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Abstract. The permutohedron and the Birkhoff polytope are two well-studied polytopes
related to many areas of mathematics. In this paper, we generalize these polytopes by con-
sidering convex hulls of subsets of their vertices. The vertices chosen correspond to avoidance
classes of permutations. We explore the combinatorial structure of certain special cases of
these polytopes as well as their Ehrhart polynomials and Ehrhart series. Additionally, we
find cases when the polytopes have palindromic and/or unimodal h∗-vectors. In particular,
we explore connections between subpolytopes of the Birkhoff polytope, order complexes,
standard Young tableaux, and (P, ω)-partitions. Multiple questions and conjectures are
provided throughout.

1. Introduction

Let Sn denote the symmetric group on 1, 2, . . . , n and S = S1 ∪ S2 ∪ · · · . Let π ∈ Sk

and σ ∈ Sn. We say that σ contains the pattern π if there is some substring σ′ of σ whose
elements have the same relative order as those in π. Alternatively, we view σ′ as standardizing
to π by replacing the smallest element of σ′ with 1, the next smallest by 2, and so on. If
there is no such substring then we say that σ avoids the pattern π. If Π ⊆ S, then we say σ
avoids Π if σ avoids every element of Π. We denote by

Avn(Π) := {σ ∈ Sn | σ avoids Π}

the avoidance class of Π.
A polytope P ⊆ Rn is the convex hull of finitely many points, written P = conv{v1, . . . , vk}.

Equivalently, a polytope may be described as an intersection of finitely many half-spaces.
The dimension of P is the dimension of its affine span. A hyperplane l(x) is called supporting
if l(p) ≥ 0 for every p ∈ P . If l(x) is a supporting hyperplane, then the set {l(x) = 0} ∩ P
is called a face of P and is a subpolytope of P . Faces of dimension 0 are vertices, faces of
dimension 1 are called edges, and faces of dimension dimP − 1 are called facets. Addition-
ally, we say a polytope is lattice if each vertex is an element of Zn. Lattice polytopes have
long found connections with permutations, in particular via the permutohedron and Birkhoff
polytope.

The permutohedron is defined as

Pn := conv{(a1, . . . , an) | a1 · · · an ∈ Sn}.

We will often make no distinction between a permutation and its corresponding point in
Rn. This polytope was first described in [25] and has connections to the geometry of flag
varieties as well as representations of GLn. We refer to [34] for general background regarding
permutohedra.
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The Birkhoff polytope is the polytope

Bn := conv

{
X = (xi,j) ∈ Rn×n |

n∑
i=1

xi,j =
n∑
j=1

xi,j = 1 for all i, j

}
.

The Birkhoff-von Neumann Theorem states that the vertices of Bn are the permutation
matrices.

In this paper, we generalize these classes of polytopes by taking convex hulls of vertices
corresponding to avoidance classes of permutations. We explore the combinatorial structure
for particular avoidance classes as well as their Ehrhart polynomials. Additionally, we find
cases when the polytopes are compressed and conjecture formulae for their volumes and
half-space descriptions.

1.1. Ehrhart Polynomials. For a lattice polytope P ⊆ Rn, consider the counting function
LP (m) := |mP ∩Zn|, where mP is the m-th dilate of P . Although not obvious, this function
is a polynomial in m, called the Ehrhart polynomial of P . In particular, two well-known
theorems due to Ehrhart [12] and Stanley [28] imply that the Ehrhart series of P ,

EP (t) := 1 +
∑
m≥1

LP (m)tm,

may be written in the form

EP (t) =

∑d
j=0 h

∗
j t
j

(1− t)dimP+1
.

for some nonnegative integers h∗0, . . . , h
∗
d with h∗0 = 1, h∗d 6= 0, and d ≤ dimP .

We say the polynomial h∗P (t) :=
∑d

j=0 h
∗
j t
j is the h∗-polynomial of P and the vector of

coefficients, h∗(P ), is the h∗-vector of P . The h∗-vector of a lattice polytope P is a fascinating
invariant, and obtaining a general understanding of h∗-vectors of lattice polytopes and their
geometric/combinatorial implications is currently of great interest.

In this article, we describe a natural blending of pattern avoidance with two well-known
polytopes: the permutohedron and the Birkhoff polytope. Section 2 focuses on the permu-
tohedron case. Many interesting results reveal themselves and for a variety of avoidance
classes we determine the volumes, normalized volumes, and Ehrhart polynomials for these
polytopes. In Section 3, we begin analyzing a similar construction using the Birkhoff poly-
tope with the goal of determining the behavior of its h∗-vector in special cases. This is
difficult to do directly, and so we take a detour in Section 4 to study certain helpful trian-
gulations. These triangulations connect with results in (P, ω)-partitions, which allows us to
identify the behavior of the h∗-vector.

2. Permutohedra

The permutohedron has been generalized in multiple ways, including the permuto-associa-
hedron of Kapranov [16], which was first realized as a polytope by Reiner and Ziegler [23],
and the generalized permutohedra studied by Postnikov [21]. Here, we study yet another
generalization of the permutohedron by looking at Pn from the perspective of pattern avoid-
ance.
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Figure 1. The diagram of the permutation 4261573.

Definition 2.1. Let Π ⊆ Sn and define

Pn(Π) := conv{(a1, . . . , an) | a1 . . . an ∈ Avn(Π)}
to be the Π-avoiding permutohedron. If Π = {π} then we write Pn(π) for Pn(Π).

For example, if Π = ∅, then Pn(Π) = Pn. If π ∈ S3 then it is well known that |Avn(π)| =
Cn, the nth Catalan number, so that Pn(π) has a Catalan number of vertices.

2.1. Diagrams, Wilf Equivalence, and Grid Classes. The diagram of a permutation
π = a1 · · · ak is the set of points with Cartesian coordinates (i, ai) for i = 1, . . . , k. An
example diagram is given in Figure 1. When no confusion will result, we make no distinction
between a permutation and its diagram. Diagrams of permutations provide an easy way
to see how certain permutations can be related geometrically. For example, the diagrams
of π and π−1 are related by reflection across the line y = x. With both the Π-avoiding
permutohedra and Π-avoiding Birkhoff polytopes (to be defined in the next section) many
results will be true not only for the choice of Π in their statement, but also for certain other
subsets of permutations whose diagrams are related to those in Π.

Two permutations π1 and π2 are called Wilf equivalent, written π1 ≡ π2, if |Avn(π1)| =
|Avn(π2)| for all n. For example, we have already noted that any two permutations in S3

are Wilf equivalent. This is indeed an equivalence relation. Although proving π1 ≡ π2 may
be quite difficult, in some instances, the Wilf equivalence of two permutations follows quickly
from observing that their diagrams are related by a transformation in the dihedral group of
the square.

Let D4 = {R0, R90, R180, R270, r−1, r0, r1, r∞}, where Rθ is rotation counterclockwise by
an angle of θ degrees and rm is reflection across a line of slope m. A couple of these
rigid motions have easy descriptions in terms of the one-line notation for permutations.
If π = a1a2 . . . ak then its reversal is πr = ak . . . a2a1 = r∞(π), and its complement is
πc = (k + 1− a1) (k + 1− a2) . . . (k + 1− ak) = r0(π).

Note that σ ∈ Avn(π) if and only if f(σ) ∈ Avn(f(π)) for any f ∈ D4, hence π ≡ f(π).
For this reason, the equivalences induced by the dihedral action on a square are often referred
to as the trivial Wilf equivalences.
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Call polytopes P and Q unimodularly equivalent if one can be taken into the other by an
affine transformation whose linear part has determinant ±1. Certain trivial Wilf equivalences
imply unimodular equivalence of the corresponding permutohedra.

Proposition 2.2. If Π ∈ S, then Pn(f(Π)) is unimodularly equivalent to Pn(Π) for any
f ∈ {R0, R180, r0, r∞}. So their face lattices, volumes, and Ehrhart series are all equal.

Proof. For ease of notation, we prove this in the case that Π = {π}. The general demon-
stration is similar.

From the discussion above, Pn(πr) is the image of Pn(π) under the map f(v) = Av, where
A =

[
en · · · e1

]
and the ei are the standard unit column vectors. Since A is a permutation

matrix, this is a unimodular transformation.
Also, Pn(πc) is the image of Pn(π) under the map

g(x1, . . . , xn) = (n+ 1− x1, . . . , n+ 1− xn) = (n+ 1, . . . , n+ 1)− (x1, . . . , xn),

which is again clearly unimodular. Finally, notice that R180(π) = f ◦ g(π) and so R180 gives
rise to a unimodular equivalence as well. �

It turns out that two permutations π and π′ may be trivially Wilf equivalent without Pn(π)
and Pn(π′) being unimodularly equivalent. An explicit example is π = 1423 and π′ = 2431:
although these are related by a 90-degree rotation, one can compute that, while P5(1423)
has 48 facets, P5(2431) only has 46.

Seeing as pattern avoidance can be unwieldy to work with for arbitrary choices of Π, let
us first turn to specific avoidance classes.

Corollary 2.3. For any fixed n, all polytopes in the set {Pn(132), Pn(213), Pn(231), Pn(312)}
are unimodularly equivalent with each other. The polytopes in the set {Pn(123), Pn(321)}
are also unimodularly equivalent to each other, but these two classes are distinct.

Proof. The unimodular equivalence follows from the previous result. To show the classes are
distinct, note that P4(123) has 13 facts whereas P4(132) has only 11. �

In subsequent sections, it will be helpful to describe classes of permutations in the following
way: Let A = (ai,j) be a k × l matrix with entries in {0,±1}. We say that a permutation
σ is A-griddable in R2 if the diagram C of σ can be partitioned into rectangular regions Ci,j
using horizontal and vertical lines in such a way that

C ∩ Ci,j is


increasing if ai,j = 1,

decreasing if ai,j = −1,

empty if ai,j = 0.

If C ∩Ci,j contains at most one element, it may be considered as either increasing or decreas-
ing. For example, if

A =

 0 1
−1 −1
0 −1

 ,
then σ = 4261573 is A-griddable, as demonstrated in Figure 2. For a particular matrix A,
the grid class of A is the set of permutations that are A-griddable. We will occasionally use
grid classes to more conveniently describe the structure of permutations used as the vertices
polytopes.
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Figure 2. An A-gridding of 4261573.

2.2. The case Pn(132, 312). One of the basic questions to ask about a polytope is what the
face structure looks like, and we see here (and in the following subsection) that the answer
can be quite pleasant.

Proposition 2.4. The polytope Pn(132, 312) is a rectangular parallelepiped (parallelotope).
Specifically, the polytope is contained in the hyperplane

∑
xi =

(
n
2

)
, and for each j =

1, . . . , n− 1 ∣∣∣∣∣
j∑
i=1

(xi − xj+1)

∣∣∣∣∣ ≤
(
j + 1

2

)
(1)

are the facet-defining inequalities for Pn(132, 312).

Proof. Consider the polytope P defined by the given inequalities and lying in the given
hyperplane. Each inequality in (1) gives a pair of parallel faces of P because of the absolute
value signs. It is also easy to check the the normal vectors are pairwise orthogonal and also
orthogonal to the vector (1, . . . , 1) which defines the hyperplane

∑
xi =

(
n
2

)
. Thus P is an

(n− 1)-dimensional parallelotope.
The polytope P will have 2n−1 = |Avn(132, 312)| vertices. So to demonstrate that P =

Pn(132, 312) it suffices to prove that evey σ = a1a2 · · · an ∈ Avn(132, 312) is a vertex of P .
It follows the proof of Proposition 5.2 in [11] that this class is the grid class for the matrix

A =

[
1
−1

]
.

