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1. Introduction

For the entirety of this paper let us assume that all our partially ordered sets (posets) 
are finite, ranked, and contain a unique minimal element, denoted 0̂. Recall the one-
variable Möbius function of a poset, μ : P → Z, is defined recursively by∑

y≤x

μ(y) = δ0̂,x

where δ0̂,x is the Kronecker delta.
Also, recall that a poset P , is ranked if, for each x ∈ P , every saturated 0̂–x chain 

has the same length. Given a ranked poset, we get a rank function ρ : P → N defined by 
setting ρ(x) to be the length of a 0̂–x saturated chain. We define the rank of a ranked 
poset P to be

ρ(P ) = max
x∈P

ρ(x).

When P is ranked, the generating function for μ is called the characteristic polynomial
and is given by

χ(P, t) =
∑
x∈P

μ(x)tρ(P )−ρ(x).

We are interested in identifying lattices which have characteristic polynomials with only 
nonnegative integer roots. In this case, we also wish to show that the roots are the 
cardinalities of sets of atoms of the lattice.

Before we continue, let us mention some previous work done by others on the fac-
torization of the characteristic polynomial. For a more complete overview, we suggest 
reading the survey paper by Sagan [9]. In [11], Stanley showed that the characteristic 
polynomial of a semimodular supersolvable lattice always has nonnegative integer roots. 
Additionally, he showed these roots were given by the sizes of blocks in a partition of the 
atom set of the lattice. Blass and Sagan [3] extended this result to LL lattices. In [15], 
Zaslavsky generalized the concept of coloring of graphs to coloring of signed graphs 
and showed how these colorings were related to the characteristic polynomial of certain 
hyperplane arrangements. This permits one to factor characteristic polynomials using 
techniques for chromatic polynomials of signed graphs. Saito [10] and Terao [12] studied 
a module of derivations associated with a hyperplane arrangement. When this module is 
free, the characteristic polynomial has roots which are the degrees of its basis elements.

Our method for factoring the characteristic polynomial is based on two simple results 
given in the next well-known lemma.

Lemma 1. Let P and Q be posets. Then we have the following.

1. χ(P ×Q, t) = χ(P, t)χ(Q, t).
2. If P ∼= Q, then χ(P, t) = χ(Q, t).
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Fig. 1. Claw with n atoms.

Now let us investigate a family of lattices whose characteristic polynomials have only 
nonnegative integer roots. We will often refer back to this example in the sequel. The 
partition lattice, Πn, is the lattice whose elements are the set partitions π = B1/ . . . /Bk

of {1, 2, . . . , n} under the refinement ordering. The subsets Bi in a partition are called 
blocks. It is well-known that in this case the characteristic polynomial is given by

χ(Πn, t) = (t− 1)(t− 2) · · · (t− n + 1).

Note that the characteristic polynomial of the partition lattice can be written as the 
product of linear factors whose roots are in Z≥0. Motivated by this fact, we consider a 
family of posets each having a single linear factor as its characteristic polynomial.

Definition 2. The claw with n atoms is the poset with a 0̂, n atoms and no other elements. 
It will be denoted CLn and is the poset which has Hasse diagram depicted in Fig. 1. 
Clearly,

χ(CLn, t) = t− n.

Now let us look at the special case of Π3. We wish to show that

χ(Π3, t) = (t− 1)(t− 2).

Since the roots of χ(Π3, t) are 1 and 2, we consider CL1×CL2 which, by the first part of 
Lemma 1, has the same characteristic polynomial. Unfortunately, these two posets are 
not isomorphic since one contains a maximum element and the other does not. We now 
wish to modify CL1 ×CL2 without changing its characteristic polynomial and in such a 
way that the resulting poset will be isomorphic to Π3. It will then follow from the second 
part of Lemma 1 that

χ(Π3, t) = χ(CL1 × CL2) = (t− 1)(t− 2).

Let CL1 have its atom labeled by a and let CL2 have its two atoms labeled by b and c. 
Now suppose that we identify (a, b) and (a, c) in CL1 ×CL2 and call this new element d. 
After this collapse, we get a poset isomorphic to Π3 as can be seen in Fig. 2. Note 
that performing this collapse did not change the characteristic polynomial since μ(d) =
μ((a, b)) + μ((a, c)) and ρ(d) = ρ((a, b)) = ρ((a, c)). Thus we have fulfilled our goal.
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Fig. 2. Hasse diagrams for the partition lattice example.

It turns out that we can use this technique of collapsing elements to find the roots 
of a characteristic polynomial in a wide array of posets, P . The basic idea is that it is 
trivial to calculate the characteristic polynomial of a product of claws. Moreover, under 
certain conditions which we will see later, we are able to identify elements of the product 
and form a new poset without changing the characteristic polynomial. If we can show 
the product with identifications made is isomorphic to P , then we will have succeeded 
in showing that χ(P, t) has only nonnegative integer roots.

In the next section, we formally define what it means to identify elements of a poset 
P as well as give conditions under which making these identifications will not change 
the characteristic polynomial. In Section 3, we discuss a canonical way to put an equiv-
alence relation on P when it is a lattice and give three simple conditions which together 
imply that χ(P, t) has nonnegative integral roots. Section 4 contains a generalization of 
the notion of a claw. This enables us to remove one of the conditions needed to prove 
factorization and we obtain our main result, Theorem 14. Section 5 is concerned with 
partitions of the atom set of P induced by a multichain. With one extra assumption, 
this permits us to give three conditions which are equivalent to χ(P, t) having the sizes 
of the blocks of the partition as roots; see Theorem 18. This result will imply Stanley’s 
Supersolvability Theorem [11]. In Section 6 we will use Theorem 18 to prove a new the-
orem about the generating function for increasing spanning forests of a graph. We end 
with a section about open questions and future work.

2. Quotients of posets

We begin this section by defining, in a rigorous way, what we mean by collapsing 
elements in a Hasse diagram of a poset. We do so by putting an equivalence relation on 
the poset and then ordering the equivalence classes.
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Definition 3. Let P be a poset and let ∼ be an equivalence relation on P . We define the 
quotient P/ ∼ to be the set of equivalence classes with the binary relation ≤ defined by 
X ≤ Y in P/ ∼ if and only if x ≤ y in P for some x ∈ X and some y ∈ Y .

Note that this binary relation on P/ ∼ is reflexive, although the antisymmetry and 
transitivity laws need not hold. For example let P be the poset with chains 0̂ < x < y

and 0̂ < w < z and no other relations. First, suppose that A = {w, x} and B = {0̂, y, z}. 
Then A ≤ B since w < z and B ≤ A since 0̂ < w. However, A �= B and so the relation 
is not antisymmetric. To see why it is not always transitive, let A = {x}, B = {w, y}
and C = {z}. Then A ≤ B since x ≤ y and B ≤ C since w ≤ z, but A �≤ C since x �≤ z. 
Since we want the quotient to be a poset, it is necessary to require two more properties 
of our equivalence relation.

