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Abstract. Let R and S be two vectors of real numbers whose entries have the

same sum. In the transportation problems one wishes to find a matrix A with

row sum vector R and column sum vector S. If, in addition, the two vectors only

contain nonnegative integers then one wants the same to be true for A. This can

always be done and the transportation algorithm gives a method for explicitly

calculating A. We can restrict things even further and insist that A have only

entries zero and one. In this case, the Gale-Ryser Theorem gives necessary and

sufficient conditions for A to exist and this result can be proved constructively.

One can let the dihedral group D4 of the square act on matrices. Then a subgroup

of D4 defines a set of matrices invariant under the subgroup. So one can consider

analogues of the transportation and (0, 1) problems for these sets of matrices. For

every subgroup, we give conditions equivalent to the existence of the desired type

of matrix.
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1. Introduction

LetD4 be the dihedral group of the square. Write ρθ for rotation counter-clockwise

through θ radians and rm for reflection in a line of slope m. Then

D4 = {ρ0, ρπ/2, ρπ, ρ3π/2, r0, r+1, r−1, r∞}.

The non-identity elements of D4 are uniquely identified by their subscripts, and

we let Db ≤ D4 be the cyclic subgroup generated by the element with subscript b.

There are also two subgroups of D4 isomorphic to the Klein 4-group, namely

D× = {ρ0, ρπ, r+1, r−1}

and

D+ = {ρ0, ρπ, r0, r∞}.
1
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The subscripts of D× and D+ are mnemonic, geometrically representing the two

reflection lines in each subgroup. A complete list of non-identity subgroups of D4 is

Dπ/2 = D3π/2, Dπ, D0, D+1, D−1, D∞, D×, D+, D4.

For each of these subgroups Db (now including D×, D+, and D4) acting on m×n
matrices (where it is implicitly assumed that m = n if one of ρπ/2, r+1 or r−1 is

in Db), we consider the transportation (both real and integral) and (0, 1)-problems

for those matrices invariant under Db. We call the resulting classes of matrices

dihedral matrix classes. The cases Dπ and D× were considered in a paper of Brualdi

and Ma [BM]. The invariant matrices for Dπ are the so-called centrosymmetric

matrices. Since Dπ is a subgroup of D×, the invariant matrices for D× are also

centrosymmetric. As pointed out in [BM], there are centrosymmetric matrices that

are not invariant under D×. For example, the matrix
0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0


is centrosymmetric but is not invariant under either of the two reflections r+1 and

r−1.

Given a real matrix A we let R = R(A) and S = S(A) be the row sum and

column sum vectors of A with components ri = ri(A) and sj = sj(A), respectively.

We let T (R, S) denote the corresponding transportation class which consists of all

nonnegative real matrices with row sum vector R and column sum vector S. We

also use the notation

T b(R, S) = {A ∈ T (R, S) | DbA = A}

and

T bZ (R, S) = {A ∈ T b(R, S) | A ∈ Zm×n}.
For the (0, 1)-problem, A(R, S) and Ab(R, S) denote the subsets of T (R, S) and

T b(R, S), respectively, whose entries are 0 and 1. In all cases we assume, without

specific mention, the obvious necessary condition for our classes to be nonempty,

namely that ΣR = ΣS where, for any matrix X, ΣX is the sum of the entries of X.

We assume, also without specific mention, that in discussing T bZ (R, S) and Ab(R, S),

the vectors R, S have nonnegative integral components. Finally, for Ab(R, S), we

always assume that R and S have no component bigger than n and m, respectively.
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Recall that we can obtain an element T ∈ T (R, S) by letting

(1) ti,j =
risj
N

where N = ΣR = ΣS.

If we wish to construct a matrix T ∈ TZ(R, S), then we can use the transportation

algorithm. Pick any ri and sj. If ri ≤ sj then let ti,j = ri, remove the ith row of

T and the corresponding component of R, and replace S by the vector obtained by

decreasing its jth component by sj. If sj ≤ ri then we apply the same construction

with the roles of the rows and columns reversed. (If ri = sj it does not matter

which of the two possibilities we use.) We then iterate the process until all row and

column sums are as they should be.