Equivalently, the elements of this avoidance class are characterized by the fact that for each
j = 1, . . . , n−1, we have aj+1 is either one greater than the largest previously-appearing entry
or one less than the smallest previously-appearing entry. Note that if it is smaller then σ
satisfies

∑j
i=1(xi−xj+1) =

(
j+1

2

)
, and if it is larger then σ satisfies

∑j
i=1(xi−xj+1) = −

(
j+1

2

)
.

These equalities hold because the summands are exactly the integers 1, . . . , j in the first case
and −1, . . . ,−j in the second. Since this is true for all j, σ is a vertex of P . �
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We note that when a polytope P ⊆ Rn is not full-dimensional, some extra care is needed
when discussing volume. Usual Euclidean volume would dictate that the volume of a poly-
tope that is not full-dimensional is zero. However, we are typically interested in the relative
volume, that is, the volume of the polytope with respect to the lattice (aff P ) ∩ Zn where
aff P is the affine subspace spanned by P . When P does have full dimension, the notions
of volume and relative volume coincide. Throughout this paper, “volume” is understood to
mean the relative volume.

The normalized volume of a lattice polytope P ⊆ Rn is VolP := (dimP )! vol(P ), where
vol(P ) is the usual relative volume of P . A lattice simplex Σ ⊆ Rn with vertex set V =
{v0, . . . , vk} is unimodular with respect to the lattice L if it has smallest possible relative
volume with respect to L. If L is not specified, then it is assumed that L = (aff V ) ∩
Zn. Equivalently, Σ is unimodular with respect to L if the set of emanating vectors {v1 −
v0, . . . , vk − v0} forms a Z-basis of L − v0. In particular, if P is unimodular, then it has
a normalized volume of 1. We refer to Section 5.4 of [5] for a more thorough discussion of
these details.

Corollary 2.5. The volume of Pn(132, 312) is (n− 1)!

Proof. By the previous proposition, the volume of P = Pn(132, 312) may be computed
directly by choosing a base vertex, taking the product of the lengths of the edges incident
to it, and then dividing by an appropriate factor to account for the relative volume. For the
scaling factor, it is well-known that for a (measurable) subset S ⊆ Rm and a linear function
f : Rm → Rn, with m ≤ n,

vol(f(S)) =
√

detATA vol(S),

where A is the matrix for f and volume is taken with respect to the usual Euclidean measure.
In our case, a Z-basis for aff P ∩ Zn is e1 − ej for j = 2, . . . , n, so these vectors form the
columns of A. It is straightforward to check that ATA = Jn−1 + In−1 where Jn−1 is the
(n − 1) × (n − 1) matrix with every entry 1. One may then verify that det(ATA) = n. So
find the relative volume of P , we must divide the usual (n− 1)-dimensional volume of P by√
n.
Now, a convenient choice of base vertex is the permutation σ = 12 · · ·n. Using the

hyperplane description of the previous result, this vertex is adjacent to the permutations
σj = 2 · · · (j)1(j + 1) · · ·n for each j = 2, . . . , n. It is straightforward to compute that

|σj−σ| =
√
j(j − 1), so taking the product of these lengths and then dividing by

√
n results

in P having relative volume (n− 1)! as desired. �

It is worth investigating when Pn(Π) is a subclass of a known generalization of permutohe-
dra. In particular, we would like to know whether Pn(132, 312) is a special case of Postnikov’s
generalized permutohedra. To answer this, we need to use a few more tools.

A fan F in Rn is a collection of closed cones, each containing the origin, such that the
intersection of any two cones is another cone in F . Using the notation

|F| :=
⋃
F∈F

F,

we say a fan F ′ refines F if |F ′| = |F| and if each cone in F ′ is contained in a cone in F .
6



Figure 3. Viewed from (1, 1, 1), the rays N(P3(132, 312)) are solid, while the
rays of the braid arrangement fan are dashed.

Let w ∈ Rn and let P ⊆ Rn be any polytope. Define

facew(P ) := {u ∈ P | wTu ≥ wTv for all v ∈ P}.

In other words, facew(P ) is the face of P for which the linear form defined by w is maximized.
If F is a face of a polytope P , the normal cone of F at P is

NP (F ) := {w ∈ Rn | facew(P ) = F}.

Thus, if F is a facet of P , then NP (F ) is a ray. The collection of all NP (F ), ranging over all
faces of P , is the normal fan of the polytope, and is denoted N(P ).

In our case, the inequalities of (1) provide the rays of the normal fan for Pn(132, 312).
We will compare this normal fan with a certain other fan, defined in the following way.
The braid arrangement in Rn/(1, . . . , 1)R is the set of hyperplanes {xi = xj}1≤i<j≤n. These
hyperplanes partition the space into the Weyl chambers

Cσ : {xσ(1) ≤ · · · ≤ xσ(n)},

ranging over all σ ∈ Sn. The collection of these chambers and their lower-dimensional faces
form the braid arrangement fan. The following result of Postnikov, Reiner, and Williams,
allows us to see that Pn(132, 312) does not fall into the class of generalized permutohedra.

Proposition 2.6 (Proposition 3.2, [20]). A polytope P in Rn is a generalized permutohedron
if and only if its normal fan, reduced by (1, . . . , 1)R, is refined by the braid arrangement
fan. �

Using the hyperplane description from Proposition 2.4, we can see immediately that the
rays of Pn(132, 312) are not all rays of the braid arrangement fan. Thus, the braid arrange-
ment fan cannot be a refinement of N(Pn(132, 312)). See Figure 3 for an example.
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The Ehrhart polynomial of Pn is known to be
∑n−1

i=0 Fim
i, where Fi is the number of forests

with i edges on vertex set {1, 2, . . . , n} (see Exercise 4.64(a) in [30]). In the special case of
Π = {132, 312}, we can use the same techniques to find the Ehrhart polynomial of Pn(Π).
Our first step in this direction will use the following result, due to Stanley.

Theorem 2.7 (Theorem 2.2, [29]). Suppose P is a lattice zonotope, that is, P can be written
in the form

P = {a1v1 + . . .+ akvk | 0 ≤ ai ≤ 1},
where each vi ∈ Zn. The Ehrhart polynomial of P is

(2) LP (m) =
∑
X

g(X)m|X|

where the sum ranges over all linearly independent subsets X of {v1, . . . , vk} and where
g(X) is the greatest common divisor of all full minors of the matrix whose columns are the
elements of X. �

To state the next result elegantly we define, for nonnegative integers n and k, the falling
factorial

n↓k= n(n− 1) . . . (n− k + 1).

Proposition 2.8. The polytope P = Pn(132, 312) has Ehrhart polynomial

LP (m) =
n−1∑
k=0

(n− 1)↓k mk.

Proof. From the half-space and hyperplane description given in Proposition 2.4, we can see
that P is, up to a translation by (1, 2, . . . , n), the zonotope

Z = {a1v1 + . . .+ an−1vn−1 | 0 ≤ ai ≤ 1} ⊆ Rn

where vj =
∑j

i=1(ei − ej+1) for j = 1, . . . , n − 1. In fact, it is not difficult to see that Z is
unimodularly equivalent to

Ẑ = {a1w1 + . . .+ an−1wn−1 | 0 ≤ ai ≤ 1} ⊆ Rn

where

wj =

j+1∑
i=1

(i− 1)ei

for each j = 1, . . . , n− 1. Note that the set of all wj is linearly independent.
We will now complete the proof using equation (2) on the wj basis. First, however, we

need to set up some notation. For X as in (2) we will use X to stand for both the subset
and the matrix whose columns are the elements of X. For any family F of subsets X we
define

g(F) =
∑
X∈F

g(X),

We also let Fn,k be the family of all k-element subsets of w1, . . . , wn−1 and g(n, k) = g(Fn,k).
So we will be done if we can prove that g(n, k) = (n− 1)↓k. In fact, we will show that the
following recurrence relation holds

(3) g(n+ 1, k) = g(n, k) + n[g(n, k − 1)− g(n− 1, k − 1)] + g(n− 1, k − 1).
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Since it is easy to verify that (n−1)↓k satisfies the same recursion, induction on n completes
the proof.

Partition Fn+1,k into the following three subsets

F1 = {X ∈ Fn+1,k | X does not contain wn},
F2 = {X ∈ Fn+1,k | X does contains both wn−1 and wn},
F3 = {X ∈ Fn+1,k | X does contains wn but not wn−1}.

From the definitions

g(n+ 1, k) = g(F1) + g(F2) + g(F3).

We now show that each of these summands equals the corresponding summand in (3).
The matrices in F1 are the same as those for Fn,k except with a last row of zeros. Clearly

this row does not contribute any nonzero minors so g(F1) = g(n, k), giving the first summand.
Now consider the minors of a matrix X ∈ F2, letting M be the submatrix of the minor.

If M does not contain the last row of X, then its last two columns are equal and detM = 0.
So the only M contributing to g(F2) are those whose last row is the final row of X which
is all zero except for a last entry of n. It follows that | detM | = n| detM ′| where M ′ is
obtained by removing the last row and column of M . The possible M ′ which can appear are
exactly those occurring in elements X ′ ∈ Fn,k−1 such that wn−1 ∈ X ′. Using the reasoning of
the previous paragraph and complementation, we see that such | detM ′| contribute exactly
g(n, k−1)− g(n−1, k−1) to the desired sum. Thus g(F2) = n[g(n, k−1)− g(n−1, k−1)].

Finally take X ∈ F3 so that X ends with a sequence of at least two rows each of which
has a sole nonzero entry at the end. Keeping the notation and reasoning of the previous
paragraph, we see that if detM 6= 0 then M must contain exactly one row from this final
sequence. Let m1, . . . ,mr be the minors which can be obtained from all nonzero minors
containing the last row of X. Then for all i we have mi = nm′i where m′1, . . . ,m

′
r are exactly

the nonzero minors of X ′ ∈ Fn−1,k−1 obtained by removing the last row and column of X.
So

gcd(m1, . . . ,mr) = n gcd(m′1, . . . ,m
′
r) = ng(X ′).

Now repeat this process, but using the penultimate row of X, giving minors mr+1, . . . ,m2r

with greatest common divisor (n − 1)g(X ′). But n and n − 1 are relatively prime, so
gcd(m1, . . . ,m2r) = g(X ′). Continuing in this way, we see that g(X) = g(X ′). Summing
over all possible X gives g(F3) = g(n− 1, k − 1) and completes the proof. �

A standard fact from Ehrhart theory states that the leading coefficient of LP (m) is the
volume of P , so Corollary 2.5 is reaffirmed by the previous result. Moreover, knowing the
Ehrhart polynomial allows us to deduce an interesting fact about the interior lattice points
of Pn(132, 312).

Corollary 2.9. The number of lattice points interior to Pn(132, 312) is equal to the number
of derangements in Sn−1.

Proof. Let P = Pn(132, 312) and P ◦ be the interior of P . By Ehrhart-Macdonald reciprocity,

LP ◦(m) = (−1)n−1

n−1∑
k=0

(n− 1)!

(n− 1− k)!
(−m)k.
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Evaluating at m = 1, we get

LP ◦(1) = (−1)n−1

n−1∑
k=0

(n− 1)!

(n− 1− k)!
(−1)k,

which is the well-known inclusion-exclusion formula for derangements. �

It would be very interesting to find an explicit bijection between the interior points of
Pn(132, 312) and the derangements in Sn−1.

In the case of Pn(132, 312), the Ehrhart polynomial was simple enough to compute directly.
Since the coefficients can be explicitly determined, one may also determine the h∗-vector of
Pn(132, 312) by a change-of-basis although there does not seem to be a simple formula for
its components.