Definition 4. Let P be a poset and let ∼ be an equivalence relation on P . Order the 
equivalence classes as in the previous definition. We say the poset P/ ∼ is a homogeneous 
quotient if

(1) 0̂ is in an equivalence class by itself, and
(2) if X ≤ Y in P/ ∼, then for all x ∈ X there is a y ∈ Y such that x ≤ y.

Lemma 5. If P is a poset and P/ ∼ is a homogeneous quotient, then P/ ∼ is a poset.

Proof. As previously mentioned, the fact that ≤ in P/ ∼ is reflexive is clear. To see why 
it is antisymmetric, suppose that X ≤ Y and Y ≤ X. By definition, there is an x ∈ X

and y ∈ Y with x ≤ y. Since Y ≤ X there is an x′ ∈ X with x ≤ y ≤ x′. Since X ≤ Y

there is a y′ ∈ Y with x ≤ y ≤ x′ ≤ y′. Continuing, we get a chain

x ≤ y ≤ x′ ≤ y′ ≤ . . .

If any of the inequalities are equalities then we are done since the equivalence classes 
partition P . If all are strict, then we would have an infinite chain in P , but this contradicts 
the fact that P is finite. Therefore it must be that X = Y .

For transitivity, suppose that X ≤ Y and Y ≤ Z. Since X ≤ Y , there is some x ∈ X

and y ∈ Y with x ≤ y. Moreover, since Y ≤ Z and our quotient is homogeneous, there 
is some z ∈ Z with y ≤ z. It follows that x ≤ y ≤ z and so X ≤ Z. �

Since we would like to use quotient posets to find characteristic polynomials, it would 
be quite helpful if the Möbius value of an equivalence class was the sum of the Möbius 
values of the elements of the equivalence class. This is not always the case when using 
homogeneous quotients, however we only need one simple requirement on the equivalence 
classes so that this does occur. Note the similarity of the hypothesis in the next result 
to the definition of the Möbius function. In what follows we will use μ(x) to denote the 
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Möbius value of x ∈ P and μ(X) to denote the Möbius value of the equivalence class 
X ∈ P/ ∼.

Lemma 6. Let P/ ∼ be a homogeneous quotient poset. Suppose that for all nonzero 
X ∈ P/ ∼,

∑
y∈L(X)

μ(y) = 0 (1)

where L(X) is the lower order ideal generated by X in P . Then, for all equivalence 
classes X

μ(X) =
∑
x∈X

μ(x).

Proof. We induct on the length of the longest 0̂–X chain to prove the result. If the length 
is zero, then X = 0̂. Since P/ ∼ is a homogeneous quotient, there is only one element in 
X and it is 0̂. The Möbius value of the minimum of any poset is 1 and so the base case 
holds.

Now suppose that the length is positive. Then X �= 0̂ and so by assumption,
∑

y∈L(X)

μ(y) = 0.

Breaking this sum into two parts and moving one to the other side of the equation gives
∑
x∈X

μ(x) = −
∑

y∈L(X)\X
μ(y). (2)

Using the definition of μ and the induction hypothesis, we have that

μ(X) = −
∑
Y <X

μ(Y ) = −
∑
Y <X

⎛
⎝∑

y∈Y

μ(y)

⎞
⎠ .

Since P/ ∼ is a homogeneous quotient poset, we have that if Y < X then for every y ∈ Y

there is an x ∈ X with y < x. Therefore the previous sum ranges over all y such that 
there is an x ∈ X with y < x. Thus y ∈ L(X) \X. Conversely, for each y ∈ L(X) \X
there is an x ∈ X with y < x. By the definition of ≤ in P/ ∼, we have that this implies 
Y < X where Y is the equivalence class of y. It follows that

μ(X) = −
∑

y∈L(X)\X
μ(y). (3)

Combining this equation with (2) completes the proof. �
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For the remainder of the paper, we shall refer to the condition given by equation (1)
as the summation condition. From the previous lemma, we know how the Möbius values 
behave when taking quotients under certain circumstances. We also need to know how 
the rank behaves under quotients. As we did earlier for the Möbius function, we will use 
ρ(x) for the rank of x ∈ P and ρ(X) for the rank of the equivalence class X ∈ P/ ∼.

Lemma 7. Let P/ ∼ be a homogeneous quotient poset. Suppose that for all x, y ∈ P , 
x ∼ y implies ρ(x) = ρ(y). Then P/ ∼ is ranked and ρ(X) = ρ(x) for all x ∈ X.

Proof. We actually prove a stronger result. We claim that X � Y (where � denotes a 
covering relation) implies there is an x ∈ X and a y ∈ Y such that x � y. To see why 
this implies the lemma, suppose that there were two chains 0̂ = X1 � X2 � · · · � Xn

and 0̂ = Y1 � Y2 � · · · � Ym with Xn = Ym. Then for the corresponding chains 0̂ =
x1 �x2 � · · ·�xn and 0̂ = y1 � y2 � · · ·� ym we have that ρ(xn) = ρ(ym) since elements 
in the same equivalence class have the same rank. This forces n = m and so P/ ∼ must 
be ranked. Additionally, it is easy to see that this implies that ρ(X) = ρ(x) for all x ∈ X.

To prove our claim, note that by the definition of a homogeneous quotient, if X � Y

then there is an x ∈ X and y ∈ Y with x < y. Suppose that there was some z ∈ P

with x < z < y. Then ρ(x) < ρ(z) < ρ(y) and X ≤ Z ≤ Y where Z is the equivalence 
class of z. Since all elements in an equivalence class have the same rank this implies that 
X < Z < Y in P/ ∼, which contradicts the fact that Y covered X. �

Applying Lemma 6, Lemma 7 and the definition of the characteristic polynomial we 
immediately get the following corollary.

Corollary 8. Let P/ ∼ be a homogeneous quotient. If the summation condition (1) holds 
for all nonzero X ∈ P/ ∼, and x ∼ y implies ρ(x) = ρ(y), then

χ(P/ ∼, t) = χ(P, t).

We now have conditions under which the characteristic polynomial does not change 
when taking a quotient. However, the previous results do not tell us how to choose an 
appropriate equivalence relation for a given poset. It turns out that when the poset is a 
lattice, there is a canonical choice for ∼, as we will see in the next section.

3. The standard equivalence relation

Let us look at the partition lattice example again and give new labelings to CL1×CL2
which will be helpful in determining an equivalence relation. First, we set up some 
notation for the atoms of the partition lattice. For i < j, let (i, j) denote the atom which 
has i and j in one block and all other elements in singleton blocks. Let CL1 have its 
atom labeled by (1, 2) and CL2 have its atoms labeled by (1, 3) and (2, 3). In both of 
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Fig. 3. Hasse diagrams for partition lattice example with new labelings.

the claws, label the minimum element by 0̂. The poset on the left in Fig. 3 shows the 
induced labeling on CL1 × CL2.

