figure 3: The poset P has an automorphism with cycle length 2 and balance
constant 1/2, while Q has no nontrivial automorphisms and balance constant 1/2

An example of a poset with an automorphism having a cycle of length 2 is given in
Figure 3. Poset P has a balance constant of 1/2. A counterexample to the converse of
Proposition 2.3 is also provided in Figure 3. Poset Q has a balance constant of 1/2, as it
has 12 linear extensions and e(P + 34) = 6. However, we can see by inspection it has no
nontrivial automorphisms.

The following is a corollary to Proposition 2.3.

Corollary 2.4. A poset P with a twin pair of elements is 1/2-balanced.

Proof. Let P be a poset with x and y a twin pair of elements. We can see that P has a
non-trivial automorphism which fixes all elements except for x and y and interchanges x
and y. So, this poset has an automorphism with a cycle of length 2 and we are done by
Proposition 2.3.

While the above results depend on an automorphism of a poset, it is natural to ask if we
can obtain results from other types of maps. Next, we consider anti-automorphisms σ. So
if σ2 is not the identity, then P has a non-trivial automorphism and we have the following
immediate corollary to Theorem 2.2.

Corollary 2.5. If σ is an anti-automorphism on P and σ2 is non-trivial, then P is 1/3-
balanced.

We can also ask when an anti-automorphism guarantees a poset to be 1/2-balanced.
Once such case is as follows.

Proposition 2.6. Let σ : P → P be an anti-automorphism. If σ has 2 fixed points, then P
is 1/2-balanced.

Proof. Let P be a poset and σ : P → P be an anti-automorphism. Observe that for any
x, y ∈ P , the linear extensions with x before y map bijectively via σ to the linear extensions
with σ(y) before σ(x). Hence, P(x ≺ y) = P(σ(y) ≺ σ(x)). The proof is now completed in
exactly the same way as the demonstration of Proposition 2.3.

We cannot weaken the assumption in Proposition 2.6, since a unique fixed point in an anti-
automorphism is not enough to guarantee that the poset is 1/2-balanced. For an example,
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Figure 4: P and anti-automorphism σ with 1 fixed point

consider the poset P and anti-automorphism σ in Figure 4 where for x ∈ P we place σ(x)
on the right in the same position as x on the left. Any nontrivial anti-automorphism of P ,
including σ shown here, will have exactly 1 fixed point, and computer calculations give us
that δ(P ) = 711

1431
6= 1

2
.

We can also see that the converse of Proposition 2.6 is not true, as evidenced by the
counterexample in Figure 3. Any anti-automorphism of the poset P will have exactly 1 fixed
point, and yet it is 1/2-balanced.

3 Lattices

3.1 Boolean Lattices

The Boolean lattice, Bn, consists of all subsets of [n] := {1, 2, . . . , n} ordered by inclusion.
The poset B1 is a chain, and so we only need to consider n ≥ 2. We present the following
as a corollary to Proposition 2.3.

Corollary 3.1. For all n ≥ 2, the Boolean lattice Bn has an automorphism with a cycle of
length 2. So the Boolean lattice is 1/2-balanced.

Proof. We will first describe an automorphism of Bn using the symmetric difference operation
∆. For S ⊆ [n], consider φ : Bn → Bn defined by

φ(S) =

{
S∆{1, 2}, if S ∩ {1, 2} = {1} or S ∩ {1, 2} = {2}
S, otherwise.

One can easily check that φ is an automorphism. And if A = {1} and B = {2}, then
φ(A) = B and φ(B) = A. Hence, by Proposition 2.3, Bn has a 1/2-balanced pair.

3.2 Set Partition Lattices

The lattice, Πn, consists of all partitions of [n] ordered by refinement. In writing set par-
titions, we separate subsets with slashes and dispense with set braces and commas. For
n = 1, 2 we have that Πn is a chain, and so will only consider n ≥ 3.