Although finding explicit formulas for h∗-vectors is usually challenging in general, there
are other methods for determining certain properties it might possess. A recent result due to
Beck, Jochemko, and McCullough [3] states that lattice zonotopes always have a unimodal
h∗-vector. Thus the following result follows quickly from the proof of Proposition 2.8.

Corollary 2.10. For all n ≥ 1, h∗(Pn(132, 312)) is unimodal. �

Question 2.11. For which Π-avoiding permutohedra P is h∗(P ) unimodal?

There is not any particularly compelling reason to believe that h∗(P ) is always unimodal,
but so far no examples with non-unimodal h∗-vectors has been found.

Let us now consider an expanded set of patterns to avoid.

Proposition 2.12. The Ehrhart polynomial for P = Pn(123, 132, 312) is (1 +m)n−1, hence
h∗P (t) is the Eulerian polynomial An−1(t).

Proof. As noted in [7], it is implied by [10] that the simplex P ′n whose vertices are the set

Ln := {en} ∪

(
n−1⋃
i=1

n∑
j=i

jej

)

has an Ehrhart polynomial of (1 +m)n−1. Since the degree of the Ehrhart polynomial is the
dimension of the polytope, P ′n is an (n − 1)-dimensional simplex. In particular, note that
each l ∈ Ln satisfies the equation xn−xn−1 = 1. So, projecting P ′n to Rn−1 by forgetting the
last coordinate one obtains P ′′n , which has the same Ehrhart polynomial as P ′n. Transforming
P ′′n by f : x 7→ Ax, where A is the matrix with jth column ej − ej+1 for j = 1, . . . , n − 2

and last column en−1 results in the simplex whose vertices are 0 and iei +
∑n−1

j=i+1 ej for
i = 1, . . . , n− 1.

It follows from the proof of Proposition 7.2 of [11] that permutations of Avn(123, 132, 312),
that is, the vertices of P , are exactly those of the form (n−1)(n−2) · · · (j+1)(n)j(j−1) · · · 1
for j = 0, . . . , n− 1. So f(P ′′n ) can also be obtained from P by dropping the last coordinate
and translating by −(n − 1, n − 2, . . . , 1). Since each of these operations are unimodular
transformations, P has the same Ehrhart polynomial and h∗-polynomial as P ′n, which are
(1 +m)n−1 and An−1(t), respectively. �
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2.3. Pitman-Stanley Polytopes. We will next consider a Π-avoiding permutohedron whose
Ehrhart polynomial is easily computable due to results of Pitman and Stanley [19]. Given
a sequence of nonnegative real numbers c = (c1, . . . , cn), there is a corresponding Pitman-
Stanley polytope PSn(c) defined by

PSn(c) :=

{
x ∈ Rn | xi ≥ 0 and

j∑
i=1

xi ≤
j∑
i=1

ci for all 1 ≤ j ≤ n

}
.

Pitman-Stanley polytopes are connected with multiple combinatorial objects. For example,
recall that a polyhedral subdivision of a polytope P is a collection of subpolytopes P1, . . . , Pk ⊆
P whose union is P , and Pi ∩ Pj is a face of both Pi and Pj for all i, j. Pitman and Stanley
showed that PSn(c) has polyhedral subdivisions whose maximal elements of correspond to
certain plane trees; Vol(PSn(c)) can be expressed in terms of parking functions; the number
of lattice points of PSn(c) can be expressed in terms of plane partitions of a particular shape,
whose parts are at most 2. The key result for us is the following.

Theorem 2.13 (Pitman and Stanley, [19]). Let a, b be positive integers, and set c =
(a, b, . . . , b) ∈ Zn. The Ehrhart polynomial of PSn(c) is

LPSn(c)(m) =
am+ 1

n!

n∏
j=2

((a+ nb)m+ j) .

�

Before continuing, we need a little background. The face lattice of a polytope is the poset
of its faces ordered by inclusion. Two polytopes are combinatorially equivalent if their face
lattices are isomorphic. As proven in Theorem 19 of [19], whenever c has positive entries,
PSn(c) is combinatorially equivalent to an n-cube.

Lemma 2.14. When c has positive entries, the vertices of PSn(c) are exactly the vectors
v = (v1, . . . , vn) constructed, component-wise from left to right, by either setting vj = 0 or
setting vj = cj + cj−1 + · · ·+ ci, where vi−1 is the previous nonzero entry of v.

Proof. Since c has positive entries, PSn(c) is a combinatorial cube, hence the set of facets
may be partitioned into n non-intersecting pairs. In particular, the pairs correspond to the
hyperplanes xi = 0 and x1 + · · ·+ xi = c1 + · · ·+ ci. Again, since PSn(c) is a combinatorial
cube, a vertex v will lie on exactly one of the facets of each pair. Using the definition of a
Pitman-Stanley polytope yields the desired conclusion. �

Theorem 2.15. The polytope P = Pn(123, 132) is a combinatorial cube with an Ehrhart
polynomial of

LP (m) =
m+ 1

(n− 1)!

n−1∏
j=2

(nm+ j)

Proof. We will show that P is related to PSn−1(1, . . . , 1) in such a way that its face lattice
and Ehrhart polynomial are preserved. Then the theorem will follow from the statement
just before Lemma 2.14, and by setting a = b = 1 in Theorem 2.13.

We first need a description of the vertices of P . By reversing the permutations in Proposi-
tion 4.2 of [11], we note that the diagram for a vertex v = (v1, . . . , vn) of Pn(123, 132) consists
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of a decreasing sequence of blocks where each block is the pattern k(k − 1) · · · 1(k + 1) for
some k. Define a function f : Rn → Rn−1 by

f(a1, . . . , an) = (a1, . . . , an−1)− (n− 1, n− 2, . . . , 1).

We claim that f maps the vertices of P to the vertices of PSn−1(1, . . . , 1). Indeed, suppose
the first block of a vertex v of P is of the form (n − 1, n − 2, . . . , n − k, n). Then under f
this maps to the sequence (0, 0, . . . , 0, k + 1) with k initial zeros. But, by Lemma 2.14, this
is the prefix of a vertex of PSn−1(1, . . . , 1). Continuing in this way, we see that f(v) will
indeed be a vertex of this Pitman-Stanley polytope. Reversing the argument shows that f
is, in fact, a bijection on the vertex sets.

Since P is a subpolytope of the usual permutohedron, the projection to the first n − 1
coordinates preserves the face lattice and Ehrhart polynomial, as does lattice translation.
This is what we desired to show. �

From the Ehrhart polynomial, we can immediately determine the volume and number of
lattice points in the polytope.

Corollary 2.16. The normalized volume of Pn(123, 132) is nn−2 and the number of lattice
points it contains is the Catalan number

Cn =
1

n+ 1

(
2n

n

)
.

Proof. To calculate the normalized volume, one takes the leading coefficient of the Ehrhart
polynomial in Theorem 2.15 and multiplies by (n − 1)! since dimPn(123, 132) = n − 1. To
calculate the number of lattice points, one just plugs m = 1 into this polynomial. �

3. The Birkhoff Polytope

We come now to our second merging of polytopes with avoidance classes of permutations
by generalizing the Birkhoff polytope Bn in the following way.

Definition 3.1. Let Π be any set of permutations. The Π-avoiding Birkhoff polytope is

Bn(Π) := conv{M ∈ Rn×n | M is the permutation matrix for some σ ∈ Avn(Π)}.

The Birkhoff polytope is famous for its simple description, applicability to many areas
of research, and its reluctance to provide researchers with much information. For example,
although its h∗-vector is known to be symmetric and unimodal [1], its volume is only known
for n ≤ 10 [4]. Moreover, although the dimension of Bn is (n− 1)2, the dimension of Bn(Π)
may be significantly lower, as we will see shortly.

Studying variations of the Birkhoff polytope is not uncommon. Burggraf, De Loera, and
Omar [9] have studied what they call permutation polytopes: subpolytopes of Bn whose ver-
tices form a subgroup of Sn. The Birkhoff polytope itself is a special case of a transportation
polytope where the row/column sums are constrained by a vector rather than a single number.

Aside from having the same number of vertices, there is very little in common between
Pn(Π) and Bn(Π). Unlike the Π-avoiding permutohedron, we will see that all trivial Wilf
equivalences of permutations yield unimodular equivalences of the corresponding polytopes.

It will be convenient to use the nonstandard convention that the matrix M = Mσ of
a permutation σ = a1 . . . an will have mn−aj+1,j = 1 for all j and all other entires zero.
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Alternatively, M can be obtained from the diagram of σ by replacing every dot with a one
and zeroing out the rest of the entries.

Proposition 3.2. If Π ∈ S, then Bn(f(Π)) is unimodularly equivalent to Bn(Π) for any f
in the dihedral group of the square.

Proof. Because f is a dihedral action on the square, there is an obvious corresponding action
on the vertices of Bn(Π) to obtain the vertices of Bn(f(Π)). This action is a particular
permutation of the elements of each matrix, which is itself a unimodular transformation.
Applying the action to the full polytope Bn(Π) results in a unimodular transformation
whose image is Bn(f(Π)). �

We will be spending a significant amount of time studying Bn(Π) for a few specific choices
of Π. To begin with, we will choose the well-behaved set Π = {123, 312}.

Recall that the (n − 1)-dimensional standard simplex is the simplex ∆n−1 ⊆ Rn whose
vertices are the standard basis vectors of Rn. Since ∆n−1 lies in the hyperplane

∑
xi = 1,

no information about the number of lattice points in ∆n−1 is lost by applying the projection
p : Rn → Rn−1 which drops the last coordinate. Thus, ∆n−1 is sometimes identified with
p(∆n−1) = conv{0, e1, . . . , en−1}. In particular, they are both unimodular simplices with
respect to their affine spans, so both have h∗-vectors of 1.

Proposition 3.3. The polytope Bn(123, 312) is unimodularly equivalent to p(∆(n
2)

). Thus,

for any Π ⊆ S containing 123 and 312 we have h∗(Bn(Π)) = 1.

Proof. The vertices of Bn(123, 312) are the matrices corresponding to elements of the per-
mutation class Avn(132, 321), rotated by 90 degrees clockwise. By the proof of Proposition
4.3 of [11] and induction, we see that this avoidance class is the grid class of

A =

 0 −1 0
−1 0 0
0 0 −1

 .
Let σ be a permutation in this class. By knowing only the elements in σ corresponding to
the first column of A, that is, those below the main diagonal, the remainder of σ is forced. In
particular, if σ = a1 . . . an 6= n(n−1) . . . 1 has longest initial decreasing subsequence a1 . . . ak,
then they must form an interval of integers between 1 and n− 1. Ranging over all possible
intervals for all possible k = 1, . . . , n− 1, the total number of permutations described in the
previous sentence is

(
n
2

)
, for a total of

(
n
2

)
+ 1 vertices when including n(n− 1) . . . 1.

Now we identify a matrix M = (mi,j) with a point in R(n
2) by the correspondence

∗ ∗ ∗ . . . ∗ ∗
x1 ∗ ∗ . . . ∗ ∗
xn x2 ∗ . . . ∗ ∗
x2n−2 xn+1 x3 . . . ∗ ∗

...
...

...
. . .

...
...

x(n
2)

x(n
2)−1 x(n

2)−3 . . . xn−1 ∗


7→ (x1, . . . , x(n

2)
).
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Then the vertices of Bn(123, 312) are identified with the columns of

A′ =


0 A0 0 0 · · · 0
0 0 A1 0 · · · 0
...

...
...

...
. . . · · ·

0 0 0 0 · · · An−2


where Ai is the (n− 1− i)× (n− 1− i) matrix formed by setting each entry on or above the
main diagonal to 1. Each Ai is unimodularly equivalent to an identity matrix by applying
the transformation 

1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 −1
0 0 0 . . . 0 1

 ,
so Bn(123, 312) itself is unimodularly equivalent to p(∆(n

2)
), which has an h∗-vector of 1.