Now relabel CL1×CL2 by taking the join in Π3 of the two elements in each pair. The 
poset on the right in Fig. 3 shows this step. Finally, identify elements which have the 
same label. In this case, this means identifying the top two elements as we did before. 
Upon doing this, we get a poset which is isomorphic to Π3 and has the same labeling 
as Π3.

In order to generalize the previous example, we will be putting an equivalence relation 
on the product of claws whose atom sets come from partitioning the atoms of the original 
lattice. We need some terminology before we can define our equivalence relation.

Suppose that L is a lattice and (A1, A2, . . . , An) is an ordered partition of the atoms 
of L. We will use CLAi

to denote the claw whose atom set is Ai and whose minimum 
element is labeled by 0̂L (or just 0̂ if L is clear from context). The elements of 

∏n
i=1 CLAi

will be called atomic transversals and written in boldface. (The reason for the adjective 
“atomic” is because we will be considering more general transversals in Section 4.) Since 
the rank of an element in the product of claws is just the number of nonzero elements in 
the tuple, it will be useful to have a name for this number. For t ∈

∏n
i=1 CLAi

define 
the support of t as the number of nonzero elements in the tuple t. We will denote it by 
supp t.

We will use the notation t(ei) to denote the ordered tuple obtained by replacing the 
ith coordinate of t = (t1, t2, . . . , tn) with an element e. That is,

t(ei) = (t1, t2, . . . , ti−1, e, ti+1, . . . , tn).

We will also need a notation for the join of the elements of t which will be
∨

t = t1 ∨ t2 ∨ · · · ∨ tn.

With this new terminology we are now in a position to define a natural equivalence 
relation on the product of the claws. Since we are trying to show that the characteristic 
polynomial of a lattice has certain roots, we will need to show that the quotient of the 
product of claws is isomorphic to the lattice. Therefore it is reasonable to define the 
equivalence relation by identifying two elements of the product of claws if their joins are 
the same in L.
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Definition 9. Let L be a lattice and let (A1, A2, . . . , An) be an ordered partition of the 
atoms of L. The standard equivalence relation on 

∏n
i=1 CLAi

is defined by

s ∼ t in
n∏

i=1
CLAi

⇐⇒
∨

s =
∨

t in L.

We will use the notation

T A
x =

{
t ∈

n∏
i=1

CLAi
:
∨

t = x

}

and call the elements of this set atomic transversals of x. Therefore, the equivalence 
classes of the quotient (

∏n
i=1 CLAi

) / ∼ are of the form T A
x for some x ∈ L. It is 

obvious that the standard equivalence relation is an equivalence relation. To be able to 
use any of the theorems from the previous section, we need to make sure that taking 
the quotient with respect to the standard equivalence relation gives us a homogeneous 
quotient. Moreover, we will need a way to determine if the summation condition (1)
holds for all nonzero elements of the quotient. We do this in the next lemma. For the 
rest of the paper we will use the notation Ax for the set of atoms below x.

Lemma 10. Let L be a lattice and let (A1, A2, . . . , An) be an ordered partition of the 
atoms of L. Let ∼ be the standard equivalence relation on 

∏n
i=1 CLAi

. Suppose that the 
following hold.

(1) For all x ∈ L, T A
x �= ∅.

(2) If t ∈ T A
x , then | supp t| = ρ(x).

Under these conditions,

(a) The lower order ideal generated by the set T A
x in 

∏n
i=1 CLAi

is given by

L(T A
x ) = {t : ti ≤ x for all i}.

(b) The quotient (
∏n

i=1 CLAi
) / ∼ is homogeneous.

(c) For all nonzero T A
x ∈ (

∏n
i=1 CLAi

) / ∼ the summation condition (1) holds if and 
only if for each nonzero x ∈ L there is an i such that |Ai ∩Ax| = 1.

Proof. First, we show (a). We claim that assumptions (1) and (2) imply that if a ∈ Ax

then there is an atomic transversal for x which contains a. To verify the claim, use 
assumption (1) to pick t ∈ T A

x and let r = t(ai). By construction and assumption (2), 
ρ(
∨

r) = | supp r| ≥ | supp t| = ρ(x). But also 
∨
r ≤ x which forces 

∨
r = x. Thus a is 

in the atomic transversal r for x.
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The definition of T A
x gives us the inclusion L(T A

x ) ⊆ {t : ti ≤ x for all i}. The reverse 
inclusion holds by the previous claim.

Next, we verify (b). It is clear that t ∈ T A
0̂ if and only if t = (0̂, ̂0, . . . , ̂0) and so part (1) 

of Definition 4 is satisfied. To show part (2), suppose that T A
x ≤ T A

y as in Definition 3. 
Then there is some t ∈ T A

x and s ∈ T A
y with t ≤ s. It follows that 

∨
t ≤

∨
s and so 

x ≤ y. Let t ∈ T A
x . Using the fact that ti ≤ x ≤ y and part (a), we have that t ∈ L(T A

y ). 
It follows that there is some s ∈ T A

y with t ≤ s and so part (2) of Definition 4 holds.
Finally, we demonstrate (c). Fix x ∈ L and let Ni be the number of atoms below 

x in Ai. Let I be the set of indices i such that Ni > 0. By relabeling, if necessary, 
we may assume that I = {1, 2, . . . , k}. It follows from part (a) that the number of 
atomic transversals in L(T A

x ) with support size i is ei(N1, N2, . . . , Nk) where ei is the 
ith elementary symmetric function. For each atomic transversal t ∈ L(T A

x ) we have that 
μ(t) = (−1)| supp t|. Therefore,

∑
t∈L(T A

x )

μ(t) =
k∑

i=0
(−1)iei(N1, N2, . . . , Nk) =

k∏
i=1

(1 −Ni).

Therefore the summation condition (1) holds for each nonzero element in the quotient if 
and only if for each nonzero x ∈ L there is an index i such that |Ai ∩Ax| = 1. �

Combining the previous result with Corollary 8 gives conditions under which the 
product of claws and its quotient have the same characteristic polynomial. We also need 
to show that there is an isomorphism between L and this quotient. This will give us the 
desired factorization.

Theorem 11. Let L be a lattice and let (A1, A2, . . . , An) be an ordered partition of the 
atoms of L. Let ∼ be the standard equivalence relation on 

∏n
i=1 CLAi

. Suppose the fol-
lowing hold.

(1) For all x ∈ L, T A
x �= ∅.

(2) If t ∈ T A
x , then | supp t| = ρ(x).

(3) For each nonzero x ∈ L there is some i with |Ai ∩Ax| = 1.

Then we can conclude the following.

(a) For all x ∈ L, μ(x) = (−1)ρ(x)|T A
x |.

(b) χ(L, t) =
n∏

i=1
(t − |Ai|).