Corollary 3.2. For n ≥ 3, the set partition lattice Πn has an automorphism with a cycle of
length 2. So the set partition lattice is 1/2-balanced.
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Proof. We consider the map that sends a partition π to the partition π′, where π′ has the
same blocks as π with the elements 1 and 2 interchanged. This is an automorphism of the
lattice. Indeed, it is a bijection because it is an involution and swapping 1 and 2 preserves
ordering by refinement. To see that this automorphism has a 2-cycle, notice that the lattice
contains partitions π1 = 13/2/4/ · · · /n and π2 = 1/23/4/ · · · /n since n ≥ 3. Under the
automorphism described above, π1 and π2 form a 2-cycle. Hence, by Proposition 2.3, the set
partition lattice on n elements is 1/2-balanced when n ≥ 3.

3.3 Subspace Lattices

Consider the n-dimensional vector space Fnq over the Galois field with q elements. Let Ln(q)
denote the lattice of subspaces of Fnq ordered by inclusion. If n ≤ 1 then Ln(q) is a chain.

Corollary 3.3. For n ≥ 2, the subspace lattice Ln(q) has an automorphism with a cycle of
length 2. So the subspace lattice is 1/2-balanced.

Proof. Let B = {e1, . . . , en} be the standard basis of Ln(q). Consider the linear transforma-
tion on Fnq defined by the n×n matrix M that is all zero except for ones in the (1, 2), (2, 1),
and (i, i) positions, 3 ≤ i ≤ n. Clearly multiplying by M sends e1 to e2, e2 to e1, and fixes
all other basis elements of Fnq . If U ∈ Ln(q) then let

φ(U) = MU = {Mu | u ∈ U}.

It is now easy to check that φ is a well-defined automorphism of Ln(q) which exchanges the
subspaces spanned by e1 and by e2. So we are done by Proposition 2.3.

3.4 Distributive Lattices

By the Fundamental Theorem on Distributive Lattices, every distributive lattice is isomor-
phic to the lattice of lower order ideals of some poset P ordered by inclusion. So it would be
interesting to determine results about J(P ), the distributive lattice corresponding to a poset
P , depending on properties of P . Unfortunately, it is not true that if P is 1/2-balanced, then
J(P ) is 1/2-balanced as well. An example can be seen in Figure 5. While P is 1/2-balanced
by the pair (1, 3), J(P ) is not 1/2-balanced, as evidenced in the chart in Figure 5 whose
entries are e(P + xy) for every x and y not comparable in J(P ). Since J(P ) has 14 linear
extensions, we can see no pair is 1/2-balanced. However, adding an extra condition allows
us to prove that J(P ) is 1/2-balanced.

Proposition 3.4. If P has an automorphism with cycle of length 2, then J(P ) is 1/2-
balanced.

Proof. Let φ : P → P be an automorphism with φ(x) = y and φ(y) = x for some x, y ∈ P .
This induces an automorphism φ of J(P ), given by φ(I) = {φ(w) : w ∈ I} for I ∈ J(P ). We
claim that φ has a cycle of length 2, namely that φ(Lx) = Ly and φ(Ly) = Lx.

We will show φ(Lx) = Ly, as the proof of the other equality is similar. Let z ∈ φ(Lx), so
z = φ(w) for some w ∈ Lx. This means that w ≤ x, and so φ(w) ≤ φ(x) = y. Therefore,
z ≤ y and we have z ∈ Ly. Hence, φ(Lx) ⊆ Ly. The proof of the other set containment is
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Figure 5: A 4 element poset P , its corresponding J(P ), and a chart with values e(P + xy)

similar. Thus, we have proven the claim. Since φ has a cycle of length 2, by Proposition 2.3,
J(P ) is 1/2-balanced.

This leads to another proof that Boolean lattices are 1/2-balanced.

Corollary 3.5. For n ≥ 2, the Boolean lattice Bn is 1/2-balanced.