For A(R, S) one must be more careful. Given a nonnegative integral vector R, we

let R↓ denote the weakly decreasing rearrangement of R, and we let R∗ denote the

conjugate of R↓ viewed as an integer partition. Note that R∗ is weakly decreasing

by definition. Given two weakly decreasing vectors R = (r1, r2, . . . , rm) and S =

(s1, s2, . . . , sn), we say R majorizes S and write R � S, if for all indices `

(2) r1 + r2 + · · ·+ r` ≥ s1 + s2 + · · ·+ s`

and ΣR = ΣS. We also write S � R and say that S is majorized by R. If R, S

are not necessarily weakly decreasing, then we define R � S (or S � R) to mean

R↓ � S↓. The Gale-Ryser theorem (see e.g. [Bru06]) asserts that A(R, S) 6= ∅ if

and only

(3) S � R∗ (the Gale-Ryser condition).

If (3) holds, then we can construct an element A ∈ A(R, S) using the Gale-Ryser

algorithm as follows.

(1) Pick any j and set the entries in column j with the largest sj row sums equal

to one and the rest of the entries equal to zero, breaking ties arbitarily,

(2) Replace R by the vector obtained by decreasing its largest sj entries by one

(using tie breaking as determined in (1)). Replace S by the vector obtained

by removing sj and return to the first step until both vectors are zeroed out.

It will be helpful to have the following notation. For a nonegative integer n, let

ň = bn/2c and n̂ = dn/2e.
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Also, if A is a matrix, then Ri and Sj will always denote the ith row and jth column

of A, respectively.

Our goal in this paper is to determine under what conditions the various dihedral

matrix classes, as determined by the subgroups of D4, are nonempty.

2. The rotation ρπ

As mentioned in the introduction, these centrosymmetric matrices were considered

in [BM]. So here we content ourselves with stating their results. In order to state

them more clearly, we assume some obvious necessary conditions. Clearly a matrix

invariant under ρπ must have palindromic row and column sum vectors. We say

that a palindromic vector R = (r1, r2, . . . , rn) is initially nonincreasing provided

that r1 ≥ r2 ≥ · · · ≥ rň. By permuting within upper rows and within lower rows,

and similarly for the columns, a centrosymmetric matrix can always be assumed to

have initially-nonincreasing row and column sum vectors.

Theorem 1. We have T π(R, S) 6= ∅ if and only if R and S are palindromic. The

same is true for T πZ (R, S). �

Theorem 2. (i) Let m and n be even. Then Aπ(R, S) 6= ∅ if and only if R and

S are palindromic and S � R∗.

(ii) Let m be odd and n be even, the case where m is even and n odd being similar.

Assume that R and S are initially nonincreasing, palindromic vectors with

rm̂ even. Let vectors R′ and S ′ be obtained, respectively, by deleting rm̂
from R and by decreasing by one the first and last rm̂/2 entries of S. Then

Aπ(R, S) 6= ∅ if and only if Aπ(R′, S ′) 6= ∅.
(iii) Let m and n both be odd, and assume that R and S are initially nonincreas-

ing, palindromic vectors with rm̂ and sn̂ of the same parity. Let vectors R′

and S ′ be obtained, respectively, by deleting rm̂ and by decreasing by 1 the

first and last bsn̂/2c entries of R, and by deleting sn̂, and by decreasing by

1 the first and last brm̂/2c entries of S. Then Aπ(R, S) 6= ∅ if and only if

Aπ(R′, S ′) 6= ∅. �

3. The reflections r−1 and r+1

In this section we will consider the subgroups D−1, D+1, and D× generated by the

reflections r−1 and/or r+1.
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Theorem 3. We have T −1(R, S) 6= ∅ if and only if R = S The same is true for

T −1
Z (R, S).

Proof. The proofs for the arbitrary and integral cases are the same. To see the

forward implication, it suffices to observe that r−1, which is ordinary matrix trans-

position, interchanges the row and column sum vectors of a matrix. For the reverse,

merely note that if R = S then the diagonal matrix diag(r1, . . . , rn) provides a

desired matrix. �

Given a vector S = (s1, s2, . . . , sn), we denote its reversal by

Sr = (sn, . . . , s2, s1).