Proof. Let P =
∏n

i=1 CLAi
. First, we show that L ∼= P/ ∼. Define a map ϕ : (P/ ∼) → L

by ϕ(T A
x ) = x. It is easy to see that ϕ is well-defined. Define ψ : L → (P/ ∼) by 
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ψ(x) = T A
x . By assumption T A

x �= ∅ and so ψ is well-defined. Moreover, it is clear that 
ϕ and ψ are inverses of each other.

To show that ϕ is order preserving, suppose that T A
x ≤ T A

y . Then just as in the proof 
of Lemma 10 part (b), we have that x ≤ y and so ϕ is order preserving.

To show that ψ is order preserving, suppose that x ≤ y. Then applying the same 
technique as in the proof of Lemma 10 part (b) we get that there is a t ∈ T A

x and 
s ∈ T A

y with t ≤ s. By the definition of ≤ in P/ ∼ we get that T A
x ≤ T A

y and so ψ is 
order preserving.

To obtain (a), note that the Möbius value of an element in the product of claws is 
μ(t) = (−1)| supp t|. Therefore, using Lemma 6, we get

μ(T A
x ) =

∑
t∈T A

x

μ(t) =
∑
t∈T A

x

(−1)| supp t|.

Using the isomorphism between L and the quotient as well as the fact that, by assumption 
(2), all the atomic transversals for x have size ρ(x), we have

μ(x) = μ(T A
x ) = (−1)ρ(x)|T A

x |

as desired.
Finally, to verify (b) apply Corollary 8 and Lemma 10 to get that

n∏
i=1

(t− |Ai|) = χ(P, t) = χ(P/ ∼, t).

Now part (b) follows immediately since L ∼= P/ ∼. �
Example 12. Let us return to the partition lattice Πn and see how we can apply Theo-
rem 11. Label the atoms (i, j) as in the beginning of Section 3. Partition the atoms as 
(A1, A2, . . . , An−1) where

Aj = {(i, j + 1) | i < j + 1}.

With each atomic transversal t we will associate a graph, Gt on n vertices such that 
there is an edge between vertex i and vertex j if and only if (i, j) is in t. We will use the 
graph to verify the assumptions of Theorem 11 are satisfied for π ∈ Πn.

First, let us show assumption (1) of Theorem 11 holds. In the case where π ∈ Πn

consists of a single block B = {b1 < b2 < · · · < bm}, the elements (b1, b2), (b2, b3), . . . ,
(bm−1, bm) form the non-trivial elements of an atomic transversal whose join is B. Now 
to get the elements which have more than one nontrivial block, follow the same procedure 
for each block and use the transversal which corresponds to the union of the transversals 
of the blocks considered as sets. It follows every element has an atomic transversal.
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Next, we prove that assumption (2) holds. We claim that if t ∈ T A
π then Gt is a forest. 

To see why, suppose that there was a cycle and let c be the largest vertex in the cycle. 
Then c must be adjacent to two smaller vertices a and b which implies that both (a, c)
and (b, c) must be in t. This is impossible since both come from Ac−1.

Since Gt is a forest, if Gt has k components then the number of edges in Gt is n − k. 
It is not hard to see that i and j are in the same block in 

∨
t if and only if i and j

are in the same component of Gt. Moreover, it is well known that if π ∈ Πn and π
has k blocks then ρ(π) = n − k. It follows that if t ∈ T A

π and π has k blocks then 
| supp t| = |E(Gt)| = n − k = ρ(π). We conclude that assumption (2) holds.

Finally, to verify assumption (3), let π ∈ Πn with π �= 0̂. Then π contains a nontrivial 
block. Let i be the second smallest number in this block. We claim that there is only one 
atom in Ai−1 below π. First note that there is some atom below π in Ai−1 namely (a, i)
where a is the smallest element of the block. Suppose there was more than one atom 
below π in Ai−1 and let (a, i), (b, i) ∈ Ai−1 with (a, i), (b, i) ≤ π. Then (a, i) ∨ (b, i) ≤ π

and so a, b and i are all in the same block in π which is impossible since a, b < i but i
was chosen to be the second smallest in its block.

Now applying the theorem we get that

χ(Πn, t) = (t− 1)(t− 2) · · · (t− n + 1)

since |Ai| = i for 1 ≤ i ≤ n − 1.
We should note that it is not trivial to find a partition of the atom set which satisfies 

the conditions of Theorem 11. However, for certain lattices (including Πn) there is a 
canonical choice for the partition. This is described in more detail in Section 5.

Theorem 11 can be used to prove Terao’s result [13] about the characteristic poly-
nomial of a hyperplane arrangement with a nice partition. In fact the notion of a nice 
partition is the combination of assumptions (2) and (3) of Theorem 11 in the special 
case of a central hyperplane arrangement.

4. Rooted trees

One of the drawbacks of Theorem 11 is that assumption (1) requires that every element 
of the lattice is atomic meaning that is a join of atoms. In this case L is said to be atomic. 
However, by generalizing the notion of a claw to that of a rooted tree, we will be able to 
remove this assumption and derive Theorem 14 below which applies to a wider class of 
lattices.

Definition 13. Let L be a lattice and S be a subset of L containing 0̂. Let C be the 
collection of saturated chains of L which start at 0̂ and use only elements of S. The 
rooted tree with respect to S is the poset obtained by ordering C by inclusion and will be 
denoted by RTS .
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Fig. 4. Hasse diagrams for rooted trees.

It is easy to see that given any subset S of a lattice containing 0̂, the Hasse diagram 
of RTS always contains a 0̂ and has no cycles. This explains the choice of rooted tree 
for the name of the poset.

Strictly speaking the elements of RTS are chains of L. However, it will be useful to 
think of the elements of RTS as elements of L where we associate a chain C with its 
top element. One can still recover the full chain by considering the unique path from 0̂
to C in RTS . Let us consider an example in Π3. As before, partition the atom set as 
A1 = {12/3} and A2 = {13/2, 1/23}. Let S1, S2 be the upper order ideals generated by 
A1, A2, respectively, together with 0̂. Then we get RTS1 and RTS2 as in Fig. 4. Note 
that we label the chains 0̂ < 12/3 < 123, 0̂ < 13/2 < 123 and 0̂ < 1/23 < 123 in S1 and 
S2 all by 123 in RTS1 and RTS2 since each of these chains terminates at 123.

In the previous sections, we used a partition of the atom set to form claws. In this 
section, we will use the partition of the atom set to form rooted trees. Given an ordered 
partition of the atoms of a lattice (A1, A2, . . . , An), for each i we form the rooted tree 
RT Û(Ai) where Û(Ai) is the upper order ideal generated by Ai together with 0̂. Note that 
since (A1, A2, . . . , An) is a partition of the atoms, every element of the lattice appears 
in an RT Û(Ai) for some i.