Proof. The Boolean lattice Bn is the distributive lattice corresponding to the poset P with
n elements and no relations. There is an automorphism on P that swaps elements 1 and 2
and is the identity on the remaining elements. Since P has an automorphism with a cycle
of length 2, Bn is 1/2-balanced by Proposition 3.4.

We note that if we use the construction in Proposition 3.4 on the φ from the proof of
the previous corollary, then the resulting φ is exactly the map used to prove Corollary 3.1.
Also, the ideas in this subsection raise some interesting questions.

Question 3.6. Are all distributive lattices 1/3-balanced? What other characteristics of P
would imply that J(P ) is 1/2-balanced?

3.5 Products of Two Chains

Let Cn be the chain with n elements. This section will be concerned with the product of
two chains Cm and Cn, with m,n ≥ 2. See Figure 6 for the Hasse diagram of C3 × C4.
Such products can also be interpreted in terms of Young diagrams. An integer partition is
a weakly decreasing sequence λ = (λ1, . . . , λl) of positive integers. The corresponding shape
is an array of l rows of left-justified boxes, also called cells, with λi boxes in row i. The
Young diagram of shape λ = (4, 4, 4) is displayed on the right in Figure 6 and the diagram of
λ = (4, 4, 2) is given in Figure 7 (ignoring the entries in the boxes for now). We often make
no distinction between an integer partition and its Young diagram. Let (i, j) denote the box
in row i and column j of λ. Then we turn this Young diagram into a poset by ordering the
boxes component-wise: (i, j) ≤ (i′, j′) if and only if i ≤ i′ and j ≤ j′. It should now be clear
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Figure 6: The poset C3 × C4 and its corresponding diagram

that the posets Cm × Cn and λ = (nm) are isomorphic where nm represents n repeated m
times as in Figure 6.

The linear extensions of λ can be thought of as a certain type of tableau. A standard
Young tableau (SYT) of shape λ, Y , is a filling of the boxes of λ with the integers 1, . . . , n =∑

i λi so that the rows and columns increase. An SYT of shape λ = (4, 4, 2) is displayed on
the left in Figure 7. The SYT of shape λ are in bijection with the linear extensions of λ
where k is the entry in box (i, j) if and only if (i, j) is the kth element of the linear extension.
We will freely go back and forth between these two viewpoints.

Unlike many other demonstrations that a poset is 1/3-balanced, our proof for Cm × Cn
finds the exact value of P(a ≺ b) for a pair of elements (a, b). It also provides a nice
application of the famous Hooklength Formula, equation (2) below. Consider the cells a =
(1, 2) and b = (2, 1) as labeled in Figure 6. In order to compute how many linear extensions
of Cm×Cn have a ≺ b, we will compute how many SYT have cell (1, 2) filled with a smaller
number than cell (2, 1). Since the entry 2 must go in one of these two cells, this assumption
forces the SYT to have the (1, 1) cell filled with a 1 and the (1, 2) cell filled with a 2. Flipping
and rotating by 180 degrees, one sees that this is equivalent to counting the SYT of shape
(nm−1, n− 2).

To prove the next lemma, we will need the hooklength formula for fλ, the number of
SYT of shape λ. For a given cell (i, j) in a diagram of shape λ, its hook is the set of all the
cells weakly to its right and in the same row, together with all cells weakly below it and in
the same column, and its hooklength hλ(i, j) is the number of cells in its hook. On the right
in Figure 7, each cell of λ = (4, 4, 2) is labeled with its hooklength. The hooklength formula
for a diagram with n cells is

fλ =
n!∏
hλ(i, j)

, (2)

where the product is over all cells (i, j) in λ. Returning to our example shape (4, 4, 2), we
see that the corresponding number of SYT is

f (4,4,2) =
10!

6 · 52 · 4 · 3 · 23 · 12
= 252.