For the second claim, since Bn(123, 312) is a unimodular simplex and Bn(Π′) is a sub-
polytope if {123, 312} ⊆ Π′, Bn(Π′) is a face of Bn(123, 312). Thus Bn(Π′) is a unimodular
lattice simplex of some dimension k ≤ n with respect to its affine span. So, using the
equivalence we just established, any avoidance class Π′ containing 123 and 312 results in
h∗(Bn(Π′)) = 1. �

The remainder of this paper will be devoted to studying Bn(132, 312) and one other class
of polytopes. For this final class we will require some more definitions and notation. We say a
permutation σ = a1 · · · an is alternating, or up-down, if a1 < a2 > a3 < · · · . In the literature,
“alternating” sometimes includes down-up permutations, where the previous inequalities are
all reversed. It is worth noting that alternating permutations may be expressed in terms
of vincular patterns, which are patterns requiring certain elements to occur consecutively.
To indicate this, the portion of the pattern which must be consecutive is underlined. For
example, 4261573 contains five instances of the vincular pattern 231, which are 261, 461,
473, 573, and 673. The study of vincular patterns was introduced in [2] and has since
been extended to bivincular patterns, mesh patterns, and other generalizations. We refer
to [31] for more information about each of these avoidance classes, including assorted open
problems.

Alternating permutations in Sn are exactly the elements σ = a1 · · · an ∈ Avn(ε21, 123, 321).
The “ε” at beginning of the vincular pattern denotes the “empty permutation” which has
length 0 and is to be treated as preceding a1. So σ containing the pattern ε21 is equivalent
to a1 > a2, and avoiding it forces a1 < a2. In the interest of compact notation, we will write

Ãvn(Π) for Avn({ε21,123,321} ∪ Π) and B̃n(Π) for the analogous variation of Bn(Π).

This brings us to our final important class of polytopes, B̃n(123). We claim that if n is
even, then the number of 123-avoiding alternating permutations is the same in Sn and Sn−1.
To see this, note that in any permutation avoiding 123 the 1 can not be followed by two
elements forming an increasing subsequence. So if n is even and σ = a1a2 · · · an is alternating
and 123-avoiding, then an−1 = 1. It follows that standardizing σ′ = a1a2 . . . an−2an gives a

bijection between the two sets of permutations in question. Thus, the projection of B̃n(123)
14



to B̃n−1(123), defined by dropping row n and column n − 1 of the matrices, preserves the
Ehrhart polynomial.

Lemma 3.4. For all n we have dimBn(132, 312) ≤
(
n
2

)
and dim B̃n(123) ≤

(dn/2e
2

)
.

Proof. First consider Bn(132, 312). As noted in the proof of Proposition 2.4, the vertices of
Bn(132, 312) are the elements of the grid class for

A =

[
1
−1

]
.

Thus, once the entries above the main diagonal of the matrix for a vertex of Bn(132, 312) are
known, the remaining entries are forced. Since there are

(
n
2

)
coordinates above the diagonal,

we get dimBn(132, 312) ≤
(
n
2

)
.

Now consider B̃n(123) for n = 2k and consider σ = a1 . . . an ∈ Ãvn(123), as well as its
corresponding matrix M = Mσ = (mi,j). To show that

(
k
2

)
is an upper bound, first note

that the subsequences a1a3 . . . an−1 and a2a4 . . . , an are both decreasing. So if the values
of the first are known, then the values of the second are forced. Therefore, we need only
consider the contribution of odd-indexed columns of M to the dimension since then the even-
indexed ones will not change the bound. Now consider the possibilities in column 2c − 1
where 1 ≤ c ≤ k. Because σ is alternating and the sequence of odd-indexed elements is
decreasing, the element a2c−1 is smaller than the elements a1, a2, . . . , a2c−2, and larger than
a2c+1, a2c+3, . . . , a2k−1. It follows that we have k−c+1 ≤ a2c−1 ≤ 2k−2c+1. Thus there are
only (2k−2c+1)−(k−c+1)+1 = k−c+1 positions for the unique nonzero one in columns
2c− 1, and only these positions can contribute to the dimension. But these positions must
also satisfy the linear equation that the sum of their entries is 1. This reduces the possible
contribution of these positions to k − c. Thus

dim B̃n(123) ≤
k∑
c=1

(k − c) =

(
k

2

)
as desired.

Finally, using the bijection described prior to this result, an analogous argument holds for
n = 2k − 1. Thus the conclusion is true for all n. �

It turns out that the upper bounds given above are also lower bounds, but the proof of
this fact will be delayed until Section 3.3 since it will be more convenient to include these
details when proving Proposition 3.7.

3.1. Sublattices of the Weak Order. In order to prove interesting results about the

Ehrhart theory of Bn(132, 312) and B̃n(123), we will first show how the polytopes may be
decomposed by putting a partial order on their vertex sets. These posets (partially ordered
sets) are themselves highly structured and interact in a natural way with the geometry of
the polytopes. We refer the reader to [30] for the necessary background regarding posets.

Recall that the right (respectively, left) weak (Bruhat) order on Sn is defined by the cover
relations σ1 l σ2 if there is a simple transposition si such that σ1si = σ2 (respectively,
siσ1 = σ2) and inv(σ2) = inv(σ1) + 1. Here, inv σ is the number of inversions of σ. The left
and right weak orders are isomorphic by the order-preserving map σ 7→ σ−1, which will soon
be helpful.
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Figure 4. Hasse diagrams of posets Q5(132, 312) and Q̃8(123).

Let Qn(Π) denote the poset obtained by restricting the right weak order to Avn(Π).

Similarly define Q̃n(Π) for the left weak order on Ãvn(Π). Inequalities involving permutation
matrices are meant to refer to these two partial orders on the corresponding permutations.

If Π is chosen arbitrarily, then there is no reason to expect these posets to have especially
pleasant structure. We will see, though, that specific choices of Π may result in interesting

classes of posets. Figure 4 shows the posets Q5(132, 312) and Q̃8(123).
We will find two classes of previously-studied posets useful, so we define them now. Let

M(n) denote the poset on 2[n] where, if A = {a1, . . . , as} and B = {b1, . . . , bt} are each
written in decreasing order, then A ≤ B if and only if s ≤ t and ai ≤ bi for each 1 ≤ i ≤ s.
Equivalently, M(n) is the poset of shifted Young diagrams with largest part at most n,
ordered by inclusion. These are the posets described in Exercise 3.187(a) in [30] and studied
using linear algebra in [22]. In particular, M(n) is a distributive lattice as proved in the
previously cited exercise.

For the other class of useful posets, recall that a Dyck path of length 2k can be described
as a lattice path from (0, 0) to (k, k) using steps (1, 0) and (0, 1), which never lies below the
line y = x. We say the steps (1, 0) and (0, 1) are east steps and north steps, respectively.
Let Dk denote the poset of Dyck paths of length 2k, where if d1, d2 ∈ Dk, then d1 < d2 if

16



d1 lies entirely to the right of d2. So, d1 l d2 if d2 can be obtained from d1 by replacing
a single outer corner with an inner corner. The posets Dk were shown to be distributive
lattices in [13], a fact we will use when proving the following poset isomorphisms. The star
in this proposition indicates the dual.

Proposition 3.5. For all n, Qn(132, 312) ∼= M(n − 1) and Q̃n(123) ∼= D∗dn/2e. Thus,

Qn(132, 312) and Q̃n(123) are distributive lattices.

Proof. First note that the statement about distributive lattices will follow immediately once
we have proved the isomorphisms.

We begin by proving that Qn(132, 312) ∼= M(n − 1). Note that if σ, τ ∈ Avn(132, 312)
are distinct permutations, then it follows from the grid class description of its elements in
Proposition 2.4 that Des(σ) 6= Des(τ) where Des returns the descent set of a permutation.
Combined with the fact that |Qn(132, 312)| = 2n−1 = |M(n − 1)|, we have that Des :
Qn(132, 312)→M(n− 1) is a bijection.

By definition, σ l τ in Qn(132, 312) if and only if τ = σsi for some simple transposition
si which increases the number of inversions. Using the grid class description again, we see
that this transposition will either replace i − 1 ∈ Des(σ) with i 6∈ Des(σ) or will replace
Des(σ) with the disjoint union Des(σ) ] {1}. These are both covers in M(n− 1), so Des is
order-preserving.

To show that Des−1 is order-preserving, suppose Des(σ) = A = {a1 > · · · > ak}. Then, by
the grid class description, σ consists of the numbers 1, . . . , k in positions a1 + 1, . . . , ak + 1,
respectively, and the numbers k + 1, . . . , n placed in the remaining positions so as to form
an increasing sequence. Suppose also that B m A. From the description of M(n − 1) in
terms of shifted diagrams, there are two possibilities. One is that B = A ] {1}. From the
second sentence of this paragraph, it follows that τ = Des−1B satisfies τ = σs1. The other
possibility is that B is A with i − 1 replaced by i, and by a similar reasoning this yields
τ = σsi for i ≥ 2.

Showing Q̃n(123) ∼= D∗dn/2e requires a bit more care. We will first show that Q̃2k(123) ∼=
Q̃2k−1(123) under the map

ϕ(a1 . . . a2k) = (a1 − 1) . . . (a2k−2 − 1)(a2k − 1).

That this map is a bijection follows from the discussion prior to Proposition 3.4. Moreover,
any σ = a1 . . . a2k always has a2k−1 = 1. So one will never apply s1 so σ. And applying
si, i ≥ 2, corresponds to acting on ϕ(σ) with si−1. From this the isomorphism follows.
Therefore we may henceforth assume that n = 2k for some integer k.

As noted in Proposition 3.1 of [18], each σ = a1 . . . an ∈ Ãvn(123) corresponds bijectively
to a standard Young tableau (SYT) of shape (2, . . . , 2) = (2k) which is its insertion tableau
in the Robinson-Schensted algorithm. We refer the reader to [24] for background regarding
standard Young tableaux and this correspondence. The entries in the resulting tableaux can
be translated into Dyck paths of length 2k by insisting that step i be a north step if i is in
the first column and an east step otherwise.

Since the patterns under consideration are alternating and 123-avoiding, it is not difficult
to see that row r of the tableau contains entries a2(n−r+1)−1, a2(n−r+1). Indeed the fact that the
permutation is alternating with the odd position and even position entries forming decreasing
subsequences forces the insertion of each odd (respectively, even) position entry to just push
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down the first (respectively, second) column of the tableau. Composing the functions of

the previous paragraph, we obtain a bijection f : Q̃n(123) → D∗k where f(a1 . . . a2k) is
constructed by putting north steps in positions a1, a3, . . . , a2k−1 and east steps in positions
a2, a4, . . . , a2k.