Given (A1, A2, . . . , An), we call t ∈
∏n

i=1 RT Û(Ai) a transversal. We will use the 
notation,

Tx =
{
t ∈

n∏
i=1

RT Û(Ai) :
∨

t = x

}

and call such elements transversals of x. If t consists of only atoms of L or 0̂ then t is 
called an atomic transversal. This agrees with the terminology we used for claws. The 
set of atomic transversals for x will be denoted T A

x as before.
There is very little change in the approach using rooted trees as opposed to claws. As 

before, given a partition (A1, A2, . . . , An) of the atom set of L, we will put the standard 
equivalence relation on 

∏n
i=1 RT Û(Ai). Note that one can take the join using all the 

elements of a chain or just the top element as the results will be equal. Since we are 
using rooted trees, the natural map from 

(∏n
i=1 RT Û(Ai)

)
/ ∼ to L is automatically 

surjective. In other words, we can remove the condition that every element of L has an 
atomic transversal. Additionally, since the Möbius function of a tree is zero everywhere 
except in 0̂ and its atoms, when we take the product of the trees, the Möbius value of 
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any transversal which is not atomic is zero and so does not affect χ. Therefore, we get 
the following improvement on Theorem 11.

Theorem 14. Let L be a lattice and let (A1, A2, . . . , An) be an ordered partition of the 
atoms of L. Let ∼ be the standard equivalence relation on 

∏n
i=1 RT Û(Ai). Suppose the 

following hold:

(1) If t ∈ T A
x , then | supp t| = ρ(x).

(2) For each nonzero x ∈ L there is some i with |Ai ∩Ax| = 1.

Then we can conclude the following.

(a) For all x ∈ L, μ(x) = (−1)ρ(x)|T A
x |.

(b) χ(L, t) = tρ(L)−n

n∏
i=1

(t − |Ai|).

Proof. Let P =
∏n

i=1 RT Û(Ai). We need to show that P/ ∼ is homogeneous. The first 
condition of the definition is obvious. For the second, suppose that Tx ≤ Ty and t ∈ Tx. 
It follows that x ≤ y. We need to show that there exists some s ∈ Ty such that t ≤ s. 
Let i be an index such that Ai ∩ Ay �= ∅ so that y ∈ Û(Ai). If t ∈ Tx, then tj ≤ x ≤ y

for all j. Therefore, t(yi) ∈ Ty and t ≤ t(yi). It follows that P/ ∼ is homogeneous.
In the proof of Theorem 11, we showed that the lattice and the quotient of the product 

of claws were isomorphic. The proof that L and P/ ∼ are isomorphic is essentially the 
same. If we define ϕ and ψ analogously, then the only difference is showing ψ is order 
preserving in which case one can use the same ideas as in the previous paragraph to 
complete the demonstration.

Now we verify that the summation condition (1) holds for all nonzero elements of 
P/ ∼. We only need to modify the proof that we gave in Lemma 10 part (c) slightly. 
Analogously to the proof of part (a) of that lemma, one sees that L(Tx) = {t : ti ≤ x

for all i}. Using this and the fact that only atomic transversals have nonzero Möbius 
values, the proof of Lemma 10 part (c) goes through as before with T A

x replaced by Tx.
Now applying Lemma 6 and the fact that μ(t) = 0 if t is not atomic, we get

μ(Tx) =
∑
t∈Tx

μ(t) =
∑
t∈T A

x

μ(t). (4)

Then applying the same proof as in Theorem 11 gives us (a).
To finish the proof we define a modification of the characteristic polynomial for any 

ranked poset P ,

χ̄(P, t) =
∑

μ(x)t−ρ(x).

x∈P
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We claim that χ̄(P, t) = χ̄(P/ ∼, t). Applying assumption (1) and the isomorphism 
L ∼= P/ ∼, we get that for every t ∈ T A

x we have

ρ(t) = | supp t| = ρ(x) = ρ(Tx).

This combined with equation (4), proves the claim.
Now if RT is a rooted tree with k atoms then χ̄(RT , t) = t−1(t − k). It follows that

χ̄(P, t) = t−n
n∏

i=1
(t− |Ai|).

Since χ̄ is preserved by isomorphism,

χ̄(L, t) = χ̄(P/ ∼, t) = χ̄(P, t) = t−n
n∏

i=1
(t− |Ai|).

Multiplying by tρ(L) gives us part (b). �
5. Partitions induced by a multichain

It turns out that under certain circumstances we can show that assumption (2) of 
Theorem 14 and factorization of the characteristic polynomial are equivalent. To be able 
to prove this equivalence, we will not be able to take an arbitrary partition of the atoms, 
but rather we will need the partition to be induced by a multichain in the lattice.

If L is a lattice and C : 0̂ = x0 ≤ x1 ≤ · · · ≤ xn = 1̂ is a 0̂–1̂ multichain of L we get 
an ordered partition (A1, A2, . . . , An) of the atoms of L by defining the set Ai as

Ai = {a ∈ A(L) | a ≤ xi and a � xi−1}.

In this case we say (A1, A2, . . . , An) is induced by the multichain C. Note that we do 
not insist that our multichain be a chain nor does it need to be saturated as is usually 
done in the literature. Partitions induced by multichains have several nice properties. 
The first property will apply to any lattice (Lemma 16), but for the second we will need 
the lattice to be semimodular (Lemma 19). Before we get to these properties, we need a 
modification of Lemma 6.

Lemma 15. Suppose that P/ ∼ is a homogeneous quotient and that for all non-maximal, 
nonzero X ∈ P/ ∼ we have that

∑
y∈L(X)

μ(y) = 0.

Then for all X ∈ P/ ∼
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μ(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
x∈X

μ(x) if X is not maximal,

∑
x∈X

μ(x) −
∑

y∈L(X)

μ(y) if X is maximal.

Proof. If X is not maximal, then the proof of Lemma 6 goes through as before.
Now suppose that X is maximal. If X = 0̂ then the result holds since P/ ∼ is trivial. 

So suppose X �= 0̂. In the proof of Lemma 6, we derived equation (3) without using the 
summation condition (1) and so it still holds. Moreover, it is easy to see that this equation 
is equivalent to the one for maximal X in the statement of the current result. �

Given a lattice and a partition of the atoms, it will be useful to know when elements 
of a lattice do not satisfy condition (2) of Theorem 14. This is possible to do when the 
partition of the atoms is induced by a multichain.

Lemma 16. Let L be a lattice and let (A1, A2, . . . , An) be induced by a multichain C :
0̂ = x0 ≤ x1 ≤ · · · ≤ xn = 1̂. Let Ni be the number of atoms below an element x ∈ L in 
Ai. If Ni �= 1 for all i and x �= 0̂ is minimal with respect to this property, then for all 
but one i, Ni = 0.

Proof. Suppose that x is minimal, but that Ni > 1 for at least two i. Let k be the 
smallest index with Nk �= 0, and B ⊆ Ak be the atoms below x in Ak so |B| ≥ 2. Let 
y =

∨
B. So, by the choice of B, y ≤ xk which implies that the atoms below y are in Ai

for i ≤ k. So the choice of Ak forces the set of atoms below y to be B which is a proper 
subset of the set of atoms below x, and thus y < x. Since |B| ≥ 2, this contradicts the 
choice of x. �

The next definition gives one of the conditions equivalent to factorization when the 
atom partition is induced by a multichain.

