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Abstract

Using Kummer’s theorem, we give a necessary and sufficient condition for a Narayana

number to be divisible by a given prime. We use this to derive certain properties of

the Narayana triangle.

1 The main theorem

Let N denote the nonnegative integers and let k, n ∈ N. The Narayana numbers [10,
A001263] can be defined as

N(n, k) =
1

n

(

n

k

)(

n

k + 1

)

where 0 ≤ k < n. The Narayana numbers (in fact, a q-analogue of them) were first studied
by MacMahon [6, Article 495] and were later rediscovered by Narayana [7]. They are closely
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related to the Catalan numbers [10, A000108]

Cn =
1

n + 1

(

2n

n

)

and in fact
∑

k N(n, k) = Cn. The Narayana numbers can be arranged in a triangular array
with N(n, k) in row n and column k so that the row sums are the Catalan numbers. Like the
numbers Cn, the numbers N(n, k) have many combinatorial interpretations; see, for example,
the article of Sulanke [11].

The main result of this note is a characterization of when N(n, k) is divisible by a given
prime p. To state it, we need some notation. Let ∆p(n) = (ni) denote the sequence of
digits of n in base p so that n =

∑

i nip
i. Similarly we define ∆p(k) = (ki). If we are

considering k ≤ n then it will be convenient to extend the range of definition of (ki) so that
both sequences have the same length by setting ki = 0 if pi > k. The order of n modulo p

is the largest power of p dividing n and will be denoted ωp(n). As usual, k|n means that k

divides n.
Kummer’s theorem [5] gives a useful way of finding the order of binomial coefficients.

For example, Knuth and Wilf [4] used it to find the highest power of a prime which divides
a generalized binomial coefficient.

Theorem 1.1 (Kummer) Let p be prime and let ∆p(n) = (ni), ∆p(k) = (ki). Then ωp

(

n

k

)

is the number of carries in performing the addition ∆p(k) + ∆p(n − k). Equivalently, it is
the number of indices i such that either ki > ni or there exists an index j < i with kj > nj

and kj+1 = nj+1, . . . , ki = ni.

Now everything is in place to state and prove our principal theorem.

Theorem 1.2 Let p be prime. Also let ∆p(n) = (ni), ∆p(k) = (ki) and ω = ωp(n). Then
p - N(n, k) if and only if one of the two following conditions hold:

1. When p - n we have

(a) ki ≤ ni for all i, and

(b) kj < nj where j is the first index with kj 6= p− 1 (if such an index exists).

2. When p | n we have

(a) ki ≤ ni for all i > ω, and

(b) kω < nω, and

(c) k0 = k1 = . . . = kω−1 =

{

0 if p | k;
p− 1 if p - k.
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Proof First suppose that p is not a divisor of n. Then p does not divide N(n, k) if and only
if p divides neither

(

n

k

)

nor
(

n

k+1

)

. By Kummer’s theorem this is equivalent to ki ≤ ni and
(k + 1)i ≤ ni for all i. However, if j is the first index with kj 6= p− 1, then we have

(k + 1)i =







0 if i < j;
(k)i + 1 if i = j;
(k)i if i > j.

So these conditions can be distilled down to insisting that kj < nj in addition to ki ≤ ni for
all other i.

Now consider what happens when p divides n. Suppose first that p also divides k. So
(n)i = 0 for i < ω, which is a nonempty set of indices, and (k + 1)0 = 1. It follows there
are at least ω carries in computing ∆p(k + 1) + ∆p(n − k − 1). By Kummer’s theorem
again, ωp

(

n

k+1

)

≥ ω. So p does not divide N(n, k) if and only if it does not divide
(

n

k

)

and

ωp

(

n

k+1

)

= ω. Applying Kummer’s theorem once more shows that this will happen exactly
when ki ≤ ni for all i with kω < nω. So in particular ki = 0 for i < ω since then ni = 0.
This completes the case when p divides both n and k.

Finally, suppose p | n but p - k. Arguing as in the previous paragraph, we see that p is
not a divisor of N(n, k) if and only if ωp

(

n

k

)

= ω and p does not divide
(

n

k+1

)

. But if p is not

a divisor of
(

n

k+1

)

then, using Kummer’s theorem, we must have (k + 1)i = 0 for i < ω. So
(k)i = p − 1 for i < ω. Conditions 2(b) and (c) also follow as before. This completes the
demonstration of the theorem.

2 Applications

It is well known that Cn is odd if and only if n = 2m − 1 for some m. For a combinatorial
proof of this which in fact establishes ω2(Cn), see the article of Deutsch and Sagan [2].
Analogously, all the entries of the nth row of the Narayana triangle are odd. This is a
special case of the following result.

Corollary 2.1 Let p be prime and let n = pm − 1 for some m ∈ N. Then for all k,
0 ≤ k ≤ n− 1, we have p - N(n, k).

Proof By Theorem 1.2 we just need to verify that 1(a) and (b) hold for all k. However,
they must be true because ni = p− 1 for all i.

We clearly can not have a row of the Narayana triangle where every element is divisible
by p since N(n, 0) = N(n, n − 1) = 1 for all n. But we can ensure that every entry except
the first and last is a multiple of p.

Corollary 2.2 Let p be prime and let n = pm for some m ∈ N. Then p | N(n, k) for
1 ≤ k ≤ n− 2.
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Proof Suppose that n = pm and that p does not divide N(n, k). If p divides k, then
condition 2(c) forces k = 0. If p does not divide k, then the same condition forces k = n− 1.
So these are the only two numbers not divisible by p in the nth row of Narayana’s triangle.

3 Comments and Questions

I. Clearly one could use the same techniques presented here to determine ωp(N(n, k)). How-
ever, the cases become complicated enough that it is unclear whether this would be an
interesting thing to do.

II. The characterization in Theorem 1.2 is involved enough that it may be hopeless to ask for
a combinatorial proof. However, there should be a combinatorial way to derive the simpler
statements in Corollaries 2.1 and 2.2, although we have not been able to do so.

As has already been mentioned, the order ω2(Cn) can be established by combinatorial
means, specifically through the use of group actions. Unfortunately, the action used by
Deutsch and Sagan [2] is not sufficiently refined to preserve the objects counted by N(n, k).
For more information about how such methods can be used to prove congruences, the reader
can consult Sagan’s article [8] which also contains a survey of the literature.

Deutsch [1], Eğecioğlu [3], and Simion and Ullman [9] have all found combinatorial ways
to explain the fact that Cn is odd if and only if n = 2m−1 for some m. Perhaps one or more
of the viewpoints in these papers could be adapted to the Narayana numbers.

Acknowledgment. We would like to thank Robert Sulanke for valuable references and
discussions, and to Neil White for bringing the problem to our attention.
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