To show that f is order preserving, suppose σ l τ in Q̃n(123). There is then some simple
transposition si such that siσ = τ and the number of inversions increases by one so that i
must occur before i + 1 in σ. Now the positions of i and i + 1 in σ must be odd and even,
respectively, since any other choice either gives a copy of 123 or contradicts the fact that the
odd and even position subsequences are decreasing. It follows that f(τ) is obtained from
f(σ) by swapping the steps in a single occurrence of a north step followed immediately by
an east step, and this is a cover in D∗k. Showing that f−1 is order preserving is a straight-
forward reversal of this argument, and so left to the reader. This completes the proof that
f is an isomorphism. �

It will be helpful to observe that D∗k can equivalently be described as the poset of (left-
justified) Young diagrams fitting inside the shape (k− 1, k− 2, . . . , 1), ordering by inclusion.
This equivalence is easily seen by identifying a Dyck path with the region bounded between
it, the y-axis, and the line y = k. So, we now have isomorphisms of both Qn(132, 312) and

Q̃n(123) with the lattices of certain Young diagrams.
For a general finite distributive lattice L of rank n, it is well-known that there exists an

n-element poset P for which L ∼= J(P ), where J(P ) denotes the lattice of order ideals of P .
The poset P can be taken to be the join-irreducible elements of L and using the order relation
from L restricted to these elements. Note that x ∈ L is join irreducible if and only if x covers
exactly one element. We denote the poset of join-irreducibles of L by Irr(L). To simplify
matters, we will identify the join-irreducibles of Qn(132, 312) with the join-irreducibles of

M(n− 1), and likewise identify the join-irreducibles of Q̃n(123) and D∗dn/2e.
Let us now determine the join irreducibles of our two lattices. Using the Young diagram

interpretation of both, an element is join irreducible precisely when the shape has exactly
one inner corner, that is, a box in row b and column c, which we will refer to as (b, c),
such that neither (b + 1, c) nor (b, c + 1) is in the shape. Identifying these diagrams with
the coordinates of their unique inner corners, the induced partial order on both posets of
join irreducibles is component-wise. For the remainder of this paper, the join irreducibles of

Qn(132, 312) and Q̃n(123) will be identified with the elements of these posets. See Figure 5
for an example.

3.2. Triangulations, Shellabililty, and EL-labelings. In this section we will use the

posets Qn(132, 312) and Q̃n(123) to carefully decompose Bn(132, 312) and B̃n(123). First,
we recall some definitions and concepts in geometry and poset topology.

A polytopal complex F is a finite nonempty collection of polytopes such that

1. if P ∈ F , then every face of P is in F , and
2. if P,Q ∈ F , then P ∩Q is a face of both P and Q.

An commonly-considered polytopal complex is the face complex F(P ) of a polytope P , whose
elements are all faces of P .

A triangulation of a polytopal complex F is a geometric simplicial complex ∆ with vertices
those of F and underlying space equal to the union of the faces of F , such that every face of
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Figure 5. The posets Irr(Q5(132, 312)) and Irr(Q̃8(123)).

∆ is contained in a face of F . A triangulation of the face complex F(P ) of a polytope P is
simply called a triangulation of P . Therefore, if P has a unimodular triangulation T , then
its normalized volume is equal to the number of maximal simplices in T .

Now, the order complex ∆(Q) of a poset Q is the simplicial complex of chains in Q. A
simplicial complex is shellable if its maximal faces are of the same dimension and can be
ordered as F1, . . . , Fk such that for each i = 1, . . . , k − 1, Fi+1 ∩ (∪ij=1Fj) is a nonempty
union of facets of Fi+1. A poset is called shellable if its order complex is shellable.

To show that Qn(132, 312) and Q̃n(123) are shellable we will make use of the existence of
a particular labeling of the edges in their Hasse diagrams.

If Q is a poset, let E(Q) denote the set

E(Q) := {(q1, q2) ∈ Q×Q | q1 l q2},

thought of as the edges of the Hasse diagram of Q. An edge labeling of Q by Z is a function
λ : E(Q) → Z. A saturated chain q0 l q1 l · · · l qk in Q is called increasing if λ(q0, q1) <
λ(q1, q2) < · · · < λ(qk−1, qk). An EL-labeling of a poset Q is an edge labeling such that every
interval [x, y] in Q has a unique increasing maximal chain which lexicographically precedes
all other maximal chains of [x, y]. Posets admitting an EL-labeling are shellable and are
usually referred to as EL-shellable.

We will use EL-shellable posets to decompose Bn(132, 312) and B̃n(123) in specific ways in

Section 4. Fortunately, specific EL-shellings of Qn(132, 312) and Q̃n(123) are available and
follow naturally from [26]. A natural labeling of a poset P with |P | = n is an order-preserving
bijection ω : P → [n]. Let L be a finite distributive lattice so that L ∼= J(P ) where P is
the poset of join irreducibles, and let ω be a natural labeling of P . Then we have a cover of
order ideals I l J in L if and only if J − I = {x} for some x ∈ P . Give the cover the label
λ(I, J) = ω(x).

Theorem 3.6 (Stanley, see [26]). The edge labeling of a finite distributive lattice L con-
structed above is an EL-labeling for L. �
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(1, 1), 1

(2, 2), 3

(3, 3), 6

(4, 4), 10

(1, 2), 2

(2, 3), 5

(3, 4), 9

(1, 3), 4

(2, 4), 8

(1, 4), 7

(3, 1), 3 (2, 2), 5 (1, 3), 6

(2, 1), 2 (1, 2), 4

(1, 1), 1

Figure 6. The elements of Irr(Q5(132, 312)) and Irr(Q̃8(123)) along with
their images under natural labelings.

To apply this process we will use the natural labeling of the irreducibles in both of our
posets which is obtained by reading the cells (b, c) in each column of the corresponding
triangular diagram, starting with the left-most column and moving to the right. Thus in
Irr(Qn(132, 321)) this extension is given by

ω(b, c) =

(
c

2

)
+ b

and in Irr(Q̃n(123)) for n even by

ω(b, c) =
(c− 1)(n− c)

2
+ b.

Alternatively, one can think of both natural labeling as ordering the elements of the poset
lexicographically with preference given to the second coordinate. Examples of these elements
and their associated images are given in Figure 6, where the image is displayed beside each

element. An application of the EL-labeling process appears for Q̃8(123) in Figure 7. To
simplify notation, we will often identify maximal chains c : q0 l q1 l · · ·l qk in Qn(132, 312)

and Q̃n(123) with their sequences of edge labels λ(c) = (λ(q0, q1), λ(q1, q2), . . . , λ(qk−1, qk)).
We now take a first step in constructing a bridge from purely combinatorial information

of these simplicial complexes to geometric information about Bn(132, 312) and B̃n(123).

Proposition 3.7. Let f : ∆(Qn(132, 312))→ Rn×n be the function

f({σ1, . . . , σu}) = conv{Mσ1 , . . . ,Mσu},
where Mσi is the matrix for σi. The collection

Tn(132, 312) := {f(Γ) | Γ ∈ ∆(Qn(132, 312))}
is a set of simplices contained in Bn(132, 312), where each f(Γ) is unimodular with respect

to the affine lattice aff(f(Γ))∩Zn×n. The collection T̃n(123), defined similarly, is a collection

of unimodular simplices in B̃n(123).
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(3, 1), 3 (2, 2), 5 (1, 3), 6

(2, 1), 2 (1, 2), 4

(1, 1), 1

=⇒

1

2 4

3 64 2

4 2
3 6

5

6 3

3 6

55

36
5

Figure 7. Producing an edge labeling on Q̃8(123).

Proof. First we will focus on Tn(132, 312). Note that it is enough to prove the claim for
the simplices in Tn(132, 312) of maximal dimension, since Γ1 ⊆ Γ2 in ∆(Qn(132, 312)) cor-
responds to an inclusion of faces f(Γ1) ⊆ f(Γ2) in Tn(132, 312), and faces of unimodular
simplices are again unimodular.

Arrange the maximal chains c1, . . . , cs in Qn(132, 312) lexicographically, and let ∆q =
∆(cq) be the corresponding maximal simplex in ∆(Qn(132, 312)). We will prove our claim
by induction on k.

First consider the simplex f(∆1). Using the grid class description of the permutations of
Avn(132, 312), given in Lemma 3.4, each matrix in f(∆1) is determined by restricting to the
entries mi,j with i < n− j + 1. So, we take coordinate vectors for non-identity permutation
matrices with respect to the order given by

x(n
2)

x(n
2)−1 x(n

2)−2 . . . x(n−1
2 )+2 x(n−1

2 )+1 ∗
x(n−1

2 ) x(n−1
2 )−1 x(n−1

2 )−2 . . . x(n−2
2 )+1 ∗ ∗

x(n−2
2 ) x(n−2

2 )−1 x(n−2
2 )−2 . . . ∗ ∗ ∗

...
...

...
. . .

...
...

...
x6 x5 x4 . . . ∗ ∗ ∗
x3 x2 ∗ . . . ∗ ∗ ∗
x1 ∗ ∗ . . . ∗ ∗ ∗
∗ ∗ ∗ . . . ∗ ∗ ∗


and write them as columns of a matrix C, arranging the columns according to the order of
elements in c1.

Now let βq,r be the element of cq of rank r. Because of how we defined our EL-labeling,
consecutive elements in c1 are of the form β1,r l β1,rsl, where sl is the lowest-indexed simple
transposition that can be applied to β1,r which increases the number of inversions. It follows
that after applying this operation t times, starting at the identity permutation ι, the corre-
sponding matrix Mβ1,t will have a 1 in position xt and zeros in all higher indexed positions.
Thus, C is an upper-unitriangular matrix. Furthermore, ι ∈ c1 is mapped to the zero vector
by our coordinatization. Thus f(∆1) is a unimodular simplex and we have finished the base
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case of our induction. In particular, if we let L1 be the affine span of f(∆1) then the vectors
f(β1,r)− f(ι) for β1,r 6= ι in c1 form a Z-basis for the vector space L1 − f(ι).

We will now consider the induction step which will be accomplished by showing that re-
maining maximal simplices in Tn(132, 312) are unimodular transformations of f(∆1). Recall
that since Qn(132, 312) has an EL-labeling, each maximal chain cq, q > 1, intersects some
earlier maximal chain cp such that they differ by a single element. So suppose cq intersects
with cp such that σ ∈ cp − cq and σ′ ∈ cq − cp. Then σ and σ′ are incomparable, and

σ ∧ σ′ l σ, σ′ l σ ∨ σ′.

Because σ, σ′ can each be obtained from simple transpositions applied to their meet, and
these transpositions commute, the above relationship is captured by f via

(4) f(σ ∧ σ′) + f(σ ∨ σ′) = f(σ) + f(σ′).

We will use this relationship create a transformation ϕ : Lp−f(ι)→ Lq−f(ι) by defining
its images on the basis vectors βp,r − f(ι) obtained from the inductive assumption. (The
map ϕ implicitly depends on p and q even though that is not reflected in our notation.) This
function will map f(∆p) − f(ι) to f(∆q) − f(ι), and since we will find that detϕ = −1, it
will be a unimodular transformation. It follows that ∆q is also unimodular with respect to
the affine lattice Lq ∩ Zn×n.

For each r, set

ϕ(f(βp,r)− f(ι)) = f(βq,r)− f(ι).

If βp,r ∈ cp ∩ cq, then ϕ restricts to the identity on βp,r− f(ι). Otherwise, consider the index
t such that βp,t = σ and use equation (4) to write

ϕ(f(βp,t)− f(ι)) = f(σ′)− f(ι)

= [f(σ ∧ σ′)− f(ι)] + [f(σ ∨ σ′)− f(ι)]− [f(σ)− f(ι)]

= [f(βq,t−1)− f(ι)] + [f(βq,t+1)− f(ι)]− [f(βq,t)− f(ι)].

The way we defined ϕ on these basis vectors allows us to see that ϕ is a unimodular
transformation: by taking coordinate vectors of the images ϕ(f(βp,r)− f(ι)) and arranging
them according to the order of the βp,r in cp, we see that the matrix for ϕ has determinant −1.
Indeed, this matrix is identical to the identity matrix except in the column corresponding
to σ. And in that column, because of the previously displayed equation, the only nonzero
entries are a −1 on the main diagonal with a 1 just above it and another 1 just below.
So, this matrix is unimodularly equivalent to the identity matrix, and ∆q is a unimodular
simplex with respect to Lq ∩ Zn×n.

We then apply induction, using the ϕ constructed above. Since ∆1 is unimodular with
respect to L, so are all of the images of the ϕ, and therefore so are all of the f(∆q). Thus,
Tn(132, 312) is a collection of unimodular simplices.