The next result follows from Theorem 3 and the fact that if r+1A = A if and only if

A can be obtained by rotation through π/2 radians of a matrix A′ with r−1A
′ = A′

(i.e. transposition with respect to the antidiagonal).

Theorem 4. We have T +1(R, S) 6= ∅ if and only if S = Rr The same is true for

T +1
Z (R, S). �

Now we consider what happens for the subgroup D× = {ρ0, ρπ, r+1, r−1}.

Theorem 5. We have T ×(R, S) 6= ∅ if and only if

(a) R = S, and

(b) R is palindromic.

The same is true for T ×Z (R, S).

Proof. We will do both the arbitrary and integral cases at the same time. The

forward direction follows immediately from Theorems 3 and 4. On the other hand,

if we are given (a) and (b) then it is easy to verify that

(4) A = diag(r1/2, . . . , rn/2) + antidiag(r1/2, . . . , rn/2)

is an element in T ×(R, S). And for T ×Z (R, S) one merely rounds up the elements in

the diagonal matrix and rounds down those in the antidiagonal matrix. �

We now deal with the case of (0, 1)-matrices. For r−1 this follows from a result of

Fulkerson, Hoffman, and McAndrew [FHM65] . See [Bru06, pp. 179–182] for details.
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Theorem 6. We have A−1(R, S) 6= ∅ if and only if R = S and R � R∗. �

Note that Theorem 6 is equivalent to the fact that, for R = S, there is a symmetric

matrix in A(R,R) if and only if A(R,R) 6= ∅.

The following result follows from the previous one in the same way that Theorem 4

follows from Theorem 3.

Theorem 7. We have A+1(R, S) 6= ∅ if and only if S = Rr and Rr � R∗. �

The nonemptiness of A×(R,R) was characterized in [BM] as follows.

Theorem 8. We have A×(R,R) 6= ∅ if and only if Aπ(R,R) 6= ∅. �

Recall that the characterization for Aπ(R, S), and thus for A×(R,R) is given in

Theorem 2.

4. The reflections r∞ and r0

In this section we will consider the subgroups generated by the reflections r∞
and/or r0. First, however, we introduce some useful notation. Call an integral

matrix A even if all its entries are even. Also let o(A) be the number of odd entries

of A. Given an integral vector R and an odd positive integer n, we define AR to

be the m× n (0,1)-matrix whose only nonzero entries are aRi,n̂ for the indices i such

that ri is odd. Given an integral vector S and odd positive integer m, we define AS

in a similar way. Finally given R, S and both m and n are odd we define A+ by

(5) a+
i,j = max{aRi,j, aSi,j}.

In other words, A+ = AR +AS except in the case when the central elements of both

R and S are odd in which case the central entry of the sum is too large by one.

Theorem 9. (I) We have T ∞(R, S) 6= ∅ if and only if

(a) S is palindromic.

(II) We have T ∞Z (R, S) 6= ∅ if and only if (a) is true and

(b) if n is even then R is even, and if n is odd then sn̂ ≥ o(R).

Proof. (I) For the forward implication, take A such that r∞A = A. Since r∞ ex-

changes columns equidistant from the vertical mid-line of A, we must have that S is
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a palindromic. For the other direction, it suffices to show that equation (1) defines

a matrix with palindromic S-vector. Indeed, using the fact that S is palindromic,

ti,m−j+1 =
rism−j+1

N
=
risj
N

= ti,j.

(II) First we note that if r∞A = A then ai,j = ai,n−j+1 for all i, j. Thus when n

is even every element in the ith row is repeated twice and R is even. On the other

hand, if n is odd then ri is odd if and only if ai,n̂ is odd. This gives the inequality

in (b).

For the reverse implication, we modify the transportation matrix algorithm as

follows. Let R = R−R(AR) and S = S − S(AR). Note that R is even by definition

of AR and S still has nonnegative entries because of (b). Construct A ∈ T ∞Z (R, S) by

letting a1,1 = a1,n = min{r1/2, s1} and applying recursion. Now form A ∈ T ∞Z (R, S)

by adding one to the ai,n̂ for all i such that ri is odd. �

The next result follows from Theorem 9 in the same way that Theorem 4 follows

from Theorem 3.