Lemma 3.7. Let m ≥ 1 and n ≥ 3. We can relate the number of standard Young tableaux
of shape (nm) and of shape (nm−1, n− 2) by the following equality:

f (nm−1,n−2) =
(n− 1)(m+ 1)

2(mn− 1)
f (nm).
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Figure 7: A SYT of shape (4, 4, 2) and a diagram of its hooklengths

Proof. Let λ = (nm) and µ = (nm−1, n−2). We will proceed by first describing which factors
differ between fλ and fµ. We can observe that the hooklengths only disagree between λ and
µ in those cells in the last two columns and those in the last row. The last two columns of
λ have hooklengths of m+ 1,m, . . . , 2 and m,m− 1, . . . , 1, while in µ the last two columns
have hooklengths m,m− 1, . . . , 2 and m− 1,m− 2, . . . , 1. Overall, fµ is missing a factor of
(m + 1)m which appears in the denominator of fλ. Similarly, the hooklength values of the
last row of λ, excluding the ones in the last two columns which have already been accounted
for, are n, n−1, . . . , 3, while those in µ are n−2, n−3, . . . , 1. So our formula for fµ is missing
a factor of n(n − 1) from the denominator and a factor of 2 from the numerator. Finally
fλ has a numerator of (mn)! while µ has a numerator of (mn − 2)!, so there is a factor of
(mn)(mn−1) we need to remove from the numerator of fλ. Overall, our hooklength formula
for µ derived from fλ is

fµ =
n(n− 1)(m+ 1)m

2(mn)(mn− 1)
fλ =

(n− 1)(m+ 1)

2(mn− 1)
fλ,

as desired.

Theorem 3.8. Let Cm and Cn be chains of lengths m ≥ 2 and n ≥ 2, respectively. Then
their product Cm × Cn has a 1/3-balanced pair.

Proof. Without loss of generality, we can let m ≤ n. Let P = Cm × Cn. If m = 2, then P
has width 2, and so is 1/3-balanced by a result of Linial (see Theorem 6.1). If m = n = 3,
then P has a non-trivial automorphism, and so by Theorem 2.2, P has a 1/3-balanced pair.

Next, let m ≥ 3 and n ≥ 4. Consider the cells a = (1, 2) and b = (2, 1). We claim that
(a, b) are a 1/3-balanced pair. As discussed at the beginning of this subsection, e(P ) = fλ

and e(P +ab) = fµ, where λ = (nm) and µ = (nm−1, n− 2). Hence, by Lemma 3.7, we know
that

e(P + ab) =
(n− 1)(m+ 1)

2(mn− 1)
e(P ).

It remains to be shown that
1

3
≤ (n− 1)(m+ 1)

2(mn− 1)
≤ 2

3
(3)

for all m ≥ 3, n ≥ 4. For the first inequality, cross multiply and bring everything to one
side to get the equivalent inequality (mn− 1) + 3(n−m) ≥ 0. This inequality is true since
n ≥ m and mn ≥ 1.

For the second inequality, proceed in the same manner to get mn + 3(m − n) − 1 ≥
0. By the lower bounds for m,n we have (m − 3)(n − 4) ≥ 0. So it suffices to prove
mn + 3m − 3n − 1 ≥ (m − 3)(n − 4). Moving everything to one side yet again gives the
equivalent inequality 7m− 13 ≥ 0 which is true since m ≥ 3.

10



(a) (b) (c) (d)

Figure 8: (a) A left-justified Young diagram of shape (4, 22, 1), (b) a shifted diagram of
shape (5, 3, 2, 1), (c) a skew left-justified diagram of shape (4, 22, 1) / (2, 1),

and (d) a shifted skew diagram of shape (5, 3, 2, 1) / (3)

Therefore, we have shown that (3) holds, and so (a, b) is a 1/3-balanced pair in P .

Question 3.9. We were motivated in part to study products of chains as they are isomorphic
to divisor lattices. Can one show that a product of k chains is 1/3-balanced, for k ≥ 3?