The case of B̃n(123) is similar. For n = 2k, let β̃q,r be the element of c̃q of rank r.

Consecutive elements in c̃1 are of the form β̃1,r l slβ̃1,r, where sl is lowest-indexed simple

transposition that can be applied to β̃1,r which increases the number of inversions.
To most easily describe the order for which we will take coordinate vectors, we will arrange

particular entries in a more easily-describable way. Recalling the equalities and inequalities

from Lemma 3.4, we know that for any vertex M = (mi,j) of B̃n(123), the mi,j that contribute
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to the dimension of the polytope are mn−i+1,j where j = 2c−1 for c = 1, . . . , k and k−c+1 ≤
i ≤ 2(k − c). Arranging these mi,j in the triangle

m3,1

m4,1 m5,3

m5,1 m6,3 m7,5
...

...
...

. . .
mk−1,1 mk,3 mk+1,5 · · · mn−5,n−7

mk,1 mk+1,3 mk+2,5 · · · mn−4,n−7 mn−3,n−5

mk+1,1 mk+2,3 mk+3,5 · · · mn−3,n−7 mn−2,n−5 mn−1,n−3

then we take coordinate vectors of the matrices for the permutations in c̃1 with respect to
the order

x(k
2)

x(k
2)−2 x(k

2)−1

x(k
2)−5 x(k

2)−4 x(k
2)−3

...
...

...
. . .

x2k−2 x2k−1 x2k · · · x3k−6

xk xk+1 xk+2 · · · x2k−4 x2k−3

x1 x2 x3 · · · xk−3 xk−2 xk−1

The maximal element of c̃1 maps to the origin, and the remaining permutation matrices
map to the columns of a lower-unitriangular matrix. By creating ϕ̃ as in the previous case,

induction proves that T̃2k(123) is a collection of unimodular simplices in B̃n(123). As usual,

if n is odd, then use the isomorphism Q̃n(123) ∼= Q̃n+1(123) and proceed as in the case of
even n. �

The simplices found in the previous proof have dimensions which are the lengths of the
chains in the corresponding posets. So we have lower bounds

(
n
2

)
≤ dimBn(132, 312) and(dn/2e

2

)
≤ dim B̃n(123). Combined with Lemma 3.4, this gives the following result.

Theorem 3.8. For all n we have dimBn(132, 312) =
(
n
2

)
and dim B̃n(123) =

(dn/2e
2

)
. So the

simplices in Tn(132, 312) are unimodular with respect to aff Bn(132, 312)∩Zn×n and similarly

for B̃n(123). �

We would like to show that Tn(132, 312) and T̃n(123) are actually unimodular triangula-
tions of their respective polytopes. To do so, we will use techniques from toric algebra, but
first make the following note.

Not every choice of Π produces a Bn(Π) with a unimodular triangulation, and an example
will be given shortly. If a lattice polytope does have unimodular triangulation, then it follows
quickly that it also has the following property.

Definition 3.9. A lattice polytope P ⊆ Rn is said to have the integer decomposition property
(or is IDP) if, for all positive integers m and any x ∈ mP ∩ Zn, there exist m points
x1, . . . , xm ∈ P ∩ Zn such that x =

∑
xi.

To outline why the implication holds, suppose v0, . . . , vn are the vertices of a unimodular
simplex S ⊆ Rn. Then x ∈ mS ∩ Zn if and only if (x,m) ∈ cone(S) ∩ Zn+1, where cone(S)
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denotes the cone in Rn+1 whose ray generators are (v0, 1), . . . , (vn, 1). Since S is a simplex,
the lattice points in the cone are contained in a single translate of the monoid generated by
{(v0, 1), . . . , (vn, 1)}, where the translates are uniquely determined by the lattice points in
the half-open fundamental parallelepiped

ΦS := {x ∈ Rn+1 | x =
n∑
i=0

λi(vi, 1) where 0 ≤ λi < 1}.

For example, given the 1-dimensional simplex [−1, 1], we see that Φ[−1,1] contains two
lattice points, which are (0, 0) and (0, 1). So, the lattice points of cone([−1, 1]) are in exactly
one of the monoids Z≥0{(−1, 1), (1, 1)} or (0, 1) + Z≥0{(−1, 1), (1, 1)}.

The simplex S is unimodular if and only if ΦS contains exactly one lattice point, which
is necessarily 0. Thus the lattice points of cone(S) are exactly the elements of the single
monoid Z≥0{(v0, 1), . . . , (vn, 1)} which forces S to be IDP. It follows that a polytope with a
unimodular triangulation must also be IDP.

Directly proving that a lattice polytope has the integer decomposition property is usually
very difficult. It is more usually established as a byproduct of proving that the polytope
has a unimodular triangulation, or simply a unimodular cover. As we will see in the next

subsection, both Bn(132, 312) and B̃n(123) are IDP. Although computer experiments suggest
that it is common for Bn(Π) to be IDP, the property is not guaranteed. For example, one
can verify that 

0 1 1 2 0
1 0 1 0 2
1 1 0 1 1
2 0 1 0 1
0 2 1 1 0


is a lattice point of 4B5(2413, 3124) but cannot be written as a sum of four lattice points
from B5(2413, 3124). This raises the following very broad question.

Question 3.10. For which choices of Π is Bn(Π) IDP?

3.3. Toric Algebra. The methods we will use to show Tn(132, 312) and T̃n(123) are unimod-
ular triangulations of their respective polytopes require a bit of algebra background. First, let
A = {l1, . . . , ls} ⊆ Zn. We may define k[A] := k[xl1 , . . . , xls ], to be considered as contained
in the ring of Laurent polynomials k[x±1 , . . . , x

±
n ], where k is a field and x(v1,...,vn) =

∏
xvii .

It turns out that it is helpful to study A by first defining TA = k[t1, . . . , ts] and the map
φ : TA → k[A] by φ(ti) = xli , since then we have

TA/ kerφ ∼= k[A].

The ideal IA := kerφ is the toric ideal of A, and has been studied extensively in part due to
its uses in algebraic statistics, algebraic geometry, and convex polytopes.

If P is an integral polytope then we set AP = (P, 1) ∩ Zn+1, and

k[cone(P )] := k[xazm | a ∈ mP ∩ Zn] ⊆ k[x±1 , . . . , x
±
n , z],

an algebra graded by the exponent of the new variable z. So when P is IDP we have
k[cone(P )] = k[AP ]. However, this equality does not hold if P is not IDP, since then the
monoid generated by AP does not generate all elements of cone(P ) ∩ Zn+1. To remedy this

24



we have to introduce the Hilbert basis of cone(P ), which is the unique minimal-cardinality
set H ⊆ cone(P )∩Zn+1 such that every lattice point of cone(P ) is a Z≥0-linear combination
of elements of H. The existence and uniqueness of the Hilbert basis can be proved using the
Hilbert Basis Theorem.

This allows us to define the toric ideal IP of a polytope P : Suppose the Hilbert basis of
cone(P ) is H = {(v1, w1), . . . , (vr, wr)} ⊆ Zn × Z. We have

TH/IP ∼= k[cone(P )],

where IP = kerφ is the toric ideal of P . So, if P is IDP, then IP = IAP
, but in general we

only have IP ⊇ IAP
.

One significant advantage of studying the toric ideal of more general sets A is due to its
ability to create triangulations of convA, using only the points from A, under sufficient
conditions. Specifically, if there is some ν = (ν1, . . . , νn) ∈ Rn such that νT li = 1 for each
li ∈ A, we call A a point configuration, or simply a configuration if there is no risk of
confusion. When A is a configuration, then the positive span

pos(A) :=

{
s∑
i=1

λili | λi ≥ 0 for all i

}
⊆ Rn

is a polyhedral cone (differing from cone(A) ⊆ Rn+1) containing no positive-dimensional
subspace, so a Hilbert basis exists. If A is not a configuration, then pos(A) is still a cone
but now contains a nontrivial subspace, so a Hilbert basis does not exist since a minimal
generating set of pos(A) ∩ Zn is no longer unique. Note that for any polytope P in Rn, the
set AP is a configuration since it satisfies eTn+1v = 1 for each v ∈ AP .

Techniques from toric algebra will provide the tools for a critical step in proving that

Bn(132, 312) and B̃n(123) are IDP by showing that the collections of simplices introduced in
the previous section actually form unimodular triangulations of their respective polytopes.
In particular, when P is one of these polytopes, we will use IAP

to identify a triangulation of
convAP , using only the elements of AP . In this case, since P is a subpolytope of [0, 1]n×n,
it contains no lattice points other than its vertices. So, AP consists exactly of the vertices of
(P, 1), and a triangulation of convAP is automatically a triangulation of (P, 1), which in turn
induces a triangulation of P by projecting each simplex back into Rn×n. The triangulation
of P will be unimodular with respect to the lattice generated by Z-linear combinations
of the elements of P . Observing that this triangulation consists exactly of the simplices

in Tn(132, 312) (respectively, T̃n(123)), Theorem 3.8 will show that the triangulations are

unimodular with respect to the affine lattice Bn(132, 312) ∩ Zn×n (respectively, B̃n(123) ∩
Zn×n).

Returning to the general development, when S ⊆ Rn is a unimodular simplex, it is not
difficult to show that AS is the Hilbert basis of cone(S). When P is a general lattice
polytope, we only know a priori that AP must be contained in the Hilbert basis of cone(P ).
When a triangulation T of P is known, each lattice point x ∈ cone(P ) lies in cone(S) for
some S ∈ T . If S is unimodular, then x may be written as a sum of just the elements in
(S, 1) ∩ Zn+1 ⊆ AP . Thus, if T is a unimodular triangulation, x can always be expressed as
a sum of elements in AP , so AP is exactly the Hilbert basis of cone(P ). Therefore, in this
case, any properties of (T , 1) as a unimodular triangulation with respect to affAP ∩ Zn+1

carry over to T as a unimodular triangulation of P .
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Before continuing with toric ideals, let us first recall some additional definitions. Let ∆
be an abstract simplicial complex on vertex set {v1, . . . , vs} and let T = k[t1, . . . , ts]. The
Stanley-Reisner ideal of ∆ is

I∆ := (ti1 · · · tij | {i1, . . . , ij} /∈ ∆),

where the parentheses represent the ideal of T generated by these monomials. This defini-
tion leads us to the Stanley-Reisner ring, T/I∆, whose monomials are those with support
corresponding to faces of ∆. The numerator of its Hilbert series is called the h-polynomial
of ∆. If P is a polytope and ∆ is a unimodular triangulation of P , then the h-polynomial
of ∆ and the h∗-polynomial of P coincide.

Note that the Stanley-Reisner ideal of a simplicial complex accounts for the combinatorial
structure of the complex and does not inherently reflect any geometric properties. To over-
come this limitation, we will express the Stanley-Reisner ideal as the result of operations on
a different ideal, designed with geometric properties in mind.

Now, suppose ≺ is a monomial order on T , that is, a total well-ordering of the monomials
of T which respects multiplication. Consider any ideal I of T . Each f ∈ I then has an initial
or leading term with respect to ≺, denoted in≺(f), which is the term of f that is greatest
with respect to ≺. The initial ideal of I with respect to ≺ is the ideal generated by the
initial terms of polynomials in I, that is,

in≺(I) := (in≺(f) | f ∈ I).

A Gröbner basis of I is a finite generating set G for I such that in≺(I) = (in≺(g) | g ∈ G).
Since I is assumed to be an ideal of a noetherian ring, a Gröbner basis always exists and
may be computed from a given finite set of generators for I using the well-known Buchberger
algorithm. Say G is reduced if each element has a leading coefficient of 1 and for any g1, g2 ∈ G,
in≺(g1) does not divide any term of g2. Given an ideal I ⊆ T and a fixed monomial ordering
on T , there are many Gröbner bases of I but there is exactly one reduced Gröbner basis of
I.