Theorem 10. (I) We have T 0(R, S) 6= ∅ if and only if

(a) R is palindromic.

(II) We have T 0
Z (R, S) 6= ∅ if and only if (a) is true and

(b) if m is even then S is even, and if m is odd then rm̂ ≥ o(S). �

We now consider the subgroup D+ = {ρ0, ρπ, r0, r∞}.

Theorem 11. We have T +(R, S) 6= ∅ if and only if T ∞(R, S) 6= ∅ and T 0(R, S) 6=
∅. The same is true in the integral case.

Proof. The forward directions follow immediately from the fact that T +(R, S) =

T ∞(R, S)∩T 0(R, S). The converse for T +(R, S) is proved in the usual way using (1).

For T +
Z (R, S), we use a method similar to the one given in the proof of Theorem 9.

We consider the vectors R = R−R(A+) and S = S − S(A+). We then construct a

matrix A by making assignments a1,1 = a1,n = am,1 = am,n = min{r1/2, s1/2} and

recursing. Finally, we let A = A+ A+. �

Theorem 12. We have A∞(R, S) 6= ∅ if and only if conditions (a) and (b) from

Theorem 9 are satisfied as well as
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(c) S � R
∗

where R is obtained from R by subtracting one from every odd

component and S is S if n is even or S with column Sn̂ removed if n is odd.

Proof. Clearly if A ∈ A∞(R, S) then it must satisfy the two conditions from The-

orem 9. If n is even then R = R and S = S so that R
∗ � S by the Gale-Ryser

Theorem. In n is odd, note that the ones in column Sn̂ must occur exactly in the

rows with odd sums. Removing this column, we obtain a matrix A with R and S

as its row and column vector. Since such a matrix exists, we must have R
∗ � S by

the Gale-Ryser Theorem again.

For the converse we have two cases. First suppose that n is even. Then since R

is even we must have every element of R∗ repeated twice. Let R∗1 be R∗ where we

only take one out of every pair of repeated elements. Similarly, let S1 = (s1, . . . , sň).

Since R = R and S = S, (c) implies that S � R∗. It follows that S1 � R∗1. Now

use the Gale-Ryser algorithm to create a matrix B ∈ A(R1, S1). It follows that we

have a block matrix A = [B r∞B] ∈ A∞(R, S).

Now consider the case when n is odd. Since n− 1 is even, R is an even vector, S

is palindromic, and S � R
∗

we can proceed as in the previous case to construct a

matrix A ∈ A∞(R, S). Finally, we get the desired matrix A by inserting a middle

column Sn̂ in A which has ones in exactly the rows of R with odd sum. �

One might ask if (d) could be replaced by the ordinary Gale-Ryser condition

S � R∗. But this condition is not strong enough to imply A∞(R, S) 6= ∅. For

an example of this, consider R = (6, 6, 6, 2, 1, 1) and S = (4, 4, 2, 2, 2, 4, 4). Clearly

S is palindromic and it is easy to check that S � R∗. Now suppose, towards

a contradiction, that there exists A ∈ A∞(R, S). Form the matrix A as in the

first paragraph of the preceding proof. Then A has row and column vectors R =

(6, 6, 6, 2) and S = (4, 4, 2, 2, 4, 4). But R
∗

does not majorize S which contradicts

the Gale-Ryser Theorem.

As with previous cases, the result for symmetry under r∞ is similar to the one for

r0.

Theorem 13. We have A0 6= ∅ if and only if conditions (a) and (b) from Theo-

rem 10 are satisfied as well as
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(c) S � R
∗

where S is obtained from S by subtracting one from every odd com-

ponent and R is R if m is even or R with column Rn̂ removed if n is odd. �

Finally, we consider the (0, 1)-case for D+.

Theorem 14. We have A+(R, S) 6= ∅ if and only if conditions (a) and (b) from

both Theorems 9 and 10 are satisfied as well as

(c) if n is odd then o(R) = sn̂, if m is odd then o(S) = rm̂, and

(d) Š � Ř∗ where Ř = (ř1, ř2, . . . , řm̌) and Š = (š1, š2, . . . , šň).