Definition 17. Let L be a lattice and let C : 0̂ = x0 ≤ x1 ≤ · · · ≤ xn = 1̂ be a 0̂–1̂
multichain. For atomic x ∈ L, x neither 0̂ nor an atom, let i be the index such that 
x ≤ xi but x � xi−1. We say that C satisfies the meet condition if, for each such x, we 
have x ∧ xi−1 �= 0̂.

We are now in a position to give a list of equivalent conditions to factorization.

Theorem 18. Let L be a lattice and let (A1, A2, . . . , An) be induced by a 0̂–1̂ multichain, 
C. Suppose that, for each y ∈ L, if t ∈ T A

y , then

| supp t| = ρ(y).

Under these conditions the following are equivalent.
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1. For every nonzero x ∈ L, there is an index i such that |Ai ∩Ax| = 1.
2. For every element x ∈ L which is the join of two elements from the same Aj, there 

is an index i such that |Ai ∩Ax| = 1.
3. The multichain C satisfies the meet condition.
4. We have that

χ(L, t) = tρ(L)−n
n∏

i=1
(t− |Ai|).

Proof. (1) ⇒ (4) This is Theorem 14.
(4) ⇒ (2) We actually show that (4) ⇒ (1) (the fact that (1) ⇒ (2) is trivial). We 

do so by proving the contrapositive. By assumption, there must be a nonzero x ∈ L

such that for each i the number of atoms below x in Ai is different from one. Let k
be the smallest value of ρ(x) for which elements of L have this property. We show that 
the coefficients of tρ(L)−k in χ(L, t) and in χ(P, t) = tρ(L)−n

∏n
i=1(t − |Ai|) are different, 

where P =
∏n

i=1 RT Û(Ai). Using the same proof as we did in Theorem 14, we can show 

that L ∼= P/ ∼. So it suffices to show that the coefficient of tρ(L)−k in χ(P/ ∼, t) is 
different from the coefficient in χ(P, t).

Let Q be the poset obtained by removing all the elements of P/ ∼ which have rank 
more than k. Let x1, x2, . . . , xl be the elements of L at rank k such that the number of 
atoms below xi in each block of the partition is different from one. Then by Lemma 16, 
each xi has atoms above exactly one block. Now let S = {Tx1 , Tx2 , . . . , Txl

} be the set of 
the corresponding transversals. In Q, the elements of S are maximal and all the other 
non-maximal elements in Q satisfy the hypothesis of Lemma 15 which can be verified as 
in the proof of Theorem 14. Therefore we can calculate the Möbius values of the elements 
of rank k in Q using Lemma 15. Once we know these values we can find the coefficient 
of tρ(L)−k in χ(P/ ∼, t).

Each xi is above at least two atoms and is above only atoms in one block. Therefore 
the only atomic transversals which are in L(Txi

) are transversals with single atoms and 
the transversal with only zeros. Since only atomic transversals have nonzero Möbius 
values we get that for all elements of S,

ci
def=

∑
t∈L(Txi

)

μ(t) = 1 − |Axi
| < 0.

We know that ci < 0 since the number of atoms below each xi is at least two. Let Qk be 
the set of elements of Q at rank k. Using Lemma 15, we see that the sum of the Möbius 
values of Qk is

∑
μ(Tx) =

l∑
μ(Txi

) +
∑

μ(Tx)

Tx∈Qk i=1 Tx∈Qk\S



56 J. Hallam, B. Sagan / Journal of Combinatorial Theory, Series A 136 (2015) 39–63
=
l∑

i=1

⎛
⎝ ∑

t∈Txi

μ(t) − ci

⎞
⎠ +

∑
Tx∈Qk\S

(∑
t∈Tx

μ(t)
)
.

As recently noted, only elements of L which have atomic transversals have nonzero 
Möbius values. Using this and the assumption that | supp t| = ρ(x) = ρ(Tx), we get that 
the coefficient of tρ(L)−k in χ(P/ ∼, t) is

∑
| supp t|=k

μ(t) −
l∑

i=1
ci

where the first sum is over atomic t. As we saw before, each ci is negative and all are 
nonzero and so the coefficient of tρ(L)−k is different from

∑
| supp t|=k

μ(t)

which is the coefficient of tρ(L)−k in χ(P, t). This completes the proof that (4) ⇒ (2).
(2) ⇒ (3) We show the contrapositive holds. Suppose that C does not satisfy the 

meet condition. Then there is some atomic x which is neither an atom nor 0̂ such that 
x ≤ xi, x � xi−1, and x ∧xi−1 = 0̂. It follows that x is only above atoms in Ai. Since x is 
atomic, but not an atom, there are at least two atoms, a, b below x in Ai. Let y = a ∨ b. 
Since y ≤ x, y can only be above atoms in Ai. Therefore, for all indices j, |Aj ∩Ay| �= 1
and y is the join of two atoms.

(3) ⇒ (1) First let us note that if x is an atom then the result is obvious. For x ∈ L

let i be the index such that x ≤ xi and x � xi−1. We now induct on i. If i = 1 then it 
suffices to show that |A1| = 1 since then every nonzero x ≤ x1 is only above the unique 
element of A1. However if a, b are distinct atoms in A1 then x = a ∨ b is atomic but not 
an atom or zero. Further x ≤ x1 but x ∧ xi−1 = x ∧ 0̂ = 0̂ which contradicts the meet 
condition. This finishes the i = 1 case.

Now suppose that i > 1 and x is not an atom. Let z =
∨
Ax. Then z is atomic and 

Az = Ax. Let y = z ∧ xi−1. Since C satisfies the meet condition, y �= 0̂. By construction 
y < xi−1 and so by induction, there is some index j ≤ i −1 with Aj ∩Ay = {a}. Suppose 
that there was some other atom b ∈ Aj∩Az. Then y∨b is less than or equal to both z and 
xi−1 and so y∨ b ≤ z∧xi−1 = y. However, this is impossible since then Aj ∩Ay ⊇ {a, b}. 
It follows that 1 = |Aj ∩Az| = |Aj ∩Ax| and so (1) holds. �

It would be nice if all atomic transversals had the correct support size when using a 
partition induced by a multichain since then we could remove this assumption from the 
previous theorem. Unfortunately this does not always occur. To see why, consider the 
lattice in Fig. 5. The left-most saturated 0̂–1̂ chain induces the ordered partition

({a}, {b}).
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Fig. 5. A lattice.

It is easy to see that the support size of the transversal with both elements is not the 
rank of their join. Note, however, that if we had the relation a < d, then the support 
size would be the rank of the join. Moreover, note that this would also make the lattice 
semimodular. We see in the next lemma that semimodularity always implies transversals 
induced by a multichain have the correct support size.