There are many nice results connecting Gröbner bases with combinatorics, one of which
involves types of triangulations that we define now. Suppose P ⊆ Rn is an n-dimensional
lattice polytope and P ∩Zn = {l1, . . . , ls}. Choose a vector w = (w1, . . . , ws) ∈ Rs such that
the polytope

Pw := conv{(l1, w1), . . . , (ls, ws)} ⊆ Rn+1

is (n+ 1)-dimensional, i.e., Pw does not lie in an affine hyperplane of Rn+1. Certain facets of
Pw have outward-pointing normal vectors with a negative last coordinate; projecting these
facets back to Rn provides the facets of a polytopal decomposition of P . If the facets are
themselves simplices, then the decomposition is a triangulation. Any triangulation that can
be obtained in this way by an appropriate choice of w is called regular, and will be denoted
Υw(P ).

There is a close connection between regular triangulations of conv(A), where A ⊆ Zn is a
configuration of size s, and initial ideals of IA. First, we note that each monomial ordering
≺ on TA = k[t1, . . . , ts] can be represented by a sufficiently generic weight vector w ∈ Rs

such that, for all u, v ∈ Zs≥0, tu ≺ tv if and only if wTu < wTv. Next, we define the initial
complex ∆≺(I) of an ideal I ⊆ TA with respect to ≺ to be the simplicial complex on [s] such
that F is a face of ∆≺(I) if and only if there is no monomial in in≺(I) whose support is F .
Using linear programming, one may show the following.
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Theorem 3.11 (Theorem 8.3,[32]). Let A ⊆ Zn be a configuration. If w is the weight vector
for a monomial order ≺ on TA, then ∆≺(IA), an abstract simplicial complex, is geometrically
the regular triangulation Υw(conv(A)). �

Two other important connections given in [32] are summarized below.

Theorem 3.12 (Corollary 8.4 and Corollary 8.9, [32]). For any monomial order ≺ and
corresponding weight vector w, the radical rad(in≺(IA)) is the Stanley-Reisner ideal of
Υw(conv(A)). Moreover, in≺(IA) is squarefree if and only if Υw(conv(A)) is unimodular
with respect to the affine lattice generated by Z-linear combinations of lattice points in
A. �

The triangulations Tn(132, 312) and T̃n(123) will turn out to have even more properties
than those already discussed. A triangulation is called flag if its minimal nonfaces are edges.
This may be detected algebraically by proving the existence of an initial ideal generated
by squarefree quadratic monomials. We will demonstrate the flag property by taking the

vertices of P = Bn(132, 312) (respectively, P = B̃n(123)) and imposing the graded reverse
lexicographic (grevlex) monomial ordering on TAP

/IAP
induced from Qn(132, 312) (respec-

tively, Q = Q̃n(123)) as follows. Let T = k[t1, . . . , ts] and give the variables the total order
t1 � t2 � · · · � ts. Given a monomial ta we let |a| denote the sum of the exponents.
Grevlex extends the order on the variables to all monomials of k[t1, . . . , ts] by insisting that
ta�grevlex t

b if |a| > |b| or if both |a| = |b| and the rightmost nonzero entry of a− b is nega-
tive. To apply this to TAP

, we must first place an order on the vertices of P ; for notational
convenience, since our variables correspond to permutation matrices, we will frequently use
the notation tσ to denote the variable corresponding the matrix for the permutation σ. To
define grevlex order on monomials in these variables, we must first specify the ordering of the
variables themselves since their subscripts are not positive integers but rather permutations.
We define tσ�grevlex tσ′ if the permutation σ′ lexicographically precedes σ as words which
we denote by σ′<lex σ. With no subscript, an inequality between permutations continues
to represent the partial order in a poset. Even though working with grevlex order is a bit
cumbersome at first, it is popularly used in applications since it is computationally efficient.

This allows us to define a reverse lexicographic, or pulling, triangulation of a lattice poly-
tope P , which is any triangulation whose Stanley-Reisner ideal is rad

(
in≺grevlex

(IP )
)
. Thus,

a reverse lexicographic triangulation of P may be described as the triangulation whose max-
imal simplices are the projections of the appropriate facets of Pw where w is a weight vector
for ≺grevlex. See [17], for example, for a recursive geometric description of how to create
reverse lexicographic triangulations.

Before we prove the main theorem of this section, we will need two more lemmas. Recall
that a poset is graded if all of its maximal chains have the same length.

Lemma 3.13. Let Mσ denote the matrix corresponding to a permutation σ. For any σ, σ′

that are both in Qn(132, 312) or in Q̃n(123), we have

(5) Mσ +Mσ′ = Mσ∧σ′ +Mσ∨σ′

Proof. Our lattices are distributive and so graded in that all maximal chains have the same
length. Let r and r′ be the lengths of maximal chains in the intervals [σ∧σ′, σ] and [σ∧σ′, σ′],
respectively. Without loss of generality, we can assume r ≥ r′. We induct on the pairs (r, r′)
in lexicographic order. The case when r′ = 0 in trivial, and the case (r, r′) = (1, 1) is covered
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by equation (4). So assume r ≥ 2 and take a permutation τ covered by σ in the interval
[σ ∧ σ′, σ]. First compare τ and σ′. By choice of τ , we have τ ∧ σ′ = σ ∧ σ′. And since the
lattice is graded, the length of a maximal chain in [τ, τ ∨ σ′] is r′. Comparing σ and τ ∨ σ′
we see that, since we are in a distributive lattice,

σ ∧ (τ ∨ σ′) = (σ ∧ τ) ∨ (σ ∧ σ′) = τ.

Also clearly σ ∨ (τ ∨ σ′) = σ ∨ σ′. Because of the way we have chosen r and r′, we can apply
induction to the pair τ, σ′ and to the pair σ, τ ∨ σ′, giving

Mτ +Mσ′ = Mσ∧σ′ +Mτ∨σ′ and Mσ +Mτ∨σ′ = Mτ +Mσ∨σ′ .

Adding these two equations and canceling finishes the proof. �

Lemma 3.14. For each permutation σ = a1 . . . an define

µi(σ) = min{a1, . . . , ai}.

Suppose σ, τ ∈ Q where Q = Qn(132, 312) or Q = Q̃n(123). If σ < τ in Q, then µi(σ) ≤ µi(τ)
for all i.

Proof. The proof follows quickly by induction if we can prove it for σ l τ . Clearly for any
two sets of integers A = {a1, . . . , ai} and B = {b1, . . . , bi}, if we have aj ≤ bj for all j then
minA ≤ minB. Now suppose σ = a1 . . . an and τ = b1 . . . bn. Then τ was obtained from σ
by interchanging two elements ar and as where r < s and ar < as. So the prefixes of σ and
τ satisfy the condition on integral sets above and we are done. �

We are now ready to prove the main result of this section.

Theorem 3.15. The sets Tn(132, 312) and T̃n(123) are regular, flag, unimodular reverse

lexicographic triangulations of Bn(132, 312) and B̃n(123), respectively.

Proof. First consider P = Bn(132, 312), and let A = P ∩ Zn×n, so that AP = {(l, 1) | l ∈
A}. Our strategy will be to construct the reduced Gröbner basis G of IAP

with respect
to ≺= ≺grevlex. By Theorem 3.11, the initial complex ∆≺(IAP

) is a regular triangulation
Υw(AP ) of conv(AP ) = (P, 1), which induces a regular triangulation Υw(P ) of P . We will
see that G consists of binomials whose initial terms are products of distinct pairs of variables
corresponding to incomparable elements of Qn(132, 312). Thus, by Theorem 3.12 and the
comment directly afterwards, since in≺(IAP

) is the Stanley-Reisner ideal for Υw(P ), the
triangulation is flag and unimodular with respect to the affine lattice Z(P ∩ Zn×n). By our
description of the minimal non-faces of this triangulation, we will know that the simplices in
Υw(P ) are exactly the elements of Tn(132, 312). Since we saw in Proposition 3.7 that each
Γ ∈ Tn(132, 312) is unimodular with respect to (aff Γ) ∩ Zn×n, we have that Tn(132, 312) is
actually a triangulation of P with respect to the lattice (aff P ) ∩ Zn×n. Because of how we
defined ≺, the triangulation Tn(132, 312) is reverse lexicographic as well.

Consider the set of monomials tσtσ′ in TAP
such that σ and σ′ are incomparable in

Qn(132, 312). Because of equation (5), we know that tσtσ′ − tσ∧σ′tσ∨σ′ ∈ IAP
. By the

way we defined ≺, the smaller of the two terms is the one containing tσ∧σ′ . Thus tσtσ′ is the
initial term of the binomial. Since this monomial is quadratic, it must be the initial term
of some binomial in G. It quickly follows from the definition of a reduced Gröbner basis
that there can be no binomial in G of degree 3 or greater whose initial term contains a pair
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of variables tρ, tρ′ corresponding to incomparable elements ρ, ρ′ in Qn(132, 312). Otherwise,
this initial term would be divisible by tρtρ′ , which is itself an initial term of a binomial in G.

Now we will show that there are no binomials of degree 2 or greater in G with initial term
tu1σ1 . . . t

ur
σr such that σ1 < · · · < σr in Qn(132, 312). If we assume there is such a binomial,

let tv1σ′1
. . . tvrσ′r the other term in the binomial. Because this term is not initial, there is some

variable, which we may take to be tσ′1 , such that that tσ′1 �grevlex tσi for all i. So, by definition
of this monomial order, σ′1<lex σi for all i. Letting σ1 = a1 . . . an and σ′1 = c1 . . . cn, denote
by j the smallest index for which cj < aj. Since we know

r∑
i=1

uiMσi =
r∑
i=1

viMσ′i
,

there is some other σp = b1 . . . bn for which bj = cj and σ1 < σp.
We will show cj is equal to some element in c1 . . . cj−1 = a1 . . . aj−1 and so σ′1 is not a

permutation, the desired contradiction. Using Lemma 3.14 and the definition of j we have

µj(σ1) ≤ µj(σp) ≤ bj = cj < aj.

But from the grid class description of Avn(132, 312) it is clear that any prefix of σ1 forms
an interval. So the above inequalities show that cj ∈ {a1, . . . , aj−1} as promised. We
have shown that the binomials in G have initial terms that are products of variables that
correspond to pairwise incomparable elements in Qn(132, 312). So, the initial ideal of IAP

is
radical and therefore, by Theorem 3.12, is the Stanley-Reisner ideal of a regular triangulation
of conv(AP ) which induces a triangulation of conv(A) = P .

Since the minimal non-edges of the triangulation are pairs of incomparable elements, any
chain σ1 < · · · < σr in Qn(132, 312) induces a face {Mσ1 , . . . ,Mσr} of the triangulation. The
set of all such faces is exactly Tn(132, 312), so Tn(132, 312) is actually a regular triangulation
of Bn(132, 312). By Proposition 3.7, this triangulation is unimodular with respect to (aff P )∩
Zn×n, and since the minimal non-faces are edges, this triangulation is flag. Because this
triangulation was the result of taking an initial ideal with respect to a grevlex order, the
triangulation is reverse lexicographic.