Proof. Suppose first that A ∈ A+(R, S). Then clearly conditions (a) and (b) from

both Theorems 9 and 10 are satisfied. To obtain (c) of the present result, note that

condition (c) of Theorem 12 must also hold. So, in particular, ΣR
∗

= ΣS and this

gives the desired equality when n is odd. The case when m is odd follows similarly

from Theorem 13. Finally, Ř and Š are the row- and column-sum vectors for the

submatrix Ǎ of A sitting in the first m̌ rows and the first ň columns. Thus Ř∗ � Š

follows from the Gale-Ryser Theorem.

For the converse, assume first that m and n are odd. By condition (d) and the

Gale-Ryser Theorem, we can construct an ň× m̌ matrix Ǎ with row sum vector Ř

and column sum vector Š. Now the current condition (c) and condition (a) from

Theorems 9 and 10 imply that there is an m̌× 1 matrix B, a 1× ň matrix C, and

am̂,n̂ ∈ {0, 1} such that the block matrix

A =

 Ǎ B r∞Ǎ

C am̂,n̂ r∞C

r0Ǎ r0B ρπǍ


is in A+(R, S). If either m or n is even then condition (b) from Theorems 9 and 10

implies that deleting the appropriate row or column in A above will give a matrix

with the correct row and column sums to be in A+(R, S). �

5. The case Dπ/2

We start, as usual, with the transportation problem.

Theorem 15. (I) We have T π/2(R, S) 6= ∅ if and only if

(a) R = S, and
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(b) R is palindromic.

(II) We have T π/2Z (R, S) 6= ∅ if and only if R, S satisfy (a) and (b) as well as

one of

(c) r1 + r2 + · · ·+ rň is even, or

(d) n is odd and rn̂ ≥ 2.

Proof. (I) For the forward direction, suppose A ∈ T π/2(R, S). Then ρπ/2Ri = Ci

which implies R = S. And ρ2
π/2Ri = ρπRi is Rn−i read backwards so that (b) holds.

For the converse, it suffices to show that when (a) and (b) hold then the matrix

defined by (1) is invariant under ρπ/2. But this follows since

tn−j+1,i =
rn−j+1si

N
=
sn−j+1ri

N
=
risj
N

= ti,j.

(II) We will first consider the case when n is even. Given A ∈ T π/2Z (R, S), we can

write A in the block form

(6) A =

[
B ρ3

π/2B

ρπ/2B ρ2
π/2B

]
where B is ň× ň. Since R is palindromic by (a), it follows that

r1 + r2 + · · ·+ rň = ΣB + Σ(ρ3
π/2B) = 2ΣB

so that (c) holds.

Now suppose, for n still even, that we are given (a)–(c). For any matrix B, the

matrix A = A(B) defined by (6) is invariant under ρπ/2. Thus it suffices to show

that we can define B so that A has the given row and column sums. We will define

B = D+P where D is a diagonal matrix and P is a (0, 1)-matrix with at most one

1 in every row and column. Define D by di,i = ři for 1 ≤ i ≤ ň. It follows that

A(D) has rows sums 2ři = ri if ri is even or ri − 1 if ri is odd. We use the matrix

P to correct for the odd row sums as follows. Because of (c), there are an even

number of ri which are odd, 1 ≤ i ≤ ň. Let those ri be ri1 , ri2 , . . . , ri2k . Let P be the

(0, 1)-matrix with 1’s in positions (i1, i2), . . . , (i2k−1, i2k). Now A = A(B) will have

one added to row i2j−1 by B and to row i2j by ρ3
π/2B for 1 ≤ j ≤ k and similarly

for the rows below the midpoint. It follows that A has the correct row sums and we

are done with the case n even.



DIHEDRAL TRANSPORTATION AND (0, 1)-MATRIX CLASSES 11

We now deal with n odd. If A ∈ T π/2Z (R, S) then, similarly to the n even case,

we write

(7) A =

 B C ρ3
π/2B

ρπ/2C an̂,n̂ ρ3
π/2C

ρπ/2B ρ2
π/2C ρ2

π/2B


where B is ň× ň and C is ň×1. If (c) holds, then we are done. If not, then consider

r1 + r2 + · · ·+ rň = 2ΣB + ΣC.