Lemma 19. Let L be a semimodular lattice and let (A1, A2, . . . , An) be induced by the 
multichain C : 0̂ = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn = 1̂. If ∼ is the standard equivalence, then 
for all x ∈ L we have that t ∈ T A

x implies

| supp t| = ρ(x).

Proof. Given an atomic t ∈ T A
x we induct on | supp t|. If | supp t| = 0 the result is 

obvious.
Now suppose that | supp t| = k > 0. Let i be the largest index in supp t. Let s = t(0̂i), 

then | supp s| = k − 1. Suppose that s ∈ T A
y , then ρ(y) = k − 1 by induction. Let j

be the largest index such that j ∈ supp s. Then y =
∨
s ≤ xj by definition of j and 

ti � xj since i > j. Thus x =
∨

t = (
∨

s) ∨ ti > y. Therefore ρ(x) > ρ(y) = k − 1
and so ρ(x) ≥ k. Since | supp t| = k, ρ(x) ≤ k as L is semimodular. We conclude that 
ρ(x) = k = | supp t| and so our result holds by induction. �

Let us now consider supersolvable semimodular lattices. We begin with a few defini-
tions. Given a lattice L and x, z ∈ L, we say (x, z) is a modular pair if for all y ≤ z we 
have that

y ∨ (x ∧ z) = (y ∨ x) ∧ z.

Moreover, we say a multichain C : x0 = 0̂ ≤ x1 ≤ · · · ≤ xn = 1̂ is left-modular if for all 
z ∈ L and all xi ∈ C, every pair (xi, z) is modular.

Recall that every supersolvable semimodular lattice contains a saturated 0̂–1̂ left-
modular chain. It turns out that saturated 0̂–1̂ left-modular chains satisfy the meet 
condition as we see in the next lemma.

Lemma 20. Let L be a lattice. If C : 0̂ = x0 � x1 � x2 < · · · � xn = 1̂ is a left-modular 
saturated 0̂–1̂ chain then C satisfies the meet condition.
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Proof. Let x ∈ L be atomic and neither an atom nor 0̂. Let i be such that x ≤ xi and 
x � xi−1. Then we claim that there is some atom a with a < x and a � xi−1. To verify 
the claim, suppose that no such a existed. Since x is not an atom, it must be that all 
the atoms below x are also below xi−1. However, x being atomic implies that x =

∨
Ax

and so x ≤ xi−1 which is impossible.
By the claim, xi−1 < a ∨ xi−1 ≤ xi. Since xi−1 � xi we have that a ∨ xi−1 = xi. Now 

(xi−1, x) is a modular pair and a < x so, by the definition of a modular pair,

a ∨ (xi−1 ∧ x) = (a ∨ xi−1) ∧ x = xi ∧ x = x.

But a < x so xi−1 ∧ x �= 0̂ and thus C satisfies the meet condition. �
We now get Stanley’s Supersolvability Theorem as a corollary of Theorem 18, 

Lemma 19, and Lemma 20.

Theorem 21 (Stanley’s Supersolvability Theorem). (See [11].) Let L be a semimodular lat-
tice with partition of the atoms (A1, A2, . . . , An) induced by a saturated 0̂–1̂ left-modular 
chain. Then

χ(L, t) =
n∏

i=1
(t− |Ai|).

We can use Theorem 18 to give a converse to Stanley’s theorem, showing that in a 
geometric lattice if one has factorization of χ using a partition induced by a saturated 
0̂–1̂ chain then the chain must be left-modular. We just need a couple of definitions for 
the proof. Let L be a geometric lattice. We say a subset, S of the atom set is a circuit if 
ρ(∨S) < |S| and for all T � S we have that ρ(∨T ) = |T |. Moreover, we say a partition 
of the atoms (A1, A2, . . . , An) satisfies the circuit condition if whenever y, z ∈ Aj there 
is an x ∈ Ai with i < j such that {x, y, z} is a circuit.

Proposition 22. Let L be a geometric lattice with partition of the atoms (A1, A2, . . . , An)
induced by a saturated 0̂–1̂ chain C : 0̂ = x0 � x1 � x2 < · · ·� xn = 1̂. If

χ(L, t) =
n∏

i=1
(t− |Ai|)

then C is left-modular or, equivalently, L is supersolvable.

Proof. In [2, Thm. 2.8], Björner and Ziegler show that being supersolvable is equivalent 
to having a partition of the atom set which satisfies the circuit condition. So it suffices 
to show that (2) of Theorem 18 implies that the partition induced by the chain satisfies 
the circuit condition. To see why, first note that if condition (2) of Theorem 18 holds, 
then whenever y, z ∈ Aj , there is some atom x ∈ Ai, i �= j, with x < y ∨ z. It must be 
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the case that i < j since x ≤ y ∨ z ≤ xj and the partition was induced by the chain. 
Moreover, {x, y, z} must be a circuit since x < y ∨ z so that ρ(x ∨ y ∨ z) = ρ(y ∨ z) = 2
while sets of atoms of size two or less always have joins whose rank equals the cardinality 
of the set. �
6. An application in graph theory

We will now consider an application of Theorem 18 to graph theory. This application 
was motivated by the computations done in Example 12. We start with a definition.

Definition 23. Let G be a graph with a total ordering of the vertices given by v1 < v2 <

· · · < vn. Call a subtree of G increasing if the vertices along any path starting at its 
minimum vertex increase in this ordering. Let fk be the number of spanning forests of 
G with k edges whose components are increasing trees. The increasing spanning forest 
generating function is given by

IF(G, t) =
n−1∑
k=0

(−1)kfktn−k.

To see what the roots of IF(G, t) are, we will need a partition of the edge set which 
is given by the ordering on the vertices.

Definition 24. Let G be a graph with a total ordering of the vertices given by v1 < v2 <

· · · < vn. Label the edge vivj by (i, j) where i < j. The ordered partition (E1, E2, . . . , En)
of the edge set E(G) induced by the total ordering is the one with blocks

Ej = {(i, j) : (i, j) ∈ E(G)}.

It turns out that the sizes of the blocks in the partition are exactly the roots of IF(G, t)
as we see in the next theorem.

Theorem 25. Let G be a graph with the partition (E1, E2, . . . , En) induced by the total 
ordering v1 < v2 < · · · < vn. The increasing spanning forest generating function factors 
as

IF(G, t) =
n∏

i=1
(t− |Ei|).

Proof. We shall refer to tuples where each element of the tuple is from a different Ei as a 
transversal (even though there is no underlying poset) and use the term support just as 
we did previously. We first show that there is a bijection between the set of transversals 
with support size k for the partition (E1, E2, . . . , En) and the set of increasing spanning 
forests with k edges.
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Let Tk be the set of transversals with support size k and IFk be the set of increasing 
spanning forest with k edges. Let ϕ : Tk → IFk be defined by ϕ((a1, b1), (a2, b2), . . . ,
(ak, bk)) = F , where F is the subgraph of G with edges (a1, b1), (a2, b2), . . . , (ak, bk).