4 Other Diagrams

In Section 3.5, we considered the product of two chains as a rectangular Young diagram,
and the linear extensions of the poset corresponded to the standard Young tableaux of that
Young diagram. Given Theorem 3.8, it is natural to consider other posets that come from
other diagrams. Suppose λ1 > λ2 > · · · > λk, in which case λ = (λ1, . . . , λk) is called a
strict partition. The shifted diagram corresponding to a strict partition λ indents row i so
that it begins at the diagonal cell (i, i). An example is given in Figure 8(b). A third type
of diagram is a skew diagram, λ/µ, which is the set-theoretic difference between diagrams
λ = (λ1, . . . , λk) and µ = (µ1, . . . , µl) such that µ ⊆ λ, that is, l ≤ k and µi ≤ λi for each
1 ≤ i ≤ l. A skew diagram can be either left-justified, as seen in Figure 8(c), or shifted, as
seen in Figure 8(d). Note that when µ is empty then λ/µ = λ. Also, we will now use the
term “Young diagram” to refer to any of the four possibilities we have described.

Any Young diagram can be turned into a poset using the same ordering on the cells as
before. In addition, a standard Young tableau can be obtained from a diagram with n boxes
by filling them with the numbers 1, . . . , n so that rows and columns increase. Such tableaux
correspond bijectively to linear extensions of the corresponding poset. We next present a
generalized version of Theorem 3.8 for arbitrary shapes.

Theorem 4.1. Let Pλ/µ be the poset corresponding to the Young diagram λ/µ. If Pλ/µ is
not a chain, then it is 1/3-balanced.

Proof. Let λ = (λ1, . . . , λk) and µ = (µ1, . . . , µl). Assume first that µ is empty. We will
show that Pλ has an almost twin pair of elements and so, by Theorem 1.3, is 1/3-balanced.

When λ is left-justified, let x correspond to the (1, 2) cell and y correspond to the (2, 1)
cell of λ. Both of these cells must exist in λ since Pλ is not a chain. It is now easy to verify
that (x, y) is an almost twin pair. If λ is a shifted, then λ1 ≥ 3 and λ2 ≥ 1, as Pλ is not a
chain. Let x correspond to the (1, 3) cell and y correspond to the (2, 2) cell. Again, (x, y) is
an almost twin pair of elements in Pλ.

11
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Figure 9: The skew diagram (9, 72, 54) / (6, 5, 32, 2)

Next, we consider skew diagrams. If λ/µ is a disconnected diagram, observe that an
almost twin pair in a connected component of Pλ/µ remains an almost twin pair in the entire
poset. Therefore, we can assume λ/µ is a connected skew diagram that does not correspond
to a poset that is a chain. First consider skew left-justified diagrams. By removing any
empty columns on the left of the diagram, we can assume without loss of generality that
k ≥ l + 1. For ease in discussing the first and last rows of µ, define µ0 = λ1 and µl+1 = 0.
We have the following cases:

(i) If there exists i ∈ [l] such that

µi−1 − 1 ≥ µi = µi+1 + 1

then (i, µi + 1) and (i+ 1, µi+1 + 1) is an almost twin pair. For an example of this case,
see the pair (a, b) in Figure 9.

(ii) If there exists i ∈ [l − 1] such that

µi−1 − 2 ≥ µi = µi+1

then (i, µi + 2) and (i+ 1, µi+1 + 1) is an almost twin pair. Note that (i, µi + 2) exists
in the diagram since λ/µ is connected. For an example of this, see the pair (c, d) in
Figure 9.

(iii) If k = l + 1 and µl−1 − 1 ≥ µl, then (l, µl + 1) and (l + 1, 1) are an almost twin pair.
For an example of this, see the pair (e, f) in Figure 9.

(iv) If k ≥ l + 2 and µl ≥ 2, then (l + 1, 2) and (l + 2, 1) are an almost twin pair. Notice
this is similar to case (ii), only it occurs at the bottom of the skew diagram.

We can now decide what types of diagrams do not fall into cases (i)-(iv) above. We claim
that any remaining diagram has µ of the form

(sm1 , (s− 1)m2 , . . . , (s− p+ 1)mp)

where 1 ≤ p ≤ s and mi ≥ 2 for all i ∈ [p]. We call this case (v).