By our assumption about the left-hand side we must have ΣC odd and so, in par-

ticular, ΣC ≥ 1. But then

rn̂ = 2ΣC + an̂,n̂ ≥ 2

and so (d) holds.

Finally, we must prove the converse when n is odd. If (c) holds, then we can

construct the matrix B as when n is even, take C to be a zero matrix, and set

an̂,n̂ = rn̂ to obtain a matrix with the desired row and column sums. If, instead, (d)

holds then there are an odd number of ri which are odd, 1 ≤ i ≤ ň. Let those ri be

ri1 , ri2 , . . . , ri2k+1
. Construct that matrix B as for n even using ri1 , ri2 , . . . , ri2k . Let

C be the matrix which is all zeros except for its i2k+1 entry which is one. And define

an̂,n̂ = rn̂ − 2 ≥ 0 by the assumption in (d). It is now an easy matter to verify that

we again have the desired sums in rows and columns. �

For the (0, 1)-case we will need the following result of Brualdi and Ryser [Bru06,

Theorem 6.3.2] about symmetric matrices whose entries are zeros, ones, and twos.

Theorem 16. Let R = (r1, . . . , rn) be a vector of nonnegative integers. There exists

a symmetric (0, 1, 2)-matrix M with row sum vector R if and only if

(8) 2|I||J | ≥
∑
i∈I

ri −
∑
j 6∈J

rj

for all I, J ⊆ {1, 2, . . . , n}. �

We note that if in the previous theorem we have R weakly decreasing (and the

row vector of any symmetric matrix can be brought to this form by row and column

interchanges), then it suffices to check the considerably smaller set of inequalities

2kl ≥
∑
i≤k

ri −
∑
i>l

ri
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for all 1 ≤ k ≤ j ≤ n.

Theorem 17. We have Aπ/2(R, S) 6= ∅ if and only if conditions (a)–(d) of Theo-

rem 15 hold and R satisfies the inequalities (8) where

R =

{
(r1, r2, . . . , rň) if n is even,

(r1 − 1, r2 − 1, . . . , rs − 1, rs+1, rs+2, . . . , rň) if n is odd,

and s = brn̂/2c.

Proof. We begin with the case when n is even. Suppose first that A ∈ Aπ/2(R, S).

We have already shown that conditions (a)–(c) must be satisfied. For the last

condition, note that since rπ/2A = A and n is even this matrix must have the

form (6) for some (0, 1)-matrix B. It follows that M = B + Bt is a symmetric

(0, 1, 2)-matrix. Furthermore, for i ≤ n/2 we have

(9) ri(M) = ri(B) + ri(B
t) = ri(B) + ci(B) = ri(B) + ri(ρ

3
π/2B) = ri(A).

It follows from Theorem 16 that R must staisfy (8).

For the converse, using Theorem 16 again we may assume that there exists a

symmetric (0, 1, 2)-matrix M with R(M) = R. We claim that in fact there exists

such an M with no ones on the diagonal. Indeed, using the symmetry of M we have

r1 + · · ·+ rn/2 = ΣM = 2
∑
i<j

mi,j +
∑
i

mi,i.

Since the left-hand side is even by condition (c), the same must be true of
∑

imi,i.

And because the only odd entries of M are ones there must be an even number of

them on M ’s diagonal, say the entries (i, i) for i = i1, i2, . . . , i2k. Consider the pair

of ones on the diagonal in positions i2j−1 and i2j for 1 ≤ j ≤ k. Then there are three

possibilities for the 2× 2 submatrix of M in the rows and columns indexed by i2j−1

and i2j depending on which of the three integers 0, 1, 2 appear in the off-diagonal

spots. In each case, substitute the submatix on the left in the following table with

the corresponding submatrix on the right. It is easy to check that this does not

change the row and column sums of M , and now M has only zeros and twos on the

diagonal.
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initial submatrix substituted submatrix[
1 0