It is clear that F has k edges and we claim that F is an increasing spanning forest. 
The proof that F is acyclic is the same as the one used in Example 12. Now suppose 
that F was not increasing. Let T be a tree in F which is not increasing. Then in T
there must be a vertex vm which is on a path from the root of T which is preceded and 
succeeded by vertices of smaller index, va and vb. However, this is impossible for the 
same reasons which force F to be acyclic. It follows that F is an increasing forest and 
so ϕ is well-defined.

To show ϕ is a bijection, we show it has an inverse. Let ψ : IFk → Tk be defined by 
sending the increasing spanning forest to the set of edges it contains. It is obvious that 
ϕ and ψ are inverses of each other as long as ψ is well-defined.

If ψ(F ) is not a transversal, we must have vavm, vbvm ∈ E(F ) for some va < vb < vm. 
Let T be the tree of F containing these edges and let vr be the minimum vertex of T . 
Since T is increasing and vavm ∈ E(T ) with va < vm, the unique path from vr to vm
must contain va just prior to vm. By the same token, this path must contain vb just prior 
to vm. This is a contradiction, and we conclude that ψ is well-defined.

From above we know that the number of increasing forests with k edges is the same 
as the number of transversals for the partition (E1, E2, . . . , En) with support size k. The 
number of such transversals is ek(E1, E2, . . . , En). Thus we get,

IF(G, t) =
n−1∑
k=0

(−1)kfktn−k =
n∑

k=0

(−1)kek(E1, E2, . . . , En)tn−k

from which the result follows. �
Now that we know that the increasing spanning forest generating function always 

factors, we can use the bond lattice of the graph to show how it relates to the chromatic 
polynomial. To describe the bond lattice of a graph we need a definition. A flat, F , of G
is a spanning subgraph such that each connected component of F is induced in G. If we 
then order the flats of G by inclusion, we obtain the bond lattice of G.

Theorem 26. Denoting the chromatic polynomial of G by P (G, t) we have that

P (G, t) = IF(G, t)

if and only if v1 < v2 < · · · < vn is a perfect elimination ordering, i.e., for each i, the 
neighbors of vi coming before vi in the ordering form a clique of G.

Proof. First we note that both P (G, t) and IF(G, t) are multiplicative over connected 
components of a graph. Additionally, any ordering of the vertices can be restricted to 
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the connected components of a graph and the ordering will be a perfect elimination 
ordering of the entire graph if and only if its a perfect elimination ordering of each 
connected component. Therefore it is sufficient to show the result assuming that our 
graph is connected.

By the previous theorem, P (G, t) = IF(G, t) if and only if

P (G, t) =
n∏

i=1
(t− |Ei|)

where (E1, E2, . . . , En) is induced by the total ordering. This, in turn, is equivalent to

χ(L, t) = t−1
n∏

i=1
(t− |Ei|), (5)

where L is the bond lattice of G. Note that we have a t−1 on the outside of the previous 
product. This is because the rank of L is n −1, whereas we have n blocks in our partition 
of E(G). We will still have a polynomial, however, since E1 = ∅ for any graph.

The partition of the edge set of G gives a partition of the atoms of L. Moreover, 
we claim this partition is induced by a 0̂–1̂ multichain. To verify the claim, we use the 
multichain C : 0̂ = x0 ≤ x1 ≤ · · · ≤ xn = 1̂ where

xj =
j∨

i=1
Ei.

Note that it is possible that xj = xj+1 since blocks in the partition of the atoms can be 
empty.

It is obvious that if e ∈ Ek then e ≤ xk. We must show that e � xk−1. In the 
graph xk−1, all vertices with a label larger than k have degree 0. Since e = (i, k) for 
some i, we have e � xk−1. It follows that C induces the partition (E1, E2, . . . , En).

Since the partition is induced by a multichain and L is semimodular, we can apply 
Theorem 18 and Lemma 19. In particular, using the equivalence of (2) and (4), we have 
that equation (5) holds if and only if for any pair (a, i), (b, i) ∈ Ei with a < b, there is 
some index j with a unique atom below (a, i) ∨ (b, i) in Ej . Since L is the bond lattice 
of a graph, the only new atom below (a, i) ∨ (b, i) is (a, b). It follows that equation (5)
holds if and only if whenever (a, i), (b, i) ∈ E(G) then (a, b) ∈ E(G). This is exactly the 
criteria for v1, v2, . . . , vn to be a perfect elimination ordering of G. �
7. Open questions and future work

One can weaken the condition of a poset being ranked and still define a characteristic 
polynomial. In an upcoming article [6], the first author will show that many of the results 
found in this paper are true when the restriction of being ranked is dropped. Of course, in 
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this case we need a new definition of a “rank” function. One example, originally defined 
in [3], is called generalized rank. We will use it to show that a new family of lattices have 
characteristic polynomials which factor with nonnegative integer roots. In particular, we 
will show that every interval of a crosscut-simplicial lattice (see [7] for definition) has 
such a factorization. A special case of this result is that every interval of the m-Tamari 
lattices (see [1] for definition) has a characteristic polynomial with nice factorization. 
These results will allow us to recover Blass and Sagan’s original result [3] that the 
characteristic polynomial of the standard Tamari lattice factors with nonnegative integer 
roots. Moreover, we will use a slight modification of Theorem 14 to show Blass and 
Sagan’s [3] result regarding LL lattices.

Additionally, in [6], another use of quotient posets will be demonstrated. Some clas-
sic results about the Möbius function can be proved using induction and quotients. For 
example, one can use this technique to prove Hall’s Theorem [5], Rota’s Crosscut Theo-
rem [8] and Weisner’s Theorem [14].

We are investigating whether the methods developed in this paper could be used to 
show the factorization theorem of Saito [10] and Terao [12] about free arrangements. 
This would give a combinatorial interpretation of the algebraic property of freeness.

Another question is whether one can discover a systematic way to find the atom 
partition for posets which are not lattices. One such example is the weighted partition 
poset which was introduced in [4].

As was shown in Proposition 22, the only multichains in a geometric lattice which 
can satisfy the meet condition are left-modular. This raises the question: what types 
of multichains can satisfy the meet condition in more general lattices? We know, by 
Lemma 20, that saturated left-modular chains (in any lattice, not necessarily geometric) 
do satisfy the meet condition but we do not have any other such families.

It would be very interesting to connect our work with the topology of the order 
complex of a poset. As a first step, we have been trying to see whether shellability 
results can be obtained using induction and quotients since this method has already 
borne fruit as mentioned above. One could also hope to find connections with discrete 
Morse theory using these ideas.

Finally, we gave a definition of an increasing spanning forest and showed that its 
generating function always factors. This raises the question of whether our theorem is a 
special case of a more general result about the Tutte polynomial of a matroid. Of course, 
we would first need a definition of what it means for an independent set of a matroid to 
be increasing. In joint work with Martin, we have succeeded in generalizing the results 
of the previous section to arbitrary simplicial complexes.
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