The same proof will work in the case of B̃n(123) except during the demonstration that
σ′1 is not a permutation were we used the grid class structure of Avn(132, 312). Instead, we

show that there is no such σ′1 in Q̃n(123) as follows. If cj occurs among a1, . . . , aj−1 then we
are done as before. Otherwise, aj must occur to the right of cj in σ′1. Recall that applying

a simple transposition si to an element of Q̃n(123) interchanges i which is in odd position
with i + 1 which is in an even position. It follows that elements in odd positions increase
with the partial order while those in even positions decrease. Since aj > bj, we must have j
even. If aj occurs in an even position to the right of cj in σ′1, then we have a contradiction
since cj < aj are the elements in even positions form a decreasing sequence. If aj is in an
odd position, then cj−1 > aj since the elements in odd positions are also decreasing. But
then cj−1 > aj > cj which contradicts the fact that σ′1 is alternating. This final contradiction
finishes the proof. �

Because the triangulations above were obtained using the grevlex order, Corollary 2.5 of
[28] gives us

h∗(Bn(132, 312)) = h(Tn(132, 312)) = h(∆(Qn(132, 312))),
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and likewise for B̃n(123). This fact will come into play in the final section when making
statements about the components of h∗-vectors for our polytopes.

It is worth commenting that the work done in proving Proposition 3.7 and Theorem 3.15
is unnecessary if one can show that Bn(Π) is (unimodularly equivalent to) an order polytope
for some graded poset. In this case, it was shown in [15] that the toric ideal of the polytope
has quadratic Gröbner bases with squarefree initial terms. It follows that the initial ideals
are squarefree, and Bn(Π) therefore has a regular, unimodular triangulation. However, it is

currently unclear whether Bn(132, 312) and B̃n(123) fall into this situation.

4. The Ehrhart Theory of Bn(132, 312) and B̃n(123)

The previous section identified shellable, regular, unimodular triangulations ofBn(132, 312)

and B̃n(123) which arose from order complexes of certain distributive lattices; in this section,
we use the EL-labelings of the lattices to study the h∗-vectors of the polytopes. To do so,
we require some more definitions and background.

Suppose P ⊆ Rn is a lattice polytope containing the origin in its interior. We say that P
is reflexive if its polar dual

P∨ := {x ∈ Rn | xTy ≤ 1 for all y ∈ P}
is also a lattice polytope. Any lattice translate of a reflexive polytope is also called reflexive.
A lattice polytope P is said to be Gorenstein if kP is reflexive for some k, called the in-
dex. A theorem, due to Stanley, describes exactly the behavior of h∗-vectors for Gorenstein
polytopes.

Theorem 4.1 (Theorem 4.4, [27]). A lattice polytope is Gorenstein if and only if its h∗-
vector is palindromic.

We can use this result together with the following facts about h∗-vectors to determine
necessary conditions for P to be Gorenstein. Let h∗(P ) = (h∗0, . . . , h

∗
d) where P is any lattice

polytope. We always have h∗0 = 1. Additionally, as a consequence of Ehrhart-Macdonald
reciprocity, the first scaling of P containing an interior lattice point is (dimP −d+ 1)P , and
the number of interior lattice points in this scaling is h∗d. Since a Gorenstein polytope has a
palindromic h∗-vector, then in order to be Gorenstein, the first scaling of P with an interior
lattice point must have exactly one such point.

Note that not every set of permutations Π will produce a Gorenstein Bn(Π). Take, for
example, Π = {123, 132} and n = 5. One may verify that the first nonnegative integer
scaling mBn(123, 132) containing an interior lattice point occurs when m = 8, but this
scaling contains four interior lattice points rather than the one needed to be Gorenstein.

The main goal of this section will be to prove the following theorem.

Theorem 4.2. For all n, Bn(132, 312) and B̃n(123) are Gorenstein.

If the hyperplane description of a lattice polytope is known, then proving whether it is

Gorenstein is often a straightforward task. Such a description of Bn(132, 312) and B̃n(123)
has been elusive, though, so we must approach the proof of Theorem 4.2 by showing that
their h∗ vectors are palindromic and then appealing to Theorem 4.1.

One benefit of going through the work of the previous section is that once a Gorenstein
polytope is known to have a regular, unimodular triangulation, it follows that the h∗-vector
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of the polytope is unimodal in addition to being palindromic [8]. Thus, using Theorem 4.2,

the regular unimodular triangulations Tn(132, 312) and T̃n(123), as well as the EL-labelings

of Qn(132, 312) and Q̃n(123), we will be able to establish that the h∗-vectors of these two
polytopes are palindromic and unimodal.

We first need to recall some results about shellable triangulations. In such a triangulation
with shelling order F1, . . . , Fs, the restriction of face Fj is the set R(Fj) of vertices v ∈ Fj
such that the facet Fj − v is contained in F1 ∪ · · · ∪ Fj−1. The shelling number of Fj is
r(Fj) = |R(Fj)|. The following result of Stanley shows that the entries of the h∗-vector of
the polytope being shelled can be computed using shelling numbers.

Proposition 4.3 (Corollary 2.6, [28]). Suppose that T1, . . . , Tk is a shelling order of a
unimodular triangulation of a lattice polytope P . Then the component h∗i of h∗(P ) is equal
to the number of simplices Tj such that r(Tj) = i. �

When using EL-shellings, there is an easy way to determine the shelling number of a facet,
that is, of a maximal chain c, from its labeling. In particular, if

λ(c) = (λ(q0, q1), λ(q1, q2), . . . , λ(qk−1, qk))

then qm ∈ R(c) if and only if we have a descent λ(qm−1, qm) > λ(qm, qm+1) in λ(c). This is
the content of the following lemma of Björner.

Lemma 4.4 (Lemma 2.6, [6]). Let c be a maximal chain of the poset P admitting an
EL-labeling λ. Then

r(c) = desλ(c)

where des is the number of descents.

The last link in our chain will come from a result in the theory of (Q,ω)-partitions as
developed by Stanley. A fuller exposition can be found in Chapter 3 of his book [30]. Let Q
be a poset with |Q| = n, and let ω : Q → [n] be a bijection, called a labeling of Q. We say
f : Q→ Z≥1 is a (dual) (Q,ω)-partition if

(i) f is order preserving, and
(ii) if s < t and ω(s) > ω(t), then f(s) < f(t).

In a sense one may think of ω as indicating where strict inequalities of f occur, rather than
weak inequalities. If ω itself is order-preserving then, as we have already seen, it is called a
natural labeling of Q. We call ω dual natural if its dual labeling ω : Q→ [n], defined by the
complementation ω(q) = n+ 1− q, is natural.

We will be concerned with the order polynomial of (Q,ω), denoted ΩQ,ω(m), which is the
number of maps f : Q → [m] which satisfy conditions (i) and (ii) above. It can be shown
that ΩQ,ω(m) is a polynomial in m of degree n = |Q|. Equivalently, the generating function
for the order polynomial must be in the form∑

m≥0

ΩQ,ω(m)tm =
AQ,ω(t)

(1− t)n+1

where AQ,ω(t) is a polynomial of degree at most n called the Eulerian polynomial of (Q,ω). In
fact, one can give an explicit description of AQ,ω(t) as follows. Define the Jordan-Hölder set of
(Q,ω), denoted L(Q,ω), to be the set of all permutations of the form w = ω(q1)ω(q2) . . . ω(qn)
as q1, q2, . . . , qn runs over all linear extensions of Q, that is, total orders on Q such that if
qi < qj in Q then i < j.
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Theorem 4.5 (Theorem 3.15.8, [30]). We have∑
m≥0

ΩQ,ω(m)tm =

∑
w∈L(Q,ω) t

1+desw

(1− t)n+1

where n = |Q|. �

Our next goal is to show that under certain conditions AQ,ω(t) is palindromic. To do this,
we will need a trio of results. Since ΩQ,ω(m) is a polynomial it makes sense to talk about
its value at a negative argument. Also, there are many properties of the order polynomial
which are true for all natural labelings ω. In this case, we shorten ΩQ,ω to ΩQ and similarly
for other notation.

Theorem 4.6 (Corollaries 3.15.12 and 3.15.18, [30]). Let Q be a poset with |Q| = n and
longest chain of length l.

(A) (Reciprocity theorem for order polynomials) For all m ∈ Z

ΩQ,ω(m) = (−1)nΩQ,ω(−m).

(B) If ω is natural then

ΩQ(0) = ΩQ(−1) = · · · = ΩQ(−l) = 0.

(C) Suppose ω is natural. The poset Q is graded if and only if

ΩQ(m) = (−1)nΩQ(−m− l)

for all m ∈ Z. �

Theorem 4.7. Let Q be a poset and let ω be a natural labeling of Q. Then the Eulerian
polynomial AQ(t) is palindromic if and only if Q is graded.

Proof. We will prove the backwards direction as going forwards is similar. We will use Q
as an abbreviation for (Q,ω). We also conserve the notation of the previous result. Using
Theorem 4.6 (A), Theorem 4.5, and the definition of ω in turn we get

(−1)n
∑
m≥0

ΩQ(−m)tm =
∑
m≥0

ΩQ(m)tm =

∑
w∈L(Q) t

1+desw

(1− t)n+1
=

∑
w∈L(Q) t

n−desw

(1− t)n+1
.

On the other hand, using parts (B) and (C) of the previous result and then Theorem 4.5
again gives

(−1)n
∑
m≥0

ΩQ(−m)tm =
∑
m≥0

ΩQ(m− l)tm = tl
∑
m≥0

ΩQ(m)tm =

∑
w∈L(Q) t

l+1+desw

(1− t)n+1
.

Comparison of the final numerators in the last two series of displayed equalities implies that
AQ(t) is a palindrome, as desired. �

We now have all our tools in place. The following result, together with Theorem 4.1 proves
Theorem 4.2.

Theorem 4.8. The vectors h∗(Bn(132, 312)) and h∗(B̃n(123)) are palindromic for all n.
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Proof. We will only deal with the case of Bn(132, 312) as B̃n(123) is similar. Let Q =
Irr(Qn(132, 312)) and note that Q is graded. Let ω be the natural labeling of Q used in the
EL-shelling of Qn(132, 312). Combining Proposition 4.3, Lemma 4.4, and Theorem 4.7, we
see that it suffices to show that

L(Q) = {λ(c) | c a maximal chain in Qn(132, 312)}.
But this follows since Qn(132, 312) = J(Q) so that linear extensions q0, q1, q2, . . . of Q are in
bijective correspondence with maximal chains q0 l q0∨ q1 l q0∨ q1∨ q2 l . . . of Qn(132, 312),
and we are using the same function ω to label both the elements of Q and the covers in the
chain. �

Corollary 4.9. The vectors h∗(Bn(132, 312)) and h∗(B̃n(123)) are unimodal.

Proof. For each n, Bn(132, 312) and B̃n(123) have regular, unimodular triangulations by
Theorem 3.15 and are Gorenstein by Theorem 4.2. By the main result of [8], the h∗-vectors
for each polytope are h-vectors for boundaries of simplicial polytopes, that is, they are
unimodal. �

Corollary 4.10. The normalized volume of Bn(132, 312) is

VolBn(132, 312) =

(
n

2

)
!

∏n−1
i=1 (i− 1)!∏n−1
i=1 (2i− 1)!

The normalized volume of B̃n(123) is

Vol B̃n(123) =

(
k

2

)
!

1∏k−1
i=1 (2i− 1)k−i

,

where k = dn/2e.

Proof. Since Tn(132, 312) and T̃n(123) are unimodular triangulations of Bn(132, 312) and

B̃n(123), the normalized volumes of the polytopes are the total number of maximal simplices
in the respective triangulations. These are enumerated by counting the maximal chains in

Qn(132, 312) and Q̃n(123), which are in bijection with shifted SYT of shape (n − 1, . . . , 1)
and left-justified SYT of shape (k− 1, . . . , 1). Such tableaux are counted by the well-known
hook formulas, established in [33] and [14]. �

Acknowledgement. We thank Richard Stanley for pointing out that the theory of (P, ω)-
partitions could be used to obtain Theorem 4.7.
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