0 1

] [
0 1

1 0

]
[

1 1

1 1

] [
0 2

2 0

]
[

1 2

2 1

] [
2 1

1 2

]

We now write M = B+Bt with the entries of the (0, 1)-matrix B defined as in the

following chart for i ≤ j. Note that from what we have just proved, if mi,j = mj,i = 1

then we must actually have i < j.

entries of M entries of B

mi,j = mj,i = 0 bi,j = bj,i = 0

mi,j = mj,i = 1 bi,j = 0, bj,i = 1

mi,j = mj,i = 2 bi,j = bj,i = 1

Finally, we define A using the matrix B as in (6). This matrix is clearly symmetric

under rπ/2 and has the correct row and column sum vectors by conditions (a) and

(b) and the equalities in (9).

Now suppose that n is odd. By interchanging rows and columns, we can assume

that R satisfies r1 ≥ r2 ≥ · · · ≥ rň. Note that if there exists an A ∈ Aπ/2(R, S)

then it must have the form given in (7). First we claim that there is A ∈ Aπ/2(R, S)

if and only if there is such a matrix where all the ones in C precede all the zeros.

To prove the forward direction (the converse being trivial), suppose that the given

matrix A has a zero before a one in C. Without loss of generality we can assume

the zero is in row i and the one in row i+ 1. But ri ≥ ri+1 so that in some column

of A we must have a zero followed by a one in these rows. Suppose that this column

is in B as the case when it is in ρ3
π/2B is similar. So, taking account of symmetry,
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we have the situation depicted in (10) below:

(10) A =



1 0 0 1

0 1

0 1 1 0

1 0

1 0

0 1



.

Now interchanging submatrices[
1 0

0 1

]
↔

[
0 1

1 0

]
in four different places maintains both the symmetry and the row sum vector while

exchanging ai,n̂ = 0 and ai+1,n̂ = 1. Continuing in this way we can put all the ones

in C before all the zeros.

Note that by its definition, s is the number of ones in C. So existence of A ∈
Aπ/2(R, S) is equivalent to having such an A with ones in the first s rows of C and

zeros elsewhere in that submatrix. Removing the central row and column of A, we

see that this is equivalent to having a matrix with an even number of rows and

columns which has R as the first half of its palindromic row sum vector, where R is

as given in the statement of the theorem for n odd. So the case for n odd reduces

to the case when n is even and we are done. �

6. The group D4 itself

We finally deal with the full dihedral group.

Theorem 18. (I) We have T 4(R, S) 6= ∅ if and only if

(a) R = S, and
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(b) R is palindromic.

(II) We have T 4
Z (R, S) 6= ∅ if and only if (a) and (b) hold as well as

(c) if n is even then R is even, and if n is odd then rn̂ ≥ o(R).

Proof. (I) The forward direction follows from Theorem 5 and the fact that D× ⊆ D4.

For the reverse implication, it is easy to verify that if (a) and (b) are true then the

matrix defined by (4) is invariant under D4.

(II) Similar to (I), the forward implication comes from Theorems 5 and 11. For

sufficiency, when n is even we use (4). When n is odd, we let Ǎ be the matrix defined

as in (4) but with all fractions rounded down. It follows that A = Ǎ + A+ is the

desired matrix, where the entries of A+ are defined by (5). �

For our final result, we characterized the (0, 1)-case.

Theorem 19. We have A4(R, S) 6= ∅ if and only if conditions (a) and (b) of

Theorem 18 hold as well as

(c) if n is even then R is even, if n is odd then o(R) = rn̂, and

(d) Ř � Ř∗ where Ř = (ř1, ř2, . . . , řň).

Proof. Necessity follows from the previous result and Theorem 14. For the reverse

implication, suppose first that n is even. By condition (d) and Theorem 6, there is

an ň × ň matrix B with row and column sum vector Ř which is symmetric under

matrix transposition. It follows that the matrix A defined by 6 is invariant under

D4 and has the correct row and column sums by (c). When n is odd we construct

B as in the even case, then a matrix Ǎ as in 7 where C and an̂,n̂ are all zero, and

finally let A = Ǎ + A+ with entries given by 5. Again, it is easy to see that A has

the desired properties. �
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