12



a

b

(53, 43, 3) / (42, 32, 22)

c

d

(8, 6, 5, 3, 2) / (6, 3)

Figure 10: A skew left-justified diagram and a skew shifted diagram

To verify the claim, note that all consecutive µi values differ by 1 or 0 since if there is
some r with µr−1−2 ≥ µr, then to avoid cases (i) and (ii) above, it must be that µs−1−2 ≥ µs
for all s ∈ [r, l+ 1]. In particular, this means µl ≥ 2, and this diagram will fall into case (iii)
or (iv). So, any consecutive µi values differ by 1 or 0. Further, if mi = 1 for any i ∈ [p], the
diagram would fall into case (i). Hence, µ must have the form above.

It also must be true that λ/µ has λ1 = µ1 + 1, in order to avoid case (ii) above. An
example of a diagram λ/µ that does not fall into cases (i)-(iv) is given in Figure 10. In these
remaining diagrams, (1, µ1 + 1) and (m1 + 1, µ(m1+1) + 1) is an almost twin pair. An example
of such a pair is (a, b) in Figure 10. Hence every skew left-justified diagram λ/µ satisfies one
of these five cases, and so Pλ/µ has an almost twin pair.

Finally, we consider the skew shifted diagrams. Notice that that the first l rows of the
diagram can be viewed as a skew left-justified diagram. Therefore, if any of the first l − 1
rows are of the forms found in cases (i) or (ii), or if the first rows correspond to case (v),
then the almost twin pairs in those cases remain almost twin in this poset, and we are done.

If none of cases (i), (ii), or (v) apply, then consider µl. In particular, it must be the
µl > 1, else case (ii) or (v) applies. If µl > 3, then the last k − l rows of the diagram
are a shifted diagram, and so we have the same almost twin pair as in the shifted case. If
µl ∈ {2, 3}, then (l, µl + l) and (l + 1, l + 1) are an almost twin pair, as seen by the pair
(c, d) in Figure 10. Hence, for skew diagrams λ/µ, if Pλ/µ is not a chain, it has an almost
twin pair of elements, as claimed. Hence, even when µ is not empty, we can always find an
almost twin pair.

5 Posets of Dimension 2

The set of linear extensions E(P ) of a labeled poset P with n elements can be considered as
a subset of the symmetric group Sn, where permutations are written in one-line notation.
The dimension of a poset is the least k such that there is some U ⊆ E(P ) of size k such that
∩U = (P,≤). An equivalent definition is that the dimension of P is the least k such that P
can be embedded as a subset into the product Nk where N = {0, 1, 2, . . . }.

We will be concentrating on posets of dimension 2. Every such poset can be realized using
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234

5

Pπ

Figure 11: The poset Pπ for π = 41325

a permutation π = π1 . . . πn since a poset of dimension 2 can be obtained by intersecting
the linear order in π with the natural order 1 < · · · < n on the integers. We will use Pπ to
denote this poset. Figure 11 displays the poset Pπ when π = 41325.

To state our result, we will need some definitions from the theory of permutation patterns.
If π and σ are permutations then we say that π contains a copy of σ if there is some
subsequence of π whose elements are in the same relative order as those of σ. Otherwise, π
avoids σ. For example, if π = 23154 then π contains the pattern 132 because the subsequence
254, like the pattern, has its smallest element first, its largest element second, and its middle-
sized element last. On the other hand, π avoids 321 since it does not contain a decreasing
subsequence with three elements. Given a subsequence π′ of π we say that π′ is contained in
a copy of σ if some copy of σ in π uses every element of π′ (and perhaps others). Otherwise,
we say π′ avoids σ. Note that π′ can avoid σ even if π contains it. Returning to our example,
π′ = 14 is contained in the pattern 132 because of the subsequence 154 of π. But π′ avoids
123 since none of the copies of 123 in π use the 1.

Finally, define an inversion in π = π1 . . . πn to be a copy πiπj of the pattern 21. Note
that in this case some authors define the inversion to be the pair of corresponding indices
(i, j).

Proposition 5.1. Let π = π1π2 . . . πn be an element of Sn, and assume that π has an
inversion πiπj avoiding the patterns 312 and 231 in π. Then the pair (πi, πj) is 1/2-balanced
in Pπ.

Before we proceed to the proof, we can observe an example of this in Figure 11. Note that
32 is an inversion of π = 41325 which avoids 312 and 231 in π. So (3, 2) is a 1/2-balanced
pair in Pπ.

Proof. To simplify notation, let πi = y and πj = x. Therefore, π has the form

π = π1 · · · y · · · x · · · πn

where y >N x. Now, since yx avoids 312 and 231, there are no elements between x and y in
π that are larger than y or smaller than x. Also, no elements to the right of x or left of y
have values between x and y. To put this description another way, if yx avoids 312 and 231
in π, the elements between y and x in π are exactly those in the set {a | x <N a <N y}.
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Figure 12: Two posets with small balance constants

We claim that Ux = Uy and Lx = Ly in Pπ. We will show that Ux = Uy as the proof of
Lx = Ly is nearly identical. If z ∈ Ux, then z is to the right of x in π and thus also to the
right of y in π. Since yx avoids 312 in π and x <N z, it must be that y <N z. Hence, y <P z
and so z ∈ Uy.

If z ∈ Uy, then z is to the right of y in π and y <N z. Since yx avoids 231 in π, then z
must also be to the right of x in π. Also, x <N y <N z. Thus x <P z, which means z ∈ Ux.
Hence, we have that Ux = Uy.

Now, because Ux = Uy and Lx = Ly, (x, y) is a twin pair of elements. So, by Corollary 2.4,
Pπ is 1/2-balanced as desired.

Not every poset Pπ is 1/2-balanced. For example, if π = 13572468 then Pπ is isomorphic
to the distributive lattice J(P ) in Fig. 5. But we have already noted that this lattice is not
1/2-balanced.

Question 5.2. Do posets of dimension 2 satisfy Conjecture 1.1?

6 Posets with Small Balance Constants

It would be of interest to characterize those posets whose balance constant is exactly 1/3,
or to see if there are posets satisfying Conjecture 1.1 with δ(P ) arbitrarily close to 1/3.
For the second question, people have considered posets of width 2 (where width is the
largest cardinality of an antichain) because Linial [Lin84] proved that these posets satisfy
the conjecture.

Theorem 6.1 ([Lin84]). Let (P,≤) be a poset of width 2. Then, δ(P ) ≥ 1/3.

Aigner [Aig85] showed that posets of width 2 fit into one of two categories: either the
poset is a linear sum of copies of the singleton poset and T (the poset from Figure 2); or
the poset has an α-balanced pair with 1/3 < α < 2/3. In fact, the only known posets that
have a balance constant of 1/3 are the linear sums of singletons and T . The poset of width
2 in Figure 12 has a balance constant of 16

45
≈ 0.3556, and until recently, it was the poset

with the smallest known balance constant greater than 1/3 [Bri99]. Using computer search,
we have found posets of width 2 that have balance constants closer to 1/3. In Figure 13,
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Figure 13: Posets with the smallest balance constants greater than 1/3

the three posets have balance constants δ(A) = 6
17
≈ 0.35294, δ(B) = 60

171
≈ 0.350877, and

δ(C) = 37
106
≈ 0.349057.

The smallest known balance constant for a poset with width strictly greater than 2 is
14
39
≈ 0.3590, as described in [Bri99]. It belongs to the poset with 7 elements in Figure 12. A

computer search of all posets with up to 9 elements revealed no posets with balance constant
smaller that 14

39
and width greater than 2. These observations raise the following questions.

Question 6.2. Can one find a sequence of posets whose balance constants approach 1/3? If
P has width w, is there always a poset Q of smaller width such that δ(Q) < δ(P